1
|
Garnier A, Zoll J, Fortin D, N'Guessan B, Lefebvre F, Geny B, Mettauer B, Veksler V, Ventura-Clapier R. Control by Circulating Factors of Mitochondrial Function and Transcription Cascade in Heart Failure. Circ Heart Fail 2009; 2:342-50. [DOI: 10.1161/circheartfailure.108.812099] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background—
Evidence is emerging to support the concept that the failing heart is “energy depleted” and that defects in energy metabolism are important determinants in the development and the progression of the disease. We have shown previously that depressed mitochondrial function in cardiac and skeletal muscles in chronic heart failure is linked to decreased expression of the gene encoding transcriptional proliferator-activated receptor-γ coactivator-1α, the inducible regulator of mitochondrial biogenesis and its transcription cascade, leading to altered expression of mitochondrial proteins. However, oxidative capacity of the myocardium of patients treated for chronic heart failure and pathophysiological mechanisms of mitochondrial dysfunction are still largely unknown.
Methods and Results—
In patients with chronic heart failure treated with angiotensin-converting enzyme inhibition, cardiac oxidative capacity, measured in saponin-permeabilized fibers, was 25% lower, and proliferator-activated receptor-γ coactivator-1α protein content was 34% lower compared with nonfailing controls. In a rat model of myocardial infarction, angiotensin-converting enzyme inhibition therapy was only partially able to protect cardiac mitochondrial function and transcription cascade. Expression of proliferator-activated receptor-γ coactivator-1α and its transcription cascade were evaluated after a 48-hour exposure of cultured adult rat ventricular myocytes to endothelin-1, angiotensin II, aldosterone, phenylephrine, or isoprenaline. Endothelin-1 (−30%) and, to a lesser degree, angiotensin II (−20%) decreased proliferator-activated receptor-γ coactivator-1α mRNA content, whereas other hormones had no effect (phenylephrine) or even increased it (aldosterone, isoprenaline).
Conclusions—
Taken together, these results show that, despite angiotensin-converting enzyme inhibition treatment, oxidative capacity is reduced in human and experimental heart failure and that endothelin-1 and angiotensin II could be involved in the downregulation of the mitochondrial transcription cascade.
Collapse
Affiliation(s)
- Anne Garnier
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| | - Joffrey Zoll
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| | - Dominique Fortin
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| | - Benoît N'Guessan
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| | - Florence Lefebvre
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| | - Bernard Geny
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| | - Bertrand Mettauer
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| | - Vladimir Veksler
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| | - Renée Ventura-Clapier
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| |
Collapse
|
2
|
Goettsch W, Schubert A, Morawietz H. Expression of human endothelin-converting enzyme isoforms: role of angiotensin II. Can J Physiol Pharmacol 2008; 86:299-309. [PMID: 18516092 DOI: 10.1139/y08-023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A key step in endothelin-1 (ET-1) synthesis is the proteolytic cleavage of big ET-1 by the endothelin-converting enzyme-1 (ECE-1). Four alternatively spliced isoforms, ECE-1a to ECE-1d, have been discovered; however, regulation of the expression of specific ECE-1 isoforms is not well understood. Therefore, we stimulated primary human umbilical vein endothelial cells (HUVECs) with angiotensin II (Ang II). Furthermore, expression of ECE-1 isoforms was determined in internal mammary arteries of patients undergoing coronary artery bypass grafting surgery. Patients had received one of 4 therapies: angiotensin-converting enzyme inhibitors (ACE-I), Ang II type 1 receptor blockers (ARB), HMG-CoA reductase inhibitors (statins), and a control group that had received neither ACE-I, ARB (that is, treatment not interfering in the renin-angiotensin system), nor statins. Under control conditions, ECE-1a is the dominant isoform in HUVECs (4.5+/-2.8 amol/microg RNA), followed by ECE-1c (2.7+/-1.0 amol/microg), ECE-1d (0.49+/-0.17 amol/microg), and ECE-1b (0.17+/-0.04 amol/microg). Stimulation with Ang II did not change the ECE-1 expression pattern or the ET-1 release. We found that ECE-1 mRNA expression was higher in patients treated with statins than in patients treated with ARB therapy (5.8+/-0.76 RU versus 3.0+/-0.4 RU), mainly attributed to ECE-1a. In addition, ECE-1a mRNA expression was higher in patients receiving ACE-I therapy than in patients receiving ARB therapy (1.68+/-0.27 RU versus 0.83+/-0.07 RU). We conclude that ECE-1a is the major ECE-1 isoform in primary human endothelial cells. Its expression in internal mammary arteries can be regulated by statin therapy and differs between patients with ACE-I and ARB therapy.
Collapse
Affiliation(s)
- W Goettsch
- Department of Vascular Endothelium and Microcirculation, Medical Clinic and Policlinic III, University of Technology Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | | | | |
Collapse
|