1
|
Tejwani GA. Regulation of fructose-bisphosphatase activity. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 54:121-94. [PMID: 6303063 DOI: 10.1002/9780470122990.ch3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
2
|
Van Schaftingen E. Fructose 2,6-bisphosphate. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 59:315-95. [PMID: 3028056 DOI: 10.1002/9780470123058.ch7] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
3
|
Guixé V, Preller A, Kessi E, Ureta T. Regulatory role of fructose-2,6-bisP on glucose metabolism in frog oocytes: in vivo inhibition of glycogen synthesis. Arch Biochem Biophys 1997; 348:75-81. [PMID: 9390176 DOI: 10.1006/abbi.1997.0360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glycogen synthesis following glucose microinjection in frog oocytes proceeds preferentially by an indirect pathway involving gluconeogenesis from triose compounds. Because of the known regulatory role of fructose-2,6-bisP on glucose utilization in most vertebrate tissues we coinjected [U-14C]glucose and fructose-2,6-bisP into oocytes and observed a marked inhibition of label incorporation into glycogen, with an I50 value of 2 microM, which is similar to the value measured for the in vitro inhibition of oocyte fructose-1,6-bisphosphatase. Other hexoses-bisP were tested: 2,5-anhydromannitol-1,6-bisP was as effective as inhibitor as fructose-2,6-bisP; glucose-1,6-bisP showed some effect although 50% inhibition was obtained at a concentration 10 times higher than with fructose-2,6-bisP; fructose-1,6-bisP had no effect at all. The inhibition pattern for the in vivo glycogen synthesis by these analogs closely matched the one obtained with partially purified oocyte fructose-1,6-bisphosphatase. The intracellular concentration of fructose-2,6-bisP in unperturbed oocytes was found to be between 0.1 and 0.2 microM. Fructose-6-phosphate,2-kinase levels measured in oocyte homogenates were between 0.02 and 0.06 mU per gram of ovary. After 60 min incubation, fructose-2,6-bisP microinjected into the oocytes was almost completely degraded, suggesting that fructose-2,6-bisphosphatase is active in vivo. The results presented in this paper indicate that fructose-2,6-bisP plays an important role in the in vivo regulation of glucose utilization in frog-grown oocytes.
Collapse
Affiliation(s)
- V Guixé
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
4
|
Colosia AD, Marker AJ, Lange AJ, el-Maghrabi MR, Granner DK, Tauler A, Pilkis J, Pilkis SJ. Induction of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase mRNA by refeeding and insulin. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37337-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
5
|
Ekdahl KN, Ekman P. Effects of epinephrine, glucagon and insulin on the activity and degree of phosphorylation of fructose-1,6-bisphosphatase in cultured hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 929:318-26. [PMID: 3038199 DOI: 10.1016/0167-4889(87)90259-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of epinephrine, glucagon and insulin on the activity and degree of phosphorylation of fructose-1,6-bisphosphatase in isolated hepatocytes maintained in cell culture for 24 h were investigated. Epinephrine caused a rapid decrease in the apparent Km monitored as the activity ratio between the activity at 12.5 and 83 microM fructose-1,6-bisphosphate, reaching a maximum after 5 min. Glucagon caused a slower and less pronounced activation, and insulin caused an equally slow increase in Km. The effect of epinephrine and glucagon was completely reciprocated by insulin and the action of insulin was totally erased by the other two. Glucagon stimulated the incorporation of [32P]phosphate into fructose-1,6-bisphosphatase from about 2.5 to 4.2 mol/mol enzyme and epinephrine to 3.5 mol/mol. The effect of the two hormones acting together was cumulative. Insulin brought about a decrease in the degree of phosphorylation to 2.0 mol/mol. The effect of epinephrine was shown to be caused by the beta-receptors, since it was completely blocked by propanolol (a beta-antagonist) and remained unaffected by the presence of phentolamine (an alpha-antagonist).
Collapse
|
6
|
Pilkis SJ, Fox E, Wolfe L, Rothbarth L, Colosia A, Stewart HB, el-Maghrabi MR. Hormonal modulation of key hepatic regulatory enzymes in the gluconeogenic/glycolytic pathway. Ann N Y Acad Sci 1986; 478:1-19. [PMID: 2879498 DOI: 10.1111/j.1749-6632.1986.tb15517.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Casteleijn E, van Rooij HC, van Berkel TJ, Koster JF. Mechanism of glucagon stimulation of fructose-1,6-bisphosphatase in rat hepatocytes. Involvement of a low-Mr activator. FEBS Lett 1986; 201:193-7. [PMID: 3011509 DOI: 10.1016/0014-5793(86)80607-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Isolated rat hepatocytes were incubated in the absence or presence of glucagon and the activity of fructose-1,6-bisphosphatase was measured in cell extracts. After glucagon treatment the Vmax was increased (20-50%) whereas the Km remained unchanged. The stimulation was complete at 5 min after addition of glucagon. The glucagon concentration needed for maximal stimulation was 10(-9) M. After gel filtration the fructose-1,6-bisphosphatase activity in extracts of glucagon-treated cells was lowered to the control level. The effect of glucagon could not be completely mimicked by dibutyryl cAMP. The data indicate that in addition to the possible regulatory role of enzyme phosphorylation, a positive effector is involved in the stimulation of fructose-1,6-bisphosphatase activity by glucagon.
Collapse
|
8
|
Rabkin M, Blum JJ. Quantitative analysis of intermediary metabolism in hepatocytes incubated in the presence and absence of glucagon with a substrate mixture containing glucose, ribose, fructose, alanine and acetate. Biochem J 1985; 225:761-86. [PMID: 3919712 PMCID: PMC1144654 DOI: 10.1042/bj2250761] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hepatocytes were isolated from the livers of fed rats and incubated, in the presence and absence of 100 nM-glucagon, with a substrate mixture containing glucose (10 mM), fructose (4 mM), alanine (3.5 mM), acetate (1.25 mM), and ribose (1 mM). In any given incubation one substrate was labelled with 14C. Incorporation of 14C into glucose, glycogen, CO2, lactate, alanine, glutamate, lipid glycerol and fatty acids was measured after 20 and 40 min of incubation under quasi-steady-state conditions [Borowitz, Stein & Blum (1977) J. Biol. Chem. 252, 1589-1605]. These data and the measured O2 consumption were analysed with the aid of a structural metabolic model incorporating all reactions of the glycolytic, gluconeogenic, and pentose phosphate pathways, and associated mitochondrial and cytosolic reactions. A considerable excess of experimental measurements over independent flux parameters and a number of independent measurements of changes in metabolite concentrations allowed for a stringent test of the model. A satisfactory fit to the data was obtained for each condition. Significant findings included: control cells were glycogenic and glucagon-treated cells glycogenolytic during the second interval; an ordered (last in, first out) model of glycogen degradation [Devos & Hers (1979) Eur. J. Biochem. 99, 161-167] was required in order to fit the experimental data; the pentose shunt contributed approx. 15% of the carbon for gluconeogenesis in both control and glucagon-treated cells; net flux through the lower Embden-Meyerhof pathway was in the glycolytic direction except during the 20-40 min interval in glucagon-treated cells; the increased gluconeogenesis in response to glucagon was correlated with a decreased pyruvate kinase flux and lactate output; fluxes through pyruvate kinase, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase were not coordinately controlled; Krebs cycle activity did not change with glucagon treatment; flux through the malic enzyme was towards pyruvate formation except for control cells during interval II; and 'futile' cycling at each of the five substrate cycles examined (including a previously undescribed cycle at acetate/acetyl-CoA) consumed about 26% of cellular ATP production in control hepatocytes and 21% in glucagon-treated cells.
Collapse
|
9
|
Ekdahl KN, Ekman P. The effect of fructose 2,6-bisphosphate and AMP on the activity of phosphorylated and unphosphorylated fructose-1,6-bisphosphatase from rat liver. FEBS Lett 1984; 167:203-9. [PMID: 6321241 DOI: 10.1016/0014-5793(84)80127-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rat liver fructose-1,6-bisphosphatase was partially phosphorylated in vitro and separated into unphosphorylated and fully phosphorylated enzyme. The effects of fructose 2,6-bisphosphate and AMP on these two enzyme forms were examined. Unphosphorylated fructose-1,6-bisphosphatase was more easily inhibited by both effectors. Fructose 2,6-bisphosphate affected both K0.5 and Vmax, while the main effect of AMP was to lower Vmax. Fructose 2,6-bisphosphate and AMP together acted synergistically to decrease the activity of fructose-1,6-bisphosphatase, and since unphosphorylated and phosphorylated enzyme forms are affected differently, this might be a way to amplify the effect of phosphorylation.
Collapse
|
10
|
Claus TH, El-Maghrabi MR, Regen DM, Stewart HB, McGrane M, Kountz PD, Nyfeler F, Pilkis J, Pilkis SJ. The role of fructose 2,6-bisphosphate in the regulation of carbohydrate metabolism. CURRENT TOPICS IN CELLULAR REGULATION 1984; 23:57-86. [PMID: 6327193 DOI: 10.1016/b978-0-12-152823-2.50006-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Control of gluconeogenesis in rat liver cells. I. Kinetics of the individual enzymes and the effect of glucagon. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)43867-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Riquelme PT, Wernette-Hammond ME, Kneer NM, Lardy HA. Regulation of carbohydrate metabolism by 2,5-anhydro-D-mannitol. Proc Natl Acad Sci U S A 1983; 80:4301-5. [PMID: 6410389 PMCID: PMC384025 DOI: 10.1073/pnas.80.14.4301] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In hepatocytes isolated from fasted rats, 2,5-anhydromannitol inhibits gluconeogenesis from lactate plus pyruvate and from substrates that enter the gluconeogenic pathway as triose phosphate. This fructose analog has no effect, however, on gluconeogenesis from xylitol, a substrate that enters the pathway primarily as fructose 6-phosphate. The sensitivity of gluconeogenesis to 2,5-anhydromannitol depends on the substrate metabolized; concentrations of 2,5-anhydromannitol required for 50% inhibition increase in the order lactate plus pyruvate less than dihydroxyacetone less than glycerol less than sorbitol less than fructose. The inhibition by 2,5-anhydromannitol of gluconeogenesis from dihydroxyacetone is accompanied by an increase in lactate formation and by two distinct crossovers in gluconeogenic-glycolytic metabolite patterns-i.e., increases in pyruvate concentrations with decreases in phosphoenolpyruvate and increases in fructose-1,6-bisphosphate concentrations with little change in fructose 6-phosphate. In addition, 2,5-anhydromannitol blocks the ability of glucagon to stimulate gluconeogenesis and inhibit lactate production from dihydroxyacetone. 2,5-Anhydromannitol decreases cellular fructose 2,6-bisphosphate content in hepatocytes; therefore the effects of the fructose analog are not mediated by fructose 2,6-bisphosphate, a naturally occurring allosteric regulator. 2,5-Anhydromannitol also inhibits gluconeogenesis in hepatocytes isolated from fasted diabetic rats, but higher concentrations of the analog are required.
Collapse
|
13
|
Mörikofer-Zwez S. Fructose 1,6-bisphosphatase in rat liver cytosol: interactions between the effects of K+, Zn2+, Mn2+, and fructose 2,6-bisphosphate as measured in a steady-state assay. Arch Biochem Biophys 1983; 223:572-83. [PMID: 6305284 DOI: 10.1016/0003-9861(83)90622-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fructose 1,6-bisphosphatase activity was determined in rat liver cytosols using glyceraldehyde 3-phosphate as primary substrate. Fructose 1,6-bisphosphate was formed in situ and steady-state concentrations ranging from 1 to 30 microM were observed depending on the activity of fructose 1,6-bisphosphatase and the concentration of added glyceraldehyde 3-phosphate. The system was free of contaminating low-molecular-weight compounds, divalent cations, and chelators. Under these conditions, fructose 1,6-bisphosphatase was inhibited by K+ (less than or equal to 200 mM). This inhibition was due to a reduction of V and was observed in presence of low (0.4 mM) and high (5 mM) concentrations of Mg2+. In presence of 0.4 mM Mg2+, 1 microM Zn2+ inhibited fructose 1,6-bisphosphatase by 50%; the same effect was obtained with 0.3 microM Zn2+ when the system was supplemented with 100 mM KCl. On the other hand, 0.2 microM Zn2+ enhanced the inhibitory effect of K+ and decreased the concentration of K+ yielding half-maximal inhibition from 175 to 100 mM when measured at 0.4 mM Mg2+. The effect of Zn2+ on the inhibition by K+ could be abolished by Mn2+ (less than 5 microM) or by 5 mM Mg2+. One hundred millimolar K+ enhanced the inhibition of fructose 1,6-bisphosphatase by fructose 2,6-bisphosphate and changed the type of inhibition from mainly competitive to a mixed-type inhibition (increase of Km, decrease of V). Mn2+ (less than 10 microM) reduced the effect of fructose 2,6-bisphosphate, especially in the presence of K+. It is proposed that K+ and Mn2+ may play a role in the regulation of gluconeogenesis.
Collapse
|
14
|
Sommercorn J, Freedland RA. Regulation of hepatic phosphofructokinase by 6-phosphogluconate. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34087-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
|
16
|
Gottschalk ME, Chatterjee T, Edelstein I, Marcus F. Studies on the mechanism of interaction of fructose 2,6-bisphosphate with fructose-1,6-bisphosphatase. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34290-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Wakelam MJ, Pette D. The control of glucose 1,6-bisphosphate by developmental state and hormonal stimulation in cultured muscle tissue. Biochem J 1982; 204:765-9. [PMID: 7126165 PMCID: PMC1158418 DOI: 10.1042/bj2040765] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
1. The concentration of glucose 1,6-bisphosphate, a potent regulator of muscle glucose metabolism, was examined in embryonic muscle cells in culture. 2. The concentration in fused myotubes was twice that in unfused myoblasts. 3. The effect of various hormones and agonists on the glucose 1,6-bisphosphate concentration in both pre- and post-fusion muscle cells was examined. In pre-fusion cells no effect of adrenaline or cyclic AMP was observed, but stimulation by vasopressin, adrenaline + propranolol, ionophore A23187 and dibutyryl cyclic GMP significantly decreased glucose 1,6-bisphosphate. In post-fusion cells similar effects were observed, except that stimulation by adrenaline and by dibutyryl cyclic AMP significantly increased metabolite concentration. 4. All effects increased with time (over a 1 h period), except for that of vasopressin, which was transient. 5. The changes in glucose 1,6-bisphosphate concentration were accompanied by changes in the fructose 1,6-bisphosphate/fructose 6-phosphate ratio, implying an effect on phosphofructokinase activity.
Collapse
|
18
|
Hartmann H, Beckh K, Jungermann K. Direct control of glycogen metabolism in the perfused rat liver by the sympathetic innervation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 123:521-6. [PMID: 6281012 DOI: 10.1111/j.1432-1033.1982.tb06562.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mode of action of hepatic nerves on the metabolism of carbohydrates was studied in the rat liver perfused in situ. 1. Electrical stimulation of the nerve bundles around the hepatic artery and the portal vein resulted in an increase of glucose and lactate output, an enhancement of phosphorylase a activity and a decrease of portal flow. 2. Sodium nitroprusside prevented the hemodynamic changes after nerve stimulation without affecting the metabolic alterations. 3. Phentolamine or an extracellular calcium level below 300 mumol x 1(-1) abolished both hemodynamic and metabolic changes after nerve stimulation, while propranolol or atropine were without effect. 4. Norepinephrine infusion mimicked nerve stimulation only at the highly unphysiological concentration of 0.1 microM; it was not effective at a concentration of 0.01 microM, which might be reached in the sinusoidal blood due to an overflow from intrahepatic synapses. The present results suggest that, in rat liver, glycogen breakdown is regulated by alpha-sympathetic nerves directly rather than indirectly via hemodynamic changes or via norepinephrine overflow.
Collapse
|
19
|
Pilkis SJ, El-Maghrabi MR, McGrane M, Pilkis J, Fox E, Claus TH. Fructose 2,6-bisphosphate: a mediator of hormone action at the fructose 6-phosphate/fructose 1,6-bisphosphate substrate cycle. Mol Cell Endocrinol 1982; 25:245-66. [PMID: 6279458 DOI: 10.1016/0303-7207(82)90082-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
el-Maghrabi MR, Claus TH, Pilkis J, Pilkis SJ. Regulation of 6-phosphofructo-2-kinase activity by cyclic AMP-dependent phosphorylation. Proc Natl Acad Sci U S A 1982; 79:315-9. [PMID: 6281762 PMCID: PMC345717 DOI: 10.1073/pnas.79.2.315] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Addition of glucagon to isolated rat hepatocytes resulted in inhibition of 6-phosphofructo-2-kinase (ATP:D-fructose-6-phosphate-2-phosphotransferase) activity in extracts of the cells and in a decrease in the intracellular level of fructose 2,6-bisphosphate. The effect on 6-phosphofructo-2-kinase was characterized by a decrease in the affinity of the enzyme for fructose 6-phosphate. To investigate the mechanism of action of glucagon, 6-phosphofructo-2-kinase from rat liver was partially purified by polyethylene glycol precipitation, DEAE-cellulose chromatography, (NH4)2SO4 fractionation, Sephacryl S-200 gel filtration, DEAE-Sephadex chromatography, and Sephadex G-100 gel filtration. Incubation of the purified enzyme with the catalytic subunit of the cyclic AMP-dependent protein kinase from rat liver and [gamma-32P]ATP resulted in 32P incorporation into a protein with a subunit Mr of 49,000 as determined by NaDodSO4 disc gel electrophoresis. Associated with this phosphorylation was an inhibition of 6-phosphofructo-2-kinase activity that was also characterized by a decrease in the affinity of the enzyme for fructose-6-phosphate. Both the phosphorylation and the inhibition of the purified 6-phosphofructo-2-kinase were blocked by addition of the heat-stable protein kinase inhibitor. It is concluded that the glucagon-induced decrease in fructose 2,6-bisphosphate levels observed in isolated hepatocytes is due, at least in part, to cyclic AMP-dependent phosphorylation and inhibition of 6-phosphofructo-2-kinase.
Collapse
|
21
|
|