1
|
Liao YX, Wang XH, Bai Y, Lin F, Li MX, Mi WJ, Sun WL, Chen YH. Relationship Between Endogenous Hydrogen Sulfide and Pulmonary Vascular Indexes on High-Resolution Computed Tomography in Patients with Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2021; 16:2279-2289. [PMID: 34408410 PMCID: PMC8364359 DOI: 10.2147/copd.s314349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Objective To explore the relationship between endogenous hydrogen sulfide (H2S) and high-resolution computed tomography (HRCT) indexes in pulmonary vascular remodeling. Methods A total of 94 stable chronic obstructive pulmonary disease (COPD) patients were recruited for the study.Plasma H2S levels were measured using fluorescence probe. Fluorescence quantitative polymerase chain reaction was used to measure H2S synthase cystathionine-γ-lyase (CSE) mRNA and cystathionine-β-synthesis enzyme (CBS) mRNA. The main pulmonary artery diameter (mPAD), axial diagonal mPAD, coronal mPAD, sagittal mPAD, right pulmonary artery diameter (RPAD), left pulmonary artery diameter (LPAD), and ascending aortic diameter (AAD) and the percentage of total cross-sectional area of vessels less than 5 mm2 of total lung area (%CSA <5) on HRCT were measured. Pulmonary arterial systolic pressure (PASP) of echocardiography, blood gas analysis, and routine blood tests were performed. Correlation analysis and multivariate linear regression were performed using SPSS 22.0. Results H2S was negatively correlated with mPAD, axial diagonal mPAD, and sagittal mPAD (r = -0.25~-0.32) and positively correlated with PaO2 (r = 0.35). Relative expression of CSE mRNA was positively correlated with PASP, coronal mPAD, sagittal mPAD, white blood cell count (WBC), and neutrophil count (N) (r = 0.30~0.44). The relative expression of CBS mRNA was positively correlated with PASP, WBC, and N (r = 0.34~0.41). In separate models predicting pulmonary vascular indexes, a 1μmol/L increase in H2S predicted lower pulmonary artery diameter (for axial diagonal mPAD, 0.76mm lower; for mPAD/AAD, 0.68mm lower). All P values were less than 0.05. Conclusion Endogenous H2S may be involved in pulmonary vascular remodeling, providing a new method for the diagnosis and treatment of COPD. The generation of H2S may be inhibited by hypoxia, inflammation, etc.
Collapse
Affiliation(s)
- Yi-Xuan Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People's Republic of China.,Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Xiao-Hua Wang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yu Bai
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Fan Lin
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Min-Xia Li
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Wen-Jun Mi
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Wan-Lu Sun
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Ya-Hong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| |
Collapse
|
2
|
Li Y, Feng Y, Liu L, Li X, Li XY, Sun X, Li KX, Zha RR, Wang HD, Zhang MD, Fan XX, Wu D, Fan Y, Zhang HC, Qiao GF, Li BY. The baroreflex afferent pathway plays a critical role in H 2S-mediated autonomic control of blood pressure regulation under physiological and hypertensive conditions. Acta Pharmacol Sin 2021; 42:898-908. [PMID: 33154555 PMCID: PMC8149652 DOI: 10.1038/s41401-020-00549-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S), which is closely related to various cardiovascular disorders, lowers blood pressure (BP), but whether this action is mediated via the modification of baroreflex afferent function has not been elucidated. Therefore, the current study aimed to investigate the role of the baroreflex afferent pathway in H2S-mediated autonomic control of BP regulation. The results showed that baroreflex sensitivity (BRS) was increased by acute intravenous NaHS (a H2S donor) administration to renovascular hypertensive (RVH) and control rats. Molecular expression data also showed that the expression levels of critical enzymes related to H2S were aberrantly downregulated in the nodose ganglion (NG) and nucleus tractus solitarius (NTS) in RVH rats. A clear reduction in BP by the microinjection of NaHS or L-cysteine into the NG was confirmed in both RVH and control rats, and a less dramatic effect was observed in model rats. Furthermore, the beneficial effects of NaHS administered by chronic intraperitoneal infusion on dysregulated systolic blood pressure (SBP), cardiac parameters, and BRS were verified in RVH rats. Moreover, the increase in BRS was attributed to activation and upregulation of the ATP-sensitive potassium (KATP) channels Kir6.2 and SUR1, which are functionally expressed in the NG and NTS. In summary, H2S plays a crucial role in the autonomic control of BP regulation by improving baroreflex afferent function due at least in part to increased KATP channel expression in the baroreflex afferent pathway under physiological and hypertensive conditions.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacy, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Yan Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Li Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xin-Yu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xun Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Ke-Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Rong-Rong Zha
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Hong-Dan Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Meng-di Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Physics, School of Science, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Xiong-Xiong Fan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Di Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yao Fan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hao-Cheng Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Guo-Fen Qiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Bai-Yan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
3
|
Huang YQ, Jin HF, Zhang H, Tang CS, Du JB. Interaction among Hydrogen Sulfide and Other Gasotransmitters in Mammalian Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:205-236. [PMID: 34302694 DOI: 10.1007/978-981-16-0991-6_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S), nitric oxide (NO), carbon monoxide (CO), and sulfur dioxide (SO2) were previously considered as toxic gases, but now they are found to be members of mammalian gasotransmitters family. Both H2S and SO2 are endogenously produced in sulfur-containing amino acid metabolic pathway in vivo. The enzymes catalyzing the formation of H2S are mainly CBS, CSE, and 3-MST, and the key enzymes for SO2 production are AAT1 and AAT2. Endogenous NO is produced from L-arginine under catalysis of three isoforms of NOS (eNOS, iNOS, and nNOS). HO-mediated heme catabolism is the main source of endogenous CO. These four gasotransmitters play important physiological and pathophysiological roles in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The similarity among these four gasotransmitters can be seen from the same and/or shared signals. With many studies on the biological effects of gasotransmitters on multiple systems, the interaction among H2S and other gasotransmitters has been gradually explored. H2S not only interacts with NO to form nitroxyl (HNO), but also regulates the HO/CO and AAT/SO2 pathways. Here, we review the biosynthesis and metabolism of the gasotransmitters in mammals, as well as the known complicated interactions among H2S and other gasotransmitters (NO, CO, and SO2) and their effects on various aspects of cardiovascular physiology and pathophysiology, such as vascular tension, angiogenesis, heart contractility, and cardiac protection.
Collapse
Affiliation(s)
- Ya-Qian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hong-Fang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chao-Shu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China
| | - Jun-Bao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
4
|
Pal K, Islam ASM, Prodhan C, Bhunya S, Paul A, Ali M. A Benzooxazole-Based Probe for the Sensitive Detection of Hydrogen Sulfide: Kinetic and Transition-State Studies and In Vitro Application in HepG2 Cells. ChemistrySelect 2018. [DOI: 10.1002/slct.201801090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kaberi Pal
- Department of Chemistry; Jadavpur University; 188 Raja S.C. Mallick Road Kolkata - 700032 India
| | - Abu Saleh Musha Islam
- Department of Chemistry; Jadavpur University; 188 Raja S.C. Mallick Road Kolkata - 700032 India
| | - Chandraday Prodhan
- Molecular& Human Genetics Division; CSIR-Indian Institute of Chemical Biology; 4 Raja S.C. Mallick Road Kolkata - 700032 India
| | - Sourav Bhunya
- Raman Centre for Atomic, Optical and Molecular Physics; Indian Association for the Cultivation of Science, Jadavpur; Kolkata - 700032 India
| | - Ankan Paul
- Raman Centre for Atomic, Optical and Molecular Physics; Indian Association for the Cultivation of Science, Jadavpur; Kolkata - 700032 India
| | - Mahammad Ali
- Department of Chemistry; Jadavpur University; 188 Raja S.C. Mallick Road Kolkata - 700032 India
| |
Collapse
|
5
|
Gao B, Cui L, Pan Y, Xue M, Zhu B, Zhang G, Zhang C, Shuang S, Dong C. A highly selective fluorescent probe based on Michael addition for fast detection of hydrogen sulfide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:457-461. [PMID: 27710810 DOI: 10.1016/j.saa.2016.09.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/24/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
A new 4-hydroxy-1,8-naphthalimide-based compound (probe 1) has been designed and synthesized. The colorimetric and fluorescent properties of probe 1 towards hydrogen sulfide (H2S) were investigated in detail. The results show that the probe 1 could selectively and sensitively recognize H2S rather than other reactive sulfur species. The reaction mechanism of this probe is an intramolecular cyclization caused by the Michael addition of H2S to give 4-hydroxy-1,8-naphthalimide. The intramolecular charge transfer of 4-hydroxy-1,8-naphthalimide is significant. Probe 1 quickly responded to H2S and showed a 75-fold fluorescence enhancement in 5min. Moreover, probe 1 could detect H2S quantitatively with a detection limit as low as 0.23μM.
Collapse
Affiliation(s)
- Baozhen Gao
- School of Chemistry and Chemical Engineering, Center of Environmental Science and Engineering Research, Shanxi University, Taiyuan 030006,China
| | - Lixia Cui
- School of Chemistry and Chemical Engineering, Center of Environmental Science and Engineering Research, Shanxi University, Taiyuan 030006,China
| | - Yong Pan
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Yangfang, Changping District, Beijing 102205, China
| | - Minjie Xue
- School of Chemistry and Chemical Engineering, Center of Environmental Science and Engineering Research, Shanxi University, Taiyuan 030006,China
| | - Boyu Zhu
- School of Chemistry and Chemical Engineering, Center of Environmental Science and Engineering Research, Shanxi University, Taiyuan 030006,China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Center of Environmental Science and Engineering Research, Shanxi University, Taiyuan 030006,China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Center of Environmental Science and Engineering Research, Shanxi University, Taiyuan 030006,China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Center of Environmental Science and Engineering Research, Shanxi University, Taiyuan 030006,China
| | - Chuan Dong
- School of Chemistry and Chemical Engineering, Center of Environmental Science and Engineering Research, Shanxi University, Taiyuan 030006,China.
| |
Collapse
|
6
|
Billings AF, Fortney JL, Hazen TC, Simmons B, Davenport KW, Goodwin L, Ivanova N, Kyrpides NC, Mavromatis K, Woyke T, DeAngelis KM. Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov. Stand Genomic Sci 2015; 10:106. [PMID: 26594307 PMCID: PMC4653933 DOI: 10.1186/s40793-015-0100-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 11/10/2015] [Indexed: 01/20/2023] Open
Abstract
Tolumonas lignolytica BRL6-1T sp. nov. is the type strain of T. lignolytica sp. nov., a proposed novel species of the Tolumonas genus. This strain was isolated from tropical rainforest soils based on its ability to utilize lignin as a sole carbon source. Cells of Tolumonas lignolytica BRL6-1T are mesophilic, non-spore forming, Gram-negative rods that are oxidase and catalase negative. The genome for this isolate was sequenced and returned in seven unique contigs totaling 3.6Mbp, enabling the characterization of several putative pathways for lignin breakdown. Particularly, we found an extracellular peroxidase involved in lignin depolymerization, as well as several enzymes involved in β-aryl ether bond cleavage, which is the most abundant linkage between lignin monomers. We also found genes for enzymes involved in ferulic acid metabolism, which is a common product of lignin breakdown. By characterizing pathways and enzymes employed in the bacterial breakdown of lignin in anaerobic environments, this work should assist in the efficient engineering of biofuel production from lignocellulosic material.
Collapse
Affiliation(s)
- Andrew F Billings
- Microbiology Department, University of Massachusetts, Amherst, MA USA
| | - Julian L Fortney
- Microbial Communities Group, Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA USA ; Department of Civil & Environmental Engineering, The University of Tennessee, Knoxville, TN USA
| | - Terry C Hazen
- Department of Civil & Environmental Engineering, The University of Tennessee, Knoxville, TN USA ; Department of Microbiology, The University of Tennessee, Knoxville, TN USA ; Department of Earth & Planetary Sciences, The University of Tennessee, Knoxville, TN USA
| | - Blake Simmons
- Microbial Communities Group, Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA USA ; Sandia National Lab, Livermore, CA USA
| | | | | | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | | | - Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | | |
Collapse
|
7
|
Song C, Zhang S, Huang H. Choosing a suitable method for the identification of replication origins in microbial genomes. Front Microbiol 2015; 6:1049. [PMID: 26483774 PMCID: PMC4588119 DOI: 10.3389/fmicb.2015.01049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/14/2015] [Indexed: 12/19/2022] Open
Abstract
As the replication of genomic DNA is arguably the most important task performed by a cell and given that it is controlled at the initiation stage, the events that occur at the replication origin play a central role in the cell cycle. Making sense of DNA replication origins is important for improving our capacity to study cellular processes and functions in the regulation of gene expression, genome integrity in much finer detail. Thus, clearly comprehending the positions and sequences of replication origins which are fundamental to chromosome organization and duplication is the first priority of all. In view of such important roles of replication origins, tremendous work has been aimed at identifying and testing the specificity of replication origins. A number of computational tools based on various skew types have been developed to predict replication origins. Using various in silico approaches such as Ori-Finder, and databases such as DoriC, researchers have predicted the locations of replication origins sites for thousands of bacterial chromosomes and archaeal genomes. Based on the predicted results, we should choose an effective method for identifying and confirming the interactions at origins of replication. Here we describe the main existing experimental methods that aimed to determine the replication origin regions and list some of the many the practical applications of these methods.
Collapse
Affiliation(s)
- Chengcheng Song
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China
- Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Shaocun Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China
- Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China
- Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| |
Collapse
|
8
|
Gao F. Bacteria may have multiple replication origins. Front Microbiol 2015; 6:324. [PMID: 25941523 PMCID: PMC4403523 DOI: 10.3389/fmicb.2015.00324] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/31/2015] [Indexed: 01/15/2023] Open
Affiliation(s)
- Feng Gao
- Department of Physics, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering Tianjin, China
| |
Collapse
|
9
|
Gao F. Recent Advances in the Identification of Replication Origins Based on the Z-curve Method. Curr Genomics 2014; 15:104-12. [PMID: 24822028 PMCID: PMC4009838 DOI: 10.2174/1389202915999140328162938] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/19/2022] Open
Abstract
Precise DNA replication is critical for the maintenance of genetic integrity in all organisms. In all three domains
of life, DNA replication starts at a specialized locus, termed as the replication origin, oriC or ORI, and its identification
is vital to understanding the complex replication process. In bacteria and eukaryotes, replication initiates from single
and multiple origins, respectively, while archaea can adopt either of the two modes. The Z-curve method has been
successfully used to identify replication origins in genomes of various species, including multiple oriCs in some archaea.
Based on the Z-curve method and comparative genomics analysis, we have developed a web-based system, Ori-Finder, for
finding oriCs in bacterial genomes with high accuracy. Predicted oriC regions in bacterial genomes are organized into an
online database, DoriC. Recently, archaeal oriC regions identified by both in vivo and in silico methods have also been included
in the database. Here, we summarize the recent advances of in silico prediction of oriCs in bacterial and archaeal
genomes using the Z-curve based method.
Collapse
Affiliation(s)
- Feng Gao
- Department of Physics, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Wu Z, Liu J, Yang H, Xiang H. DNA replication origins in archaea. Front Microbiol 2014; 5:179. [PMID: 24808892 PMCID: PMC4010727 DOI: 10.3389/fmicb.2014.00179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/01/2014] [Indexed: 11/13/2022] Open
Abstract
DNA replication initiation, which starts at specific chromosomal site (known as replication origins), is the key regulatory stage of chromosome replication. Archaea, the third domain of life, use a single or multiple origin(s) to initiate replication of their circular chromosomes. The basic structure of replication origins is conserved among archaea, typically including an AT-rich unwinding region flanked by several conserved repeats (origin recognition box, ORB) that are located adjacent to a replication initiator gene. Both the ORB sequence and the adjacent initiator gene are considerably diverse among different replication origins, while in silico and genetic analyses have indicated the specificity between the initiator genes and their cognate origins. These replicator–initiator pairings are reminiscent of the oriC-dnaA system in bacteria, and a model for the negative regulation of origin activity by a downstream cluster of ORB elements has been recently proposed in haloarchaea. Moreover, comparative genomic analyses have revealed that the mosaics of replicator-initiator pairings in archaeal chromosomes originated from the integration of extrachromosomal elements. This review summarizes the research progress in understanding of archaeal replication origins with particular focus on the utilization, control and evolution of multiple replication origins in haloarchaea.
Collapse
Affiliation(s)
- Zhenfang Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Haibo Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
11
|
Zhang R, Zhang CT. A Brief Review: The Z-curve Theory and its Application in Genome Analysis. Curr Genomics 2014; 15:78-94. [PMID: 24822026 PMCID: PMC4009844 DOI: 10.2174/1389202915999140328162433] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 11/22/2022] Open
Abstract
In theoretical physics, there exist two basic mathematical approaches, algebraic and geometrical methods, which, in most cases, are complementary. In the area of genome sequence analysis, however, algebraic approaches have been widely used, while geometrical approaches have been less explored for a long time. The Z-curve theory is a geometrical approach to genome analysis. The Z-curve is a three-dimensional curve that represents a given DNA sequence in the sense that each can be uniquely reconstructed given the other. The Z-curve, therefore, contains all the information that the corresponding DNA sequence carries. The analysis of a DNA sequence can then be performed through studying the corresponding Z-curve. The Z-curve method has found applications in a wide range of areas in the past two decades, including the identifications of protein-coding genes, replication origins, horizontally-transferred genomic islands, promoters, translational start sides and isochores, as well as studies on phylogenetics, genome visualization and comparative genomics. Here, we review the progress of Z-curve studies from aspects of both theory and applications in genome analysis.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, Wayne State University Medical School, Detroit, MI 48201, USA
| | - Chun-Ting Zhang
- Department of Physics, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Diversity of the DNA replication system in the Archaea domain. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:675946. [PMID: 24790526 PMCID: PMC3984812 DOI: 10.1155/2014/675946] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/16/2014] [Indexed: 12/11/2022]
Abstract
The precise and timely duplication of the genome is essential for cellular life. It is achieved by DNA replication, a complex process that is conserved among the three domains of life. Even though the cellular structure of archaea closely resembles that of bacteria, the information processing machinery of archaea is evolutionarily more closely related to the eukaryotic system, especially for the proteins involved in the DNA replication process. While the general DNA replication mechanism is conserved among the different domains of life, modifications in functionality and in some of the specialized replication proteins are observed. Indeed, Archaea possess specific features unique to this domain. Moreover, even though the general pattern of the replicative system is the same in all archaea, a great deal of variation exists between specific groups.
Collapse
|
13
|
Ai Y, Ai H, Meng F, Zhao L. GenomeFingerprinter: the genome fingerprint and the universal genome fingerprint analysis for systematic comparative genomics. PLoS One 2013; 8:e77912. [PMID: 24205026 PMCID: PMC3812135 DOI: 10.1371/journal.pone.0077912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 09/05/2013] [Indexed: 11/23/2022] Open
Abstract
Background No attention has been paid on comparing a set of genome sequences crossing genetic components and biological categories with far divergence over large size range. We define it as the systematic comparative genomics and aim to develop the methodology. Results First, we create a method, GenomeFingerprinter, to unambiguously produce a set of three-dimensional coordinates from a sequence, followed by one three-dimensional plot and six two-dimensional trajectory projections, to illustrate the genome fingerprint of a given genome sequence. Second, we develop a set of concepts and tools, and thereby establish a method called the universal genome fingerprint analysis (UGFA). Particularly, we define the total genetic component configuration (TGCC) (including chromosome, plasmid, and phage) for describing a strain as a systematic unit, the universal genome fingerprint map (UGFM) of TGCC for differentiating strains as a universal system, and the systematic comparative genomics (SCG) for comparing a set of genomes crossing genetic components and biological categories. Third, we construct a method of quantitative analysis to compare two genomes by using the outcome dataset of genome fingerprint analysis. Specifically, we define the geometric center and its geometric mean for a given genome fingerprint map, followed by the Euclidean distance, the differentiate rate, and the weighted differentiate rate to quantitatively describe the difference between two genomes of comparison. Moreover, we demonstrate the applications through case studies on various genome sequences, giving tremendous insights into the critical issues in microbial genomics and taxonomy. Conclusions We have created a method, GenomeFingerprinter, for rapidly computing, geometrically visualizing, intuitively comparing a set of genomes at genome fingerprint level, and hence established a method called the universal genome fingerprint analysis, as well as developed a method of quantitative analysis of the outcome dataset. These have set up the methodology of systematic comparative genomics based on the genome fingerprint analysis.
Collapse
Affiliation(s)
- Yuncan Ai
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Allergy Research Branch, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, P. R. China
- * E-mail:
| | - Hannan Ai
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Fanmei Meng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Lei Zhao
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
14
|
Characterization of the replication initiator Orc1/Cdc6 from the Archaeon Picrophilus torridus. J Bacteriol 2013; 196:276-86. [PMID: 24187082 DOI: 10.1128/jb.01020-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic DNA replication is preceded by the assembly of prereplication complexes (pre-RCs) at or very near origins in G1 phase, which licenses origin firing in S phase. The archaeal DNA replication machinery broadly resembles the eukaryal apparatus, though simpler in form. The eukaryotic replication initiator origin recognition complex (ORC), which serially recruits Cdc6 and other pre-RC proteins, comprises six components, Orc1-6. In archaea, a single gene encodes a protein similar to both the eukaryotic Cdc6 and the Orc1 subunit of the eukaryotic ORC, with most archaea possessing one to three Orc1/Cdc6 orthologs. Genome sequence analysis of the extreme acidophile Picrophilus torridus revealed a single Orc1/Cdc6 (PtOrc1/Cdc6). Biochemical analyses show MBP-tagged PtOrc1/Cdc6 to preferentially bind ORB (origin recognition box) sequences. The protein hydrolyzes ATP in a DNA-independent manner, though DNA inhibits MBP-PtOrc1/Cdc6-mediated ATP hydrolysis. PtOrc1/Cdc6 exists in stable complex with PCNA in Picrophilus extracts, and MBP-PtOrc1/Cdc6 interacts directly with PCNA through a PIP box near its C terminus. Furthermore, PCNA stimulates MBP-PtOrc1/Cdc6-mediated ATP hydrolysis in a DNA-dependent manner. This is the first study reporting a direct interaction between Orc1/Cdc6 and PCNA in archaea. The bacterial initiator DnaA is converted from an active to an inactive form by ATP hydrolysis, a process greatly facilitated by the bacterial ortholog of PCNA, the β subunit of Pol III. The stimulation of PtOrc1/Cdc6-mediated ATP hydrolysis by PCNA and the conservation of PCNA-interacting protein motifs in several archaeal PCNAs suggest the possibility of a similar mechanism of regulation existing in archaea. This mechanism may involve other yet to be identified archaeal proteins.
Collapse
|
15
|
Gao F, Luo H, Zhang CT. DoriC 5.0: an updated database of oriC regions in both bacterial and archaeal genomes. Nucleic Acids Res 2012; 41:D90-3. [PMID: 23093601 PMCID: PMC3531139 DOI: 10.1093/nar/gks990] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Replication of chromosomes is one of the central events in the cell cycle. Chromosome replication begins at specific sites, called origins of replication (oriCs), for all three domains of life. However, the origins of replication still remain unknown in a considerably large number of bacterial and archaeal genomes completely sequenced so far. The availability of increasing complete bacterial and archaeal genomes has created challenges and opportunities for identification of their oriCs in silico, as well as in vivo. Based on the Z-curve theory, we have developed a web-based system Ori-Finder to predict oriCs in bacterial genomes with high accuracy and reliability by taking advantage of comparative genomics, and the predicted oriC regions have been organized into an online database DoriC, which is publicly available at http://tubic.tju.edu.cn/doric/ since 2007. Five years after we constructed DoriC, the database has significant advances over the number of bacterial genomes, increasing about 4-fold. Additionally, oriC regions in archaeal genomes identified by in vivo experiments, as well as in silico analyses, have also been added to the database. Consequently, the latest release of DoriC contains oriCs for >1500 bacterial genomes and 81 archaeal genomes, respectively.
Collapse
Affiliation(s)
- Feng Gao
- Department of Physics, Tianjin University, Tianjin 300072, China.
| | | | | |
Collapse
|
16
|
Xia X. DNA replication and strand asymmetry in prokaryotic and mitochondrial genomes. Curr Genomics 2012; 13:16-27. [PMID: 22942672 PMCID: PMC3269012 DOI: 10.2174/138920212799034776] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/26/2011] [Accepted: 10/02/2011] [Indexed: 11/22/2022] Open
Abstract
Different patterns of strand asymmetry have been documented in a variety of prokaryotic genomes as well as mitochondrial genomes. Because different replication mechanisms often lead to different patterns of strand asymmetry, much can be learned of replication mechanisms by examining strand asymmetry. Here I summarize the diverse patterns of strand asymmetry among different taxonomic groups to suggest that (1) the single-origin replication may not be universal among bacterial species as the endosymbionts Wigglesworthia glossinidia, Wolbachia species, cyanobacterium Synechocystis 6803 and Mycoplasma pulmonis genomes all exhibit strand asymmetry patterns consistent with the multiple origins of replication, (2) different replication origins in some archaeal genomes leave quite different patterns of strand asymmetry, suggesting that different replication origins in the same genome may be differentially used, (3) mitochondrial genomes from representative vertebrate species share one strand asymmetry pattern consistent with the strand-displacement replication documented in mammalian mtDNA, suggesting that the mtDNA replication mechanism in mammals may be shared among all vertebrate species, and (4) mitochondrial genomes from primitive forms of metazoans such as the sponge and hydra (representing Porifera and Cnidaria, respectively), as well as those from plants, have strand asymmetry patterns similar to single-origin or multi-origin replications observed in prokaryotes and are drastically different from mitochondrial genomes from other metazoans. This may explain why sponge and hydra mitochondrial genomes, as well as plant mitochondrial genomes, evolves much slower than those from other metazoans.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Jia Y, Dong X, Zhou P, Liu X, Pan L, Xin H, Zhu YZ, Wang Y. The synthesis and biological evaluation of novel Danshensu-cysteine analog conjugates as cardiovascular-protective agents. Eur J Med Chem 2012; 55:176-87. [PMID: 22841280 DOI: 10.1016/j.ejmech.2012.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/18/2012] [Accepted: 07/09/2012] [Indexed: 01/29/2023]
Abstract
A series of novel amide and thioester conjugates between Danshensu and cysteine derivatives have been designed and synthesized based on the strategy of "medicinal chemical hybridization". Pharmacological evaluation indicated that the amide conjugates 3a/4a/17a and thioester conjugates 6a-d exhibited obvious protective effects on H(2)O(2)-induced human umbilical vein endothelial cells (HUVECs). Pretreated with these conjugates could increase glutathione (GSH) activity and decrease malondialdehyde (MDA) level. Further study on mechanism of compound 4a revealed that it was related to its mitochondrial-protective effect and regulation of apoptosis-related proteins expression (Bax, p53, PARP, caspase-3, caspase-9 and Bcl-2). These results indicate that these Danshensu-cysteine analog conjugates possess significant cardiovascular-protective effects and merit further investigation.
Collapse
Affiliation(s)
- Yaoling Jia
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pelve EA, Lindås AC, Knöppel A, Mira A, Bernander R. Four chromosome replication origins in the archaeonPyrobaculum calidifontis. Mol Microbiol 2012; 85:986-95. [DOI: 10.1111/j.1365-2958.2012.08155.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Yu F, Li P, Song P, Wang B, Zhao J, Han K. An ICT-based strategy to a colorimetric and ratiometric fluorescence probe for hydrogen sulfide in living cells. Chem Commun (Camb) 2012; 48:2852-4. [PMID: 22293939 DOI: 10.1039/c2cc17658k] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We present a colorimetric and ratiometric fluorescent probe Cy-N(3) that exhibits a selective response to H(2)S. The probe employs a near-infrared cyanine as a fluorophore, and is equipped with an operating azide unit. It is readily employed for assessing intracellular H(2)S levels, and confocal ratiometric imaging is achieved successfully.
Collapse
Affiliation(s)
- Fabiao Yu
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| | | | | | | | | | | |
Collapse
|
20
|
Hsu TH, Nyeo SL. Simple Deviation Analysis of Two-Dimensional Viral DNA Walks. J BIOL SYST 2011. [DOI: 10.1142/s0218339003000841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We consider the method of two-dimensional DNA walks based on three independent groups of mapping rules for 21 DNA sequences of animal and plant viruses, and for the sequences of irrational and random numbers. This method provides a visualization tool for the determination of the regional abundance of nucleotides in DNA sequences. By defining a statistical deviation and a maximum-deviation ratio for a DNA walk, we find that the maximum-deviation ratios for the 21 viral DNA sequences are generally larger than those of the random-number sequences of same lengths. It is shown that the viral DNA sequences generally have the smallest maximum-deviations with the same mapping group, and that greater difference between CG and AT contents is associated with larger maximum-deviation ratio. Also it is possible to distinguish a viral DNA sequence from a random-number sequence if the lengths of the sequences are longer than 2000 base-pairs. Other possible applications of the two-dimensional DNA walks are mentioned.
Collapse
Affiliation(s)
- Tai-Hsin Hsu
- Department of Physics, National Cheng Kung University, Tainan, Taiwan 701, R.O.C
| | - Su-Long Nyeo
- Department of Physics, National Cheng Kung University, Tainan, Taiwan 701, R.O.C
| |
Collapse
|
21
|
Guo FB. [Strong strand specific composition bias-a genomic character of some obligate parasites or symbionts]. YI CHUAN = HEREDITAS 2011; 33:1039-1047. [PMID: 21993278 DOI: 10.3724/sp.j.1005.2011.01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
DNA replication includes a set of asymmetric mechanisms, which is a division into lagging and leading strands. The former is synthesized continuously whereas the synthesis for the latter is discontinuous. Such a asymmetric mechanism leads to distinct nucleotide composition of these two strands. Strands specific nucleotide composition bias was originally found in genomes of echinoderm and vertebrate mitochondria and then in several bacterial genomes. With the rapid growth in the number of sequenced genomes, many bacteria and even eukaryotes are found to have the consistent strand composition bias. In some bacteria, the extent of strand specific composition bias was so strong that genes on the two replicating strands could be separated according to their codon usages. Till now, 11 obligate intracellular bacteria have been found to have separate codon usages according to whether genes located on the leading or lagging strands. However, there is still not a well-accepted theory that could interpret the reason for the occurrence of separate codon usages in some special bacterial genomes and not in others. This paper reviews the related works and points out its open problems.
Collapse
Affiliation(s)
- Feng-Biao Guo
- University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
22
|
Du P, Yang Y, Wang H, Liu D, Gao GF, Chen C. A large scale comparative genomic analysis reveals insertion sites for newly acquired genomic islands in bacterial genomes. BMC Microbiol 2011; 11:135. [PMID: 21672261 PMCID: PMC3148964 DOI: 10.1186/1471-2180-11-135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 06/15/2011] [Indexed: 01/15/2023] Open
Abstract
Background Bacterial virulence enhancement and drug resistance are major threats to public health worldwide. Interestingly, newly acquired genomic islands (GIs) from horizontal transfer between different bacteria strains were found in Vibrio cholerae, Streptococcus suis, and Mycobacterium tuberculosis, which caused outbreak of epidemic diseases in recently years. Results Using a large-scale comparative genomic analysis of 1088 complete genomes from all available bacteria (1009) and Archaea (79), we found that newly acquired GIs are often anchored around switch sites of GC-skew (sGCS). After calculating correlations between relative genomic distances of genomic islands to sGCSs and the evolutionary distances of the genomic islands themselves, we found that newly acquired genomic islands are closer to sGCSs than the old ones, indicating that regions around sGCSs are hotspots for genomic island insertion. Conclusions Based on our results, we believe that genomic regions near sGCSs are hotspots for horizontal transfer of genomic islands, which may significantly affect key properties of epidemic disease-causing pathogens, such as virulence and adaption to new environments.
Collapse
Affiliation(s)
- Pengcheng Du
- National Institute for Communicable Disease Control and Prevention, Center for Disease Control and Prevention/State Key Laboratory for Infectious Disease Prevention and Control, Beijing 102206, China
| | | | | | | | | | | |
Collapse
|
23
|
You XY, Liu C, Wang SY, Jiang CY, Shah SA, Prangishvili D, She Q, Liu SJ, Garrett RA. Genomic analysis of Acidianus hospitalis W1 a host for studying crenarchaeal virus and plasmid life cycles. Extremophiles 2011; 15:487-97. [PMID: 21607549 PMCID: PMC3119797 DOI: 10.1007/s00792-011-0379-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/26/2011] [Indexed: 11/29/2022]
Abstract
The Acidianus hospitalis W1 genome consists of a minimally sized chromosome of about 2.13 Mb and a conjugative plasmid pAH1 and it is a host for the model filamentous lipothrixvirus AFV1. The chromosome carries three putative replication origins in conserved genomic regions and two large regions where non-essential genes are clustered. Within these variable regions, a few orphan orfB and other elements of the IS200/607/605 family are concentrated with a novel class of MITE-like repeat elements. There are also 26 highly diverse vapBC antitoxin–toxin gene pairs proposed to facilitate maintenance of local chromosomal regions and to minimise the impact of environmental stress. Complex and partially defective CRISPR/Cas/Cmr immune systems are present and interspersed with five vapBC gene pairs. Remnants of integrated viral genomes and plasmids are located at five intron-less tRNA genes and several non-coding RNA genes are predicted that are conserved in other Sulfolobus genomes. The putative metabolic pathways for sulphur metabolism show some significant differences from those proposed for other Acidianus and Sulfolobus species. The small and relatively stable genome of A. hospitalis W1 renders it a promising candidate for developing the first Acidianus genetic systems.
Collapse
Affiliation(s)
- Xiao-Yan You
- State Key Laboratory of Microbial Resources and Center for Environmental Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Bei-Chen-Xi-Lu No. Chao-Yang District, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang R. A rebuttal to the comments on the genome order index and the Z-curve. Biol Direct 2011; 6:10. [PMID: 21324187 PMCID: PMC3046898 DOI: 10.1186/1745-6150-6-10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 02/16/2011] [Indexed: 11/15/2022] Open
Abstract
Background Elhaik, Graur and Josic recently commented on the genome order index (S) and the Z-curve (Elhaik et al. Biol Direct 2010, 5: 10). S is a quantity defined as S = a2 + c2 + g2 + t2, where a, c, g and t denote corresponding base frequencies. The Z-curve is a three dimensional curve that represents a DNA sequence in the manner that each can be uniquely reconstructed given the other. Elhaik et al. made 4 major claims. 1) In the previous mapping system with the regular tetrahedron, calculation of the radius of the inscribed sphere is "a mathematical error". 2) S follows an exponential distribution and is narrowly distributed with a range of (0.25 - 0.33). 3) Based on the Chargaff's second parity rule (PR2), "S is equivalent to H [Shannon entropy]" and they are derivable from each other. 4) Z-curve "suffers from over dimensionality", because based on the analysis of 235 bacterial genomes, x and y components contributed only less than 1% of the variance and therefore "would be of little use". Results 1) Elhaik et al. mistakenly neglected the parameter 4/3 when calculating the radius of the inscribed sphere. 2) The exponential distribution of S is a restatement of our previous conclusion, and the range of (0.25 - 0.33) only paraphrases the previously suggested S range (0.25 -1/3). 3) Elhaik et al. incorrectly disregard deviations from PR2 by treating the deviations as 0 altogether, reduce S and H, both having 4 variables, a, c, g and t, into functions of one single variable, a only, and apply this treatment to all DNA sequences as the basis of their "demonstration", which is therefore invalid. 4) Elhaik et al. confuse numeral smallness with biological insignificance, and disregard the distributions of purine/pyrimidine and amino/keto bases (x and y components), the variations of which, although can be less than that of GC content, contain rich information that is important and useful, such as in locating replication origins of bacterial and archaeal genomes, and in studies of gene recognition in various species. Conclusion Elhaik et al. confuse S (a single number) with Z-curve (a series of 3D coordinates), which are distinct. To use S as a case study of Z-curve, by itself, is invalid. S and H are neither equivalent nor derivable from each other. The criticisms of Elhaik, Graur and Josic are wrong. Reviewers This article was reviewed by Erik van Nimwegen.
Collapse
Affiliation(s)
- Ren Zhang
- Department of Epidemiology and Biostatistics, Tianjin Cancer Institute and Hospital, Tianjin 300060, PR China.
| |
Collapse
|
25
|
Flynn KM, Vohr SH, Hatcher PJ, Cooper VS. Evolutionary rates and gene dispensability associate with replication timing in the archaeon Sulfolobus islandicus. Genome Biol Evol 2010; 2:859-69. [PMID: 20978102 PMCID: PMC3000693 DOI: 10.1093/gbe/evq068] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In bacterial chromosomes, the position of a gene relative to the single origin of replication generally reflects its replication timing, how often it is expressed, and consequently, its rate of evolution. However, because some archaeal genomes contain multiple origins of replication, bias in gene dosage caused by delayed replication should be minimized and hence the substitution rate of genes should associate less with chromosome position. To test this hypothesis, six archaeal genomes from the genus Sulfolobus containing three origins of replication were selected, conserved orthologs were identified, and the evolutionary rates (dN and dS) of these orthologs were quantified. Ortholog families were grouped by their consensus position and designated by their proximity to one of the three origins (O1, O2, O3). Conserved orthologs were concentrated near the origins and most variation in genome content occurred distant from the origins. Linear regressions of both synonymous and nonsynonymous substitution rates on distance from replication origins were significantly positive, the rates being greatest in the region furthest from any of the origins and slowest among genes near the origins. Genes near O1 also evolved faster than those near O2 and O3, which suggest that this origin may fire later in the cell cycle. Increased evolutionary rates and gene dispensability are strongly associated with reduced gene expression caused in part by reduced gene dosage during the cell cycle. Therefore, in this genus of Archaea as well as in many Bacteria, evolutionary rates and variation in genome content associate with replication timing.
Collapse
Affiliation(s)
- Kenneth M Flynn
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Hypoxic pulmonary hypertension is a pathophysiological process important in the development of various cardiopulmonary diseases. Recently, we found that sulfur dioxide could be produced endogenously by pulmonary vessels, and that it showed vascular regulatory capabilities. In this paper, we examined the role of sulfur dioxide in hypoxic pulmonary vascular structural remodeling (HPVSR). A total of 48 Wistar rats were divided into six groups. Rats in the hypoxic group, hypoxic+sulfur dioxide group, and hypoxic+hydroxamate group were left under hypoxic conditions, whereas the control group, control+sulfur dioxide group, and control+hydroxamate group rats were left in room air. For each group, we measured the pulmonary arterial pressure, sulfur dioxide content in plasma and lung tissue, glutamate oxaloacetate transaminase 1 and 2 mRNAs, micro- and ultra-structural changes in pulmonary arteries, proliferation of pulmonary smooth muscle cells, vascular collagen metabolism, pulmonary endothelial cell inflammatory response, and pulmonary vascular endothelin-1 production in the rats. In hypoxic rats, the content of sulfur dioxide in plasma and lung tissue decreased significantly in comparison with those in the control groups, and significant pulmonary hypertension, pulmonary vascular structural remodeling, and increased vascular inflammatory response were also observed in hypoxic rats. Sulfur dioxide donor significantly downregulated Raf-1, mitogen-activated protein kinase kinase-1 (MEK-1) and p-ERK/ERK, and inhibited pulmonary vascular smooth muscle cell proliferation, collagen remodeling and pulmonary vascular endothelial cell nuclear factor-kappaB (NF-kappaB), and intercellular adhesion molecule 1 (ICAM-1) expressions. It also prevented pulmonary hypertension and pulmonary vascular structural remodeling in association with the upregulated sulfur dioxide/glutamate oxaloacetate transaminase pathway. Hydroxamate, however, advanced pulmonary hypertension, pulmonary vascular structural remodeling, and inflammatory response of the pulmonary artery in association with a downregulated sulfur dioxide/glutamate oxaloacetate transaminase pathway. The results suggested that sulfur dioxide markedly inhibited Raf-1, MEK-1, and the phosphorylation of extracellular signal-regulated kinase (ERK), and then inhibited pulmonary arterial smooth muscle cell (PASMC) proliferation induced by hypoxia. The downregulated sulfur dioxide/glutamate oxaloacetate transaminase pathway may be involved in the mechanisms responsible for pulmonary hypertension and pulmonary vascular structural remodeling.
Collapse
|
27
|
Arakawa K, Suzuki H, Tomita M. Quantitative analysis of replication-related mutation and selection pressures in bacterial chromosomes and plasmids using generalised GC skew index. BMC Genomics 2009; 10:640. [PMID: 20042086 PMCID: PMC2804667 DOI: 10.1186/1471-2164-10-640] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 12/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to their bi-directional replication machinery starting from a single finite origin, bacterial genomes show characteristic nucleotide compositional bias between the two replichores, which can be visualised through GC skew or (C-G)/(C+G). Although this polarisation is used for computational prediction of replication origins in many bacterial genomes, the degree of GC skew visibility varies widely among different species, necessitating a quantitative measurement of GC skew strength in order to provide confidence measures for GC skew-based predictions of replication origins. RESULTS Here we discuss a quantitative index for the measurement of GC skew strength, named the generalised GC skew index (gGCSI), which is applicable to genomes of any length, including bacterial chromosomes and plasmids. We demonstrate that gGCSI is independent of the window size and can thus be used to compare genomes with different sizes, such as bacterial chromosomes and plasmids. It can suggest the existence of different replication mechanisms in archaea and of rolling-circle replication in plasmids. Correlation of gGCSI values between plasmids and their corresponding host chromosomes suggests that within the same strain, these replicons have reproduced using the same replication machinery and thus exhibit similar strengths of replication strand skew. CONCLUSIONS gGCSI can be applied to genomes of any length and thus allows comparative study of replication-related mutation and selection pressures in genomes of different lengths such as bacterial chromosomes and plasmids. Using gGCSI, we showed that replication-related mutation or selection pressure is similar for replicons with similar machinery.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Fujisawa, 252-8520, Japan.
| | | | | |
Collapse
|
28
|
Abstract
The powerful combination of genetic and biochemical analysis has provided many key insights into the structure and function of the chromosomal DNA replication machineries of bacterial and eukaryotic cells. In contrast, in the archaea, biochemical studies have dominated, mainly due to the absence of efficient genetic systems for these organisms. This situation is changing, however, and, in this regard, the genetically tractable haloarchaea Haloferax volcanii and Halobacterium sp. NRC-1 are emerging as key models. In the present review, I give an overview of the components of the replication machinery in the haloarchaea, with particular emphasis on the protein factors presumed to travel with the replication fork.
Collapse
|
29
|
|
30
|
Marín A, Xia X. GC skew in protein-coding genes between the leading and lagging strands in bacterial genomes: New substitution models incorporating strand bias. J Theor Biol 2008; 253:508-13. [DOI: 10.1016/j.jtbi.2008.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 02/29/2008] [Accepted: 04/04/2008] [Indexed: 10/22/2022]
|
31
|
Wei HL, Zhang CY, Jin HF, Tang CS, Du JB. Hydrogen sulfide regulates lung tissue-oxidized glutathione and total antioxidant capacity in hypoxic pulmonary hypertensive rats. Acta Pharmacol Sin 2008; 29:670-9. [PMID: 18501113 DOI: 10.1111/j.1745-7254.2008.00796.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To investigate the modulatory effect of sodium hydrosulfide on lung tissue-oxidized glutathione and total antioxidant capacity in the development of hypoxic pulmonary hypertension (HPH). METHODS After 21 d of hypoxia, the mean pulmonary artery pressure was measured by cardiac catheterization. The plasma H2S level and production of H2S in the lung tissues were determined by using a spectrophotometer. The lung homogenates were assayed for total antioxidant capacity (T-AOC), superoxide dismutase (SOD), oxidized glutathione (GSSG), reduced glutathione and malonaldehyde by colorimetry. The mRNA level of SOD was analyzed by real-time PCR, and the SOD expression was detected by Western blotting. RESULTS In the hypoxia group, the plasma H2S concentration and H2S production in the lung was significantly decreased compared with the control group (187.2+/-13.1 vs 299.6+/-12.4 micromol/L; 0.138+/-0.013 vs 0.289+/-0.036 nmol x mg(-1) x min(-1), P<0.01). The administration of sodium hydrosulfide could reduce the mean pulmonary artery pressure by 31.2% compared with the hypoxia group (P<0.01). Treatment with sodium hydrosulfide decreased GSSG, and the T-AOC level of the lung tissues was enhanced compared with the hypoxia group (P<0.05). There were no significant changes in the lung tissue SOD mRNA level, protein level, and its activity among the 3 groups. CONCLUSION Oxidative stress occurred in the development of HPH and was accompanied by a decrease in the endogenous production of H2S in the lung tissues. H2S acted as an antioxidant during the oxidative stress of HPH partly as a result of the attenuated GSSG content.
Collapse
Affiliation(s)
- Hong-ling Wei
- Department of Pediatrics, First Hospital, Peking University, Beijing 100034, China
| | | | | | | | | |
Collapse
|
32
|
Genomics and functional genomics with haloarchaea. Arch Microbiol 2008; 190:197-215. [PMID: 18493745 DOI: 10.1007/s00203-008-0376-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/08/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
Abstract
The first haloarchaeal genome was published in 2000 and today five genome sequences are available. Transcriptome and proteome analyses have been established for two and three haloarchaeal species, respectively, and more than 20 studies using these functional genomic approaches have been published in the last two years. These studies gave global overviews of metabolic regulation (aerobic and anaerobic respiration, phototrophy, carbon source usage), stress response (UV, X-rays, transition metals, osmotic and temperature stress), cell cycle-dependent transcript level regulation, and transcript half-lives. The only translatome analysis available for any prokaryotic species revealed that 10 and 20% of all transcripts are translationally regulated in Haloferax volcanii and Halobacterium salinarum, respectively. Very effective methods for the construction of in frame deletion mutants have been established recently for haloarchaea and are intensively used to unravel the biological roles of genes in this group. Bioinformatic analyses include both cross-genome comparisons as well as integration of genomic data with experimental results. The first systems biology approaches have been performed that used experimental data to construct predictive models of gene expression and metabolism, respectively. In this contribution the current status of genomics, functional genomics, and molecular genetics of haloarchaea is summarized and selected examples are discussed.
Collapse
|
33
|
The relaxing ori-ter balance of Mycoplasma genomes. ACTA ACUST UNITED AC 2008; 51:182-9. [PMID: 18239897 DOI: 10.1007/s11427-008-0017-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
Mycoplasma are wall-less bacteria with small genomes, which are thought to have resulted from massive genome reductive processes, during which the ori-ter balance may be disrupted. For technical difficulties, ori and ter have been located only in a few Mycoplasma strains. Using the Z curve method, we were able to locate turning points on the Mycoplasma genomes, with the minimum and maximum points co-locating with ori or ter in the reference genomes. Assuming Z curve correctly located ori and ter, we calculated the distances from ori to ter in both directions on the circular genome and calculated the ori-ter balance status. The Mycoplasma genomes were not balanced, possibly as a result of close association of Mycoplasma with hosts, where there would be no other microbes for Mycoplasma to compete with for nutrients, so fastest possible growth related to balanced genomes might not be needed by Mycoplasma, leading to a relaxing ori-ter balance.
Collapse
|
34
|
An easier method for locating replication origins based on real-time polymerase chain reaction. Curr Microbiol 2008; 56:633-8. [PMID: 18347853 DOI: 10.1007/s00284-008-9138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
Abstract
Locating replication origins (ROs) is an old problem to which diverse answers have been previously given. However, a better and more convenient method still remains desirable because previously reported methods are time-consuming. In this study, we report an easier method for locating ROs based on real-time polymerase chain reaction. The feasibility of this method was demonstrated using Escherichia coli K-12 and Halobacterium salinarium NRC-1 as models. Our results show that this method is easy, fast, and accurate in locating ROs.
Collapse
|
35
|
Effects of nitric oxide and hydrogen sulfide on the relaxation of pulmonary arteries in rats. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200803010-00010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
36
|
Majerník AI, Chong JPJ. A conserved mechanism for replication origin recognition and binding in archaea. Biochem J 2008; 409:511-8. [PMID: 17956224 DOI: 10.1042/bj20070213] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To date, methanogens are the only group within the archaea where firing DNA replication origins have not been demonstrated in vivo. In the present study we show that a previously identified cluster of ORB (origin recognition box) sequences do indeed function as an origin of replication in vivo in the archaeon Methanothermobacter thermautotrophicus. Although the consensus sequence of ORBs in M. thermautotrophicus is somewhat conserved when compared with ORB sequences in other archaea, the Cdc6-1 protein from M. thermautotrophicus (termed MthCdc6-1) displays sequence-specific binding that is selective for the MthORB sequence and does not recognize ORBs from other archaeal species. Stabilization of in vitro MthORB DNA binding by MthCdc6-1 requires additional conserved sequences 3' to those originally described for M. thermautotrophicus. By testing synthetic sequences bearing mutations in the MthORB consensus sequence, we show that Cdc6/ORB binding is critically dependent on the presence of an invariant guanine found in all archaeal ORB sequences. Mutation of a universally conserved arginine residue in the recognition helix of the winged helix domain of archaeal Cdc6-1 shows that specific origin sequence recognition is dependent on the interaction of this arginine residue with the invariant guanine. Recognition of a mutated origin sequence can be achieved by mutation of the conserved arginine residue to a lysine or glutamine residue. Thus despite a number of differences in protein and DNA sequences between species, the mechanism of origin recognition and binding appears to be conserved throughout the archaea.
Collapse
Affiliation(s)
- Alan I Majerník
- Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, 900 28 Ivanka pri Dunaji, Slovak Republic
| | | |
Collapse
|
37
|
Hydrogen sulfide facilitates carotid sinus baroreceptor activity in anesthetized male rats. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200708010-00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
38
|
Essential and non-essential DNA replication genes in the model halophilic Archaeon, Halobacterium sp. NRC-1. BMC Genet 2007; 8:31. [PMID: 17559652 PMCID: PMC1906834 DOI: 10.1186/1471-2156-8-31] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 06/08/2007] [Indexed: 11/22/2022] Open
Abstract
Background Information transfer systems in Archaea, including many components of the DNA replication machinery, are similar to those found in eukaryotes. Functional assignments of archaeal DNA replication genes have been primarily based upon sequence homology and biochemical studies of replisome components, but few genetic studies have been conducted thus far. We have developed a tractable genetic system for knockout analysis of genes in the model halophilic archaeon, Halobacterium sp. NRC-1, and used it to determine which DNA replication genes are essential. Results Using a directed in-frame gene knockout method in Halobacterium sp. NRC-1, we examined nineteen genes predicted to be involved in DNA replication. Preliminary bioinformatic analysis of the large haloarchaeal Orc/Cdc6 family, related to eukaryotic Orc1 and Cdc6, showed five distinct clades of Orc/Cdc6 proteins conserved in all sequenced haloarchaea. Of ten orc/cdc6 genes in Halobacterium sp. NRC-1, only two were found to be essential, orc10, on the large chromosome, and orc2, on the minichromosome, pNRC200. Of the three replicative-type DNA polymerase genes, two were essential: the chromosomally encoded B family, polB1, and the chromosomally encoded euryarchaeal-specific D family, polD1/D2 (formerly called polA1/polA2 in the Halobacterium sp. NRC-1 genome sequence). The pNRC200-encoded B family polymerase, polB2, was non-essential. Accessory genes for DNA replication initiation and elongation factors, including the putative replicative helicase, mcm, the eukaryotic-type DNA primase, pri1/pri2, the DNA polymerase sliding clamp, pcn, and the flap endonuclease, rad2, were all essential. Targeted genes were classified as non-essential if knockouts were obtained and essential based on statistical analysis and/or by demonstrating the inability to isolate chromosomal knockouts except in the presence of a complementing plasmid copy of the gene. Conclusion The results showed that ten out of nineteen eukaryotic-type DNA replication genes are essential for Halobacterium sp. NRC-1, consistent with their requirement for DNA replication. The essential genes code for two of ten Orc/Cdc6 proteins, two out of three DNA polymerases, the MCM helicase, two DNA primase subunits, the DNA polymerase sliding clamp, and the flap endonuclease.
Collapse
|
39
|
Matsunaga F, Glatigny A, Mucchielli-Giorgi MH, Agier N, Delacroix H, Marisa L, Durosay P, Ishino Y, Aggerbeck L, Forterre P. Genomewide and biochemical analyses of DNA-binding activity of Cdc6/Orc1 and Mcm proteins in Pyrococcus sp. Nucleic Acids Res 2007; 35:3214-22. [PMID: 17452353 PMCID: PMC1904270 DOI: 10.1093/nar/gkm212] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The origin of DNA replication (oriC) of the hyperthermophilic archaeon Pyrococcus abyssi contains multiple ORB and mini-ORB repeats that show sequence similarities to other archaeal ORB (origin recognition box). We report here that the binding of Cdc6/Orc1 to a 5 kb region containing oriC in vivo was highly specific both in exponential and stationary phases, by means of chromatin immunoprecipitation coupled with hybridization on a whole genome microarray (ChIP-chip). The oriC region is practically the sole binding site for the Cdc6/Orc1, thereby distinguishing oriC in the 1.8 M bp genome. We found that the 5 kb region contains a previously unnoticed cluster of ORB and mini-ORB repeats in the gene encoding the small subunit (dp1) for DNA polymerase II (PolD). ChIP and the gel retardation analyses further revealed that Cdc6/Orc1 specifically binds both of the ORB clusters in oriC and dp1. The organization of the ORB clusters in the dp1 and oriC is conserved during evolution in the order Thermococcales, suggesting a role in the initiation of DNA replication. Our ChIP-chip analysis also revealed that Mcm alters the binding specificity to the oriC region according to the growth phase, consistent with its role as a licensing factor.
Collapse
Affiliation(s)
- Fujihiko Matsunaga
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Annie Glatigny
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Marie-Hélène Mucchielli-Giorgi
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Nicolas Agier
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Hervé Delacroix
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Laetitia Marisa
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Patrice Durosay
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Yoshizumi Ishino
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Lawrence Aggerbeck
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Patrick Forterre
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
- *To whom correspondence should be addressed. Tel: +33 1 69 157489; Fax: +33 1 69 157808;
| |
Collapse
|
40
|
Norais C, Hawkins M, Hartman AL, Eisen JA, Myllykallio H, Allers T. Genetic and physical mapping of DNA replication origins in Haloferax volcanii. PLoS Genet 2007; 3:e77. [PMID: 17511521 PMCID: PMC1868953 DOI: 10.1371/journal.pgen.0030077] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 03/05/2007] [Indexed: 11/18/2022] Open
Abstract
The halophilic archaeon Haloferax volcanii has a multireplicon genome, consisting of a main chromosome, three secondary chromosomes, and a plasmid. Genes for the initiator protein Cdc6/Orc1, which are commonly located adjacent to archaeal origins of DNA replication, are found on all replicons except plasmid pHV2. However, prediction of DNA replication origins in H. volcanii is complicated by the fact that this species has no less than 14 cdc6/orc1 genes. We have used a combination of genetic, biochemical, and bioinformatic approaches to map DNA replication origins in H. volcanii. Five autonomously replicating sequences were found adjacent to cdc6/orc1 genes and replication initiation point mapping was used to confirm that these sequences function as bidirectional DNA replication origins in vivo. Pulsed field gel analyses revealed that cdc6/orc1-associated replication origins are distributed not only on the main chromosome (2.9 Mb) but also on pHV1 (86 kb), pHV3 (442 kb), and pHV4 (690 kb) replicons. Gene inactivation studies indicate that linkage of the initiator gene to the origin is not required for replication initiation, and genetic tests with autonomously replicating plasmids suggest that the origin located on pHV1 and pHV4 may be dominant to the principal chromosomal origin. The replication origins we have identified appear to show a functional hierarchy or differential usage, which might reflect the different replication requirements of their respective chromosomes. We propose that duplication of H. volcanii replication origins was a prerequisite for the multireplicon structure of this genome, and that this might provide a means for chromosome-specific replication control under certain growth conditions. Our observations also suggest that H. volcanii is an ideal organism for studying how replication of four replicons is regulated in the context of the archaeal cell cycle.
Collapse
Affiliation(s)
- Cédric Norais
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
- CNRS, UMR8621, Orsay, France
| | - Michelle Hawkins
- Institute of Genetics, University of Nottingham, Nottingham, United Kingdom
| | - Amber L Hartman
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jonathan A Eisen
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Hannu Myllykallio
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
- CNRS, UMR8621, Orsay, France
- * To whom correspondence should be addressed. E-mail: (HM); (TA)
| | - Thorsten Allers
- Institute of Genetics, University of Nottingham, Nottingham, United Kingdom
- * To whom correspondence should be addressed. E-mail: (HM); (TA)
| |
Collapse
|
41
|
Abstract
The archaeal DNA replication machinery bears striking similarity to that of eukaryotes and is clearly distinct from the bacterial apparatus. In recent years, considerable advances have been made in understanding the biochemistry of the archaeal replication proteins. Furthermore, a number of structures have now been obtained for individual components and higher-order assemblies of archaeal replication factors, yielding important insights into the mechanisms of DNA replication in both archaea and eukaryotes.
Collapse
Affiliation(s)
- Elizabeth R Barry
- MRC Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | | |
Collapse
|
42
|
Li XH, Du JB, Bu DF, Tang XY, Tang CS. Sodium hydrosulfide alleviated pulmonary vascular structural remodeling induced by high pulmonary blood flow in rats. Acta Pharmacol Sin 2006; 27:971-80. [PMID: 16867247 DOI: 10.1111/j.1745-7254.2006.00353.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To explore the possible role of endogenous hydrogen sulfide (H(2)S), a novel gasotransmitter, in the pathogenesis of pulmonary vascular structural remodeling (PVSR) induced by high pulmonary blood flow. METHODS Thirty-two Sprague-Dawley male rats were randomly divided into sham, shunt, sham+NaHS (a H(2)S donor) and shunt+NaHS groups. Rats in shunt and shunt+NaHS groups underwent an abdominal aorta-inferior vena cava shunt, and rats in shunt+NaHS and sham+NaHS groups were intraperitoneally injected with NaHS. PVSR was investigated using optical microscope and transmission electron microscope. Lung tissue H(2)S was evaluated by sulfide-sensitive electrodes. Nitric oxide synthase (NOS), heme oxygenase (HO-1), proliferative cell nuclear antigen (PCNA) and extracellular signal-regulated kinase (ERK) activation were analyzed by Western blotting. RESULTS After 11 weeks of shunting, PVSR developed with a decrease in lung tissue H(2)S production and an increase in nitric oxide (NO). However, lung tissue carbon monoxide (CO) did not change. After the treatment with NaHS for 11 weeks, H(2)S donor ameliorated PVSR and downregulated PCNA expression and ERK activation with an increase in lung tissue CO production and HO-1 protein expression but a decrease in NO production, NOS activity and eNOS protein expression in shunted rats. CONCLUSIONS H(2)S exerted a regulatory effect on PVSR induced by high pulmonary blood flow. Meanwhile, H(2)S down-regulated the ERK/MAPK signal pathway, inhibited the NO/NOS pathway and enhanced the CO/HO pathway in rats with high pulmonary blood flow.
Collapse
Affiliation(s)
- Xiao-Hui Li
- Department of Pediatrics, Peking University First Hospital, Key Laboratory of Molecular Cardiovascular Diseases, Ministry of Education, Peking University First Hospital, Beijing 100034, China
| | | | | | | | | |
Collapse
|
43
|
Hendrickson H, Lawrence JG. Selection for Chromosome Architecture in Bacteria. J Mol Evol 2006; 62:615-29. [PMID: 16612541 DOI: 10.1007/s00239-005-0192-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 12/31/2005] [Indexed: 02/04/2023]
Abstract
Bacterial chromosomes are immense polymers whose faithful replication and segregation are crucial to cell survival. The ability of proteins such as FtsK to move unidirectionally toward the replication terminus, and direct DNA translocation into the appropriate daughter cell during cell division, requires that bacterial genomes maintain an architecture for the orderly replication and segregation of chromosomes. We suggest that proteins that locate the replication terminus exploit strand-biased sequences that are overrepresented on one DNA strand, and that selection increases with decreased distance to the replication terminus. We report a generalized method for detecting these architecture imparting sequences (AIMS) and have identified AIMS in nearly all bacterial genomes. Their increased abundance on leading strands and decreased abundance on lagging strands toward replication termini are not the result of changes in mutational bias; rather, they reflect a gradient of long-term positive selection for AIMS. The maintenance of the pattern of AIMS across the genomes of related bacteria independent of their positions within individual genes suggests a well-conserved role in genome biology. The stable gradient of AIMS abundance from replication origin to terminus suggests that the replicore acts as a target of selection, where selection for chromosome architecture results in the maintenance of gene order and in the lack of high-frequency DNA inversion within replicores.
Collapse
Affiliation(s)
- Heather Hendrickson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
44
|
DasSarma S, Berquist BR, Coker JA, DasSarma P, Müller JA. Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1. SALINE SYSTEMS 2006; 2:3. [PMID: 16542428 PMCID: PMC1447603 DOI: 10.1186/1746-1448-2-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 03/16/2006] [Indexed: 11/21/2022]
Abstract
Halobacteriumsp. NRC-1 is an extremely halophilic archaeon that is easily cultured and genetically tractable. Since its genome sequence was completed in 2000, a combination of genetic, transcriptomic, proteomic, and bioinformatic approaches have provided insights into both its extremophilic lifestyle as well as fundamental cellular processes common to all life forms. Here, we review post-genomic research on this archaeon, including investigations of DNA replication and repair systems, phototrophic, anaerobic, and other physiological capabilities, acidity of the proteome for function at high salinity, and role of lateral gene transfer in its evolution.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202, USA
| | - Brian R Berquist
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202, USA
| | - James A Coker
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202, USA
| | - Priya DasSarma
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202, USA
| | - Jochen A Müller
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| |
Collapse
|
45
|
Abstract
Haloarchaea are adapted to high-salt environments and accumulate equally high salt concentrations in the cytoplasm. The genomes of representatives of six haloarchaeal genera have been fully or partially sequenced, allowing the analysis of haloarchaeal propertiesin silico. Transcriptome and proteome analyses have been established forHalobacterium salinarumandHaloferax volcanii. Genetic systems are available including methods that allow the fast in-frame deletion or modification of chromosomal genes. The high-efficiency transformation system ofHf. volcaniiallows the isolation of genes essential for a biological process by complementation of loss-of-function mutants. For the analysis of haloarchaeal biology many molecular genetic, biochemical, structural and cell biological methods have been adapted to application at high salt concentrations. Recently it has become clear that several different mechanisms allow the adaptation of proteins to the high salt concentration of the cytoplasm. Taken together, the wealth of techniques available make haloarchaea excellent archaeal model species.
Collapse
Affiliation(s)
- Jörg Soppa
- Goethe-University, Biocentre, Institute for Microbiology, D-60439 Frankfurt, Germany
| |
Collapse
|
46
|
Abstract
AIM To study effects of hydrogen sulfide (H2S) on the carotid sinus baroreflex (CSB). METHODS The functional curve of the carotid sinus baroreflex was measured by recording changes in arterial pressure in anesthetized male rats with perfused carotid sinus. RESULTS H2S (derived from sodium hydrosulfide) at concentrations of 25, 50, and 100 micromol/L facilitated the CSB, shifting the functional curve of the baroreflex downward and to the left. There was a marked increase in peak slope (PS) and reflex decrease in blood pressure (RD). Effects were concentration-dependent. Pretreatment with glibenclamide (20 micromol/L), a K(ATP) channel blocker, abolished the above effects of H2S on CSB. Pretreatment with Bay K8644 (an agonist of calcium channels; 500 nmol/L) eliminated the effect of H2S on CSB. An inhibitor of cystathionine gamma-lyase (CSE), DL-propargylglycine (PPG; 200 micromol/L), inhibited CSB in male rats and shifted the functional curve of the baroreflex upward and to the right. CONCLUSION These data suggest that exogenous H2S exerts a facilitatory role on isolated CSB through opening K(ATP) channels and further closing the calcium channels in vascular smooth muscle. Endogenous H2S may activate the activity of the CSB in vivo.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | | | | | | | | |
Collapse
|
47
|
Worning P, Jensen LJ, Hallin PF, Staerfeldt HH, Ussery DW. Origin of replication in circular prokaryotic chromosomes. Environ Microbiol 2006; 8:353-61. [PMID: 16423021 DOI: 10.1111/j.1462-2920.2005.00917.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To predict origins of replication in prokaryotic chromosomes, we analyse the leading and lagging strands of 200 chromosomes for differences in oligomer composition and show that these correlate strongly with taxonomic grouping, lifestyle and molecular details of the replication process. While all bacteria have a preference for Gs over Cs on the leading strand, we discover that the direction of the A/T skew is determined by the polymerase-alpha subunit that replicates the leading strand. The strength of the strand bias varies greatly between both phyla and environments and appears to correlate with growth rate. Finally we observe much greater diversity of skew among archaea than among bacteria. We have developed a program that accurately locates the origins of replication by measuring the differences between leading and lagging strand of all oligonucleotides up to 8 bp in length. The program and results for all publicly available genomes are available from http://www.cbs.dtu.dk/services/GenomeAtlas/suppl/origin.
Collapse
Affiliation(s)
- Peder Worning
- Biological Sciences, AstraZeneca R and D Lund, Sweden
| | | | | | | | | |
Collapse
|
48
|
Soppa J. From replication to cultivation: hot news from Haloarchaea. Curr Opin Microbiol 2005; 8:737-44. [PMID: 16253545 DOI: 10.1016/j.mib.2005.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 10/12/2005] [Indexed: 12/19/2022]
Abstract
Haloarchaea have developed into model organisms that are utilized to study many biological processes. Examples are the mechanisms of chromosome maintenance, gene expression and its regulation, protein export and degradation, and motility and sensing. In addition to the analysis of model species like Halobacterium salinarum and Haloferax volcanii, natural communities have been characterized. Halophilic Archaea were found in low-salt environments and are thus more widespread than previously thought.
Collapse
Affiliation(s)
- Jörg Soppa
- Goethe-University, Biocentre, Institute for Microbiology, Marie-Curie-Str. 9, D-60439, Germany.
| |
Collapse
|
49
|
Lundgren M, Bernander R. Archaeal cell cycle progress. Curr Opin Microbiol 2005; 8:662-8. [PMID: 16249118 DOI: 10.1016/j.mib.2005.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 10/11/2005] [Indexed: 11/19/2022]
Abstract
The discovery of multiple chromosome replication origins in Sulfolobus species has added yet another eukaryotic trait to the archaea, and brought new levels of complexity to the cell cycle in terms of initiation of chromosome replication, replication termination and chromosome decatenation. Conserved repeated DNA elements--origin recognition boxes--have been identified in the origins of replication, and shown to bind the Orc1/Cdc6 proteins involved in cell cycle control. The origin recognition boxes aid in the identification and characterization of new origins, and their conservation suggests that most archaea have a similar replication initiation mechanism. Cell-cycle-dependent variation in Orc1/Cdc6 levels has been demonstrated, reminiscent of variations in cyclin levels during the eukaryotic cell cycle. Information about archaeal chromosome segregation is also accumulating, including the identification of a protein that binds to short regularly spaced repeats that might constitute centromere-like elements. In addition, studies of cell-cycle-specific gene expression have potential to reveal, in the near future, missing components in crenarchaeal chromosome replication, genome segregation and cell division. Together with an increased number of physiological and cytological investigations of the overall organization of the cell cycle, rapid progress of the archaeal cell cycle field is evident, and archaea, in particular Sulfolobus species, are emerging as simple and powerful models for the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Magnus Lundgren
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden
| | | |
Collapse
|
50
|
Chen L, Brügger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP, Garrett RA. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 2005; 187:4992-9. [PMID: 15995215 PMCID: PMC1169522 DOI: 10.1128/jb.187.14.4992-4999.2005] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfolobus acidocaldarius is an aerobic thermoacidophilic crenarchaeon which grows optimally at 80 degrees C and pH 2 in terrestrial solfataric springs. Here, we describe the genome sequence of strain DSM639, which has been used for many seminal studies on archaeal and crenarchaeal biology. The circular genome carries 2,225,959 bp (37% G+C) with 2,292 predicted protein-encoding genes. Many of the smaller genes were identified for the first time on the basis of comparison of three Sulfolobus genome sequences. Of the protein-coding genes, 305 are exclusive to S. acidocaldarius and 866 are specific to the Sulfolobus genus. Moreover, 82 genes for untranslated RNAs were identified and annotated. Owing to the probable absence of active autonomous and nonautonomous mobile elements, the genome stability and organization of S. acidocaldarius differ radically from those of Sulfolobus solfataricus and Sulfolobus tokodaii. The S. acidocaldarius genome contains an integrated, and probably encaptured, pARN-type conjugative plasmid which may facilitate intercellular chromosomal gene exchange in S. acidocaldarius. Moreover, it contains genes for a characteristic restriction modification system, a UV damage excision repair system, thermopsin, and an aromatic ring dioxygenase, all of which are absent from genomes of other Sulfolobus species. However, it lacks genes for some of their sugar transporters, consistent with it growing on a more limited range of carbon sources. These results, together with the many newly identified protein-coding genes for Sulfolobus, are incorporated into a public Sulfolobus database which can be accessed at http://dac.molbio.ku.dk/dbs/Sulfolobus.
Collapse
Affiliation(s)
- Lanming Chen
- Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|