1
|
Zhao D, Jiang X, Meng X, Liu D, Du Y, Zhao L, Jiang H. Low-Dose Radiation Reduces Doxorubicin-Induced Myocardial Injury Through Mitochondrial Pathways. Dose Response 2023; 21:15593258231155789. [PMID: 36798636 PMCID: PMC9926390 DOI: 10.1177/15593258231155789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/22/2023] [Indexed: 02/13/2023] Open
Abstract
The use of doxorubicin (DOX) as an anthraquinone antineoplastic agent is limited due to its cardiotoxicity. Our previous study suggested that low-dose radiation (LDR) could mitigate the cardiotoxicity induced by DOX via suppressing oxidative stress and cell apoptosis. However, the molecular targets and protective mechanism of LDR are not understood. In the present study, we sought to investigate the mechanisms underlying LDR's cardioprotection. Balb/c mice were randomly divided into four groups: Control group (no treatment), DOX group, LDR group (75 mGy), and LDR-72 h-DOX group (LDR pretreatment followed by intraperitoneal injection of DOX). Electron microscopy, PCR, and Western blot analyses indicated that LDR pretreatment mitigated changes in mitochondrial morphology caused by DOX, upregulated activity of mitochondrial complexes, and restored ATP levels in cardiomyocytes that were decreased by DOX. Whole genome microarray and PCR analyses showed that mitochondrial-related genes were altered by LDR pretreatment. Thus, our study showed that LDR can protect cardiomyocytes against DOX through improving mitochondrial function and increasing ATP production. This research could inform DOX chemotherapy strategies and provide new insight into the molecule mechanisms underlying the cardioprotective effects of LDR.
Collapse
Affiliation(s)
- Di Zhao
- Department of Health Evaluation Center, First Hospital of Jilin University, Changchun, China
| | - Xin Jiang
- Department of Health Evaluation Center, First Hospital of Jilin University, Changchun, China
| | - Xinxin Meng
- Department of Health Evaluation Center, First Hospital of Jilin University, Changchun, China
| | - Dandan Liu
- Department of Health Evaluation Center, First Hospital of Jilin University, Changchun, China
| | - Yanwei Du
- Changchun University of Chinese Medicine, Changchun, China
| | - Lijing Zhao
- The School of Basic Medicine, Jilin University, Changchun, China
| | - Hongyu Jiang
- Department of Health Evaluation Center, First Hospital of Jilin University, Changchun, China,Hongyu Jiang, M.D., PhD. Department of Health Evaluation Center, First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
2
|
Dékay V, Karai E, Füredi A, Szebényi K, Szakács G, Vajdovich P. P-Glycoprotein Activity at Diagnosis Does Not Predict Therapy Outcome and Survival in Canine B-Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14163919. [PMID: 36010910 PMCID: PMC9405845 DOI: 10.3390/cancers14163919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Clinical experience in human and canine clinics shows that following initial response to treatment, drug-resistant cancer cells frequently evolve and eventually, most tumors become resistant to all available therapies. The most straightforward cause of therapy resistance is linked to cellular alterations that prevent drugs from acting on their target. Drug efflux mediated by the ABC transporter P-glycoprotein (P-gp) contributes to unfavorable treatment outcome in several human malignancies. Here, we characterize a large cohort of canine B-cell lymphoma patients followed for over 7 years. We show that the intrinsic P-gp activity of tumor cells characterized at the time of diagnosis is not predictive for therapy outcome. Our results highlight the complexity of clinical drug resistance mechanisms and suggests that the relevance of P-gp in acquired resistance should be further investigated by the continuous monitoring of tumor cells during treatment. Abstract Various mechanisms are known to be involved in the development of multidrug resistance during cancer treatment. P-glycoprotein (P-gp) decreases the intracellular concentrations of cytotoxic drugs by an energy-dependent efflux mechanism. The aim of this study was to investigate the predictive value of P-gp function based on the evaluation of P-gp activity in tumor cells obtained from canine B-cell lymphoma patients at diagnosis. P-gp function of 79 immunophenotyped canine lymphoma samples was determined by flow cytometry using the Calcein assay. Dogs were treated with either the CHOP or the L-CHOP protocol, a subset of relapsed patients received L-asparaginase and lomustine rescue treatments. Among the 79 dogs, the median overall survival time was 417 days, and the median relapse-free period was 301 days. 47 percent of the samples showed high P-gp activity, which was significantly higher in Stage IV cancer patients compared to Stage II + III and V. Whereas staging was associated with major differences in survival times, we found that the intrinsic P-gp activity of tumor cells measured at diagnosis is not predictive for therapy outcome. Further studies are needed to identify the intrinsic and acquired resistant mechanisms that shape therapy response and survival in B-cell canine lymphoma patients.
Collapse
Affiliation(s)
- Valéria Dékay
- Department of Clinical Pathology and Oncology, University of Veterinary Medicine Budapest, István Utca 2, H-1078 Budapest, Hungary
- Correspondence: (V.D.); (P.V.)
| | - Edina Karai
- Department of Clinical Pathology and Oncology, University of Veterinary Medicine Budapest, István Utca 2, H-1078 Budapest, Hungary
| | - András Füredi
- Institute of Enzymology, Research Center of Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary or
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, A-1090 Vienna, Austria
| | - Kornélia Szebényi
- Institute of Enzymology, Research Center of Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary or
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, A-1090 Vienna, Austria
| | - Gergely Szakács
- Institute of Enzymology, Research Center of Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary or
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, A-1090 Vienna, Austria
| | - Péter Vajdovich
- Department of Clinical Pathology and Oncology, University of Veterinary Medicine Budapest, István Utca 2, H-1078 Budapest, Hungary
- Correspondence: (V.D.); (P.V.)
| |
Collapse
|
3
|
MicroRNA-34a Encapsulated in Hyaluronic Acid Nanoparticles Induces Epigenetic Changes with Altered Mitochondrial Bioenergetics and Apoptosis in Non-Small-Cell Lung Cancer Cells. Sci Rep 2017. [PMID: 28623259 PMCID: PMC5473901 DOI: 10.1038/s41598-017-02816-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Therapies targeting epigenetic changes for cancer treatment are in Phase I/II trials; however, all of these target only nuclear DNA. Emerging evidence suggests presence of methylation marks on mitochondrial DNA (mtDNA); but their contribution in cancer is unidentified. Expression of genes encoded on mtDNA are altered in cancer cells, along with increased glycolytic flux. Such glycolytic flux and elevated reactive oxygen species is supported by increased antioxidant; glutathione. MicroRNA-34a can translocate to mitochondria, mediate downstream apoptotic effects of tumor suppressor P53, and inhibit the antioxidant response element Nrf-2, resulting in depleted glutathione levels. Based on such strong rationale, we encapsulated microRNA-34a in our well-established Hyaluronic-Acid nanoparticles and delivered to cisplatin-sensitive and cisplatin-resistant A549-lung adenocarcinoma cells. Successful delivery and uptake in cells resulted in altered ATP levels, decreased glycolytic flux, Nrf-2 and glutathione levels, ultimately resulting in caspase-3 activation and apoptosis. Most important were the concurrent underlying molecular changes in epigenetic status of D-loop on the mtDNA and transcription of mtDNA-encoded genes. Although preliminary, we provide a novel therapeutic approach in form of altered mitochondrial bioenergetics and redox status of cancer cells with underlying changes in epigenetic status of mtDNA that can subsequently results in induction of cancer cell apoptosis.
Collapse
|
4
|
Estrogen Enhances the Expression of the Multidrug Transporter Gene ABCG2-Increasing Drug Resistance of Breast Cancer Cells through Estrogen Receptors. Int J Mol Sci 2017; 18:ijms18010163. [PMID: 28098816 PMCID: PMC5297796 DOI: 10.3390/ijms18010163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/16/2022] Open
Abstract
Background: Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. Results: In our study, ATP-binding cassette sub-family G member 2 (ABCG2), adenosine triphosphate (ATP) synthase and cytochrome c oxidase subunit VIc (COX6C) were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX). The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα) in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. Conclusions: E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance.
Collapse
|
5
|
Silkjaer T, Nyvold CG, Juhl-Christensen C, Hokland P, Nørgaard JM. Mitochondrial cytochrome c oxidase subunit II variations predict adverse prognosis in cytogenetically normal acute myeloid leukaemia. Eur J Haematol 2013; 91:295-303. [PMID: 23826975 DOI: 10.1111/ejh.12166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2013] [Indexed: 12/31/2022]
Abstract
Alterations in the two catalytic genes cytochrome c oxidase subunits I and II (COI and COII) have recently been suggested to have an adverse impact on prognosis in patients with acute myeloid leukaemia (AML). In order to explore this in further detail, we sequenced these two mitochondrial genes in diagnostic bone marrow or blood samples in 235 patients with AML. In 37 (16%) patients, a non-synonymous variation in either COI or COII could be demonstrated. No patients harboured both COI and COII non-synonymous variations. Twenty-four (10%) patients had non-synonymous variations in COI, whereas 13 (6%) patients had non-synonymous variations in COII. The COI and COII are essential subunits of cytochrome c oxidase that is the terminal enzyme in the oxidative phosphorylation complexes. In terms of disease course, we observed that in patients with a normal cytogenetic analysis at disease presentation (CN-AML) treated with curative intent, the presence of a non-synonymous variation in the COII was an adverse prognostic marker for both overall survival and disease-free survival (DFS) in both univariate (DFS; hazard ratio (HR) 4.4, P = 0.006) and multivariate analyses (DFS; HR 7.2, P = 0.001). This is the first demonstration of a mitochondrial aberration playing an adverse prognostic role in adult AML, and we argue that its role as a potentially novel adverse prognostic marker in the subset of CN-AML should be explored further.
Collapse
Affiliation(s)
- Trine Silkjaer
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
6
|
Chandran K, Aggarwal D, Migrino RQ, Joseph J, McAllister D, Konorev EA, Antholine WE, Zielonka J, Srinivasan S, Avadhani NG, Kalyanaraman B. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: cardioprotection by Mito-Q. Biophys J 2009; 96:1388-98. [PMID: 19217856 DOI: 10.1016/j.bpj.2008.10.042] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 10/09/2008] [Indexed: 12/23/2022] Open
Abstract
Doxorubicin (DOX) is used for treating various cancers. Its clinical use is, however, limited by its dose-limiting cardiomyopathy. The exact mechanism of DOX-induced cardiomyopathy still remains unknown. The goals were to investigate the molecular mechanism of DOX-induced cardiomyopathy and cardioprotection by mitoquinone (Mito-Q), a triphenylphosphonium-conjugated analog of coenzyme Q, using a rat model. Rats were treated with DOX, Mito-Q, and DOX plus Mito-Q for 12 weeks. The left ventricular function as measured by two-dimensional echocardiography decreased in DOX-treated rats but was preserved during Mito-Q plus DOX treatment. Using low-temperature ex vivo electron paramagnetic resonance (EPR), a time-dependent decrease in heme signal was detected in heart tissues isolated from rats administered with a cumulative dose of DOX. DOX attenuated the EPR signals characteristic of the exchange interaction between cytochrome c oxidase (CcO)-Fe(III) heme a3 and CuB. DOX and Mito-Q together restored these EPR signals and the CcO activity in heart tissues. DOX strongly downregulated the stable expression of the CcO subunits II and Va and had a slight inhibitory effect on CcO subunit I gene expression. Mito-Q restored CcO subunit II and Va expressions in DOX-treated rats. These results suggest a novel cardioprotection mechanism by Mito-Q during DOX-induced cardiomyopathy involving CcO.
Collapse
Affiliation(s)
- Karunakaran Chandran
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Carboxy-Terminal Modulator Protein (CTMP) is a mitochondrial protein that sensitizes cells to apoptosis. Cell Signal 2009; 21:639-50. [PMID: 19168129 DOI: 10.1016/j.cellsig.2009.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/15/2008] [Accepted: 01/02/2009] [Indexed: 11/21/2022]
Abstract
The Carboxy-Terminal Modulator Protein (CTMP) protein was identified as a PKB inhibitor that binds to its hydrophobic motif. Here, we report mitochondrial localization of endogenous and exogenous CTMP. CTMP exhibits a dual sub-mitochondrial localization as a membrane-bound pool and a free pool of mature CTMP in the inter-membrane space. CTMP is released from the mitochondria into the cytosol early upon apoptosis. CTMP overexpression is associated with an increase in mitochondrial membrane depolarization and caspase-3 and polyADP-ribose polymerase (PARP) cleavage. In contrast, CTMP knock-down results in a marked reduction in the loss of mitochondrial membrane potential as well as a decrease in caspase-3 and PARP activation. Mutant CTMP retained in the mitochondria loses its capacity to sensitize cells to apoptosis. Thus, proper maturation of CTMP is essential for its pro-apoptotic function. Finally, we demonstrate that CTMP delays PKB phosphorylation following cell death induction, suggesting that CTMP regulates apoptosis via inhibition of PKB.
Collapse
|
8
|
Liu X, Zhou B, Mi S, Xue L, Shih J, Lee J, Chau J, Un F, Yen Y. An increase of cytochrome C oxidase mediated disruption of gemcitabine incorporation into DNA in a resistant KB clone. Biochem Pharmacol 2007; 73:1927-38. [PMID: 17428446 PMCID: PMC1950577 DOI: 10.1016/j.bcp.2007.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 03/14/2007] [Accepted: 03/15/2007] [Indexed: 12/15/2022]
Abstract
Mechanistic aberrations leading to Gemcitabine (2',2'-dFdCyd,2,2-difluorodeoxycytidine, Gem) resistance may include alteration in its transport, metabolism and incorporation into DNA. To explore the mechanism of Gem resistance, the restriction fragment differential display PCR (RFDD-PCR) was employed to compare the mRNA expression patterns of KBGem (Gem resistant), KBHURs (hydroxyurea resistant) and KBwt (parental KB cell). Nine gene fragments were overexpressed specifically in the KBGem clone. Sequencing and BLAST results showed that three fragments represent cytochrome C oxidase (CCOX, respiration complex IV) subunit III (CCOX3). The cDNA microarray confirmed that the mRNAs of CCOX and ATP synthase subunits were upregulated in KBGem as compared to KBwt and KBHURs. The increase in CCOX1 protein and activity led to the increase of free ATP concentration, which is consistent with the gene expression profile of KBGem. Furthermore, the sensitivity to Gem could be reversed by sodium azide, a CCOX inhibitor. Following the treatment of sodium azide, the cellular accumulation of [3H]-Gem increased in a dose (of azide)-dependent manner, which is associated with increase of [3H]-Gem incorporation into DNA in KBGem. In summary, an increase of CCOX activity and free ATP level may reduce the transport, metabolism and DNA incorporation of Gem, resulting in Gem resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yun Yen
- Correspondence: Yun Yen, M.D., Ph.D., F.A.C.P., Department of Clinical & Molecular Pharmacology, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010-3000, Phone: (626) 359-8111 ext. 62867, Fax: (626) 301-8233, E-mail:
| |
Collapse
|
9
|
Abstract
Most cultured cells and intact animals die under hyperoxic conditions. However, a strain of HeLa cells that proliferates under 80% O(2), termed "HeLa-80," has been derived from wildtype HeLa cells ("HeLa-20") by selection for resistance to stepwise increases of oxygen partial pressure. The tolerance of HeLa-80 cells to hyperoxia is not associated with changes in antioxidant defenses or susceptibility to oxidant-mediated killing. Rather, under both 20 and 80% O(2), mitochondrial reactive oxygen species (ROS) production is approximately 2-fold less in HeLa-80 cells, likely related to a significantly higher cytochrome c oxidase (COX) activity ( approximately 2-fold), which may act to deplete upstream electron-rich intermediates responsible for ROS generation. We now report that in HeLa-80 cells elevated COX activity is associated with a >2-fold increase in the regulatory subunit COX Vb, whereas expression levels of other subunits are very close to wild type. Small interfering RNA against Vb selectively lowers COX Vb expression in HeLa-80 cells, increases mitochondrial ROS generation, decreases COX activity 60-80%, and diminishes viability under 80% (but not 20%) O(2). In addition, overexpression of subunit Vb increases COX activity and decreases ROS production in wild-type HeLa-20 cells, along with some increase in tolerance to hyperoxia. Overall, our results indicate that it is possible to make cells tolerant of hyperoxia by manipulation of mitochondrial electron transport. These observations may suggest new pharmaceutical strategies to diminish oxygen-mediated cellular damage.
Collapse
Affiliation(s)
- Jian Li Campian
- Molecular Targets Group, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
10
|
Tan RJ, Chen ZQ, Jiang MW, Tang CH. Influence of mitochondrial DNA depletion on multidrug resistance phenotype of human hepatoma cell line. Shijie Huaren Xiaohua Zazhi 2006; 14:3311-3313. [DOI: 10.11569/wcjd.v14.i34.3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To clarify the influence of mitochondrial DNA depletion on the multidrug resistance (MDR) phenotype of human hepatoma cells.
METHODS: The sensitivities of hepatoma cells to chemotherapy were determined by MTT method, and P-glycoprotein (P-gp) and MDR protein (MRP) expression were detected by immunohistochemistry. The differences of P-gp and MRP expression and sensitivities to chemotherapeutic druds were comparatively analyzed between SK-Hep1 and rhoo SK-Hep1 cells.
RESULTS: Adriamycin inhibited SK-Hep1 cells with a rate of 56%, 61%, 72%, and 75%, respectively, at 12, 24, 36, and 48 h, while cisplatin inhibited them with a rate of 54%, 60%, 77%, and 81%. However, adriamycin inhibited rhoo SK-Hep1 cells with a rate of 10%, 18%, 20%, and 22%, while cisplatin inhibited them with a rate of 19%, 20.4%, 21.3%, and 22.5%, respectively, at 12, 24, 36, and 48 h. There were significant differences between SK-Hep1 and rhoo SK-Hep1 cells (P < 0.01). The expression of P-gp and MRP were markedly higher in rhoo SK-Hep1 cells than those in SK-Hep1 cells (37% vs 20%, P < 0.01; 33% vs 18%, P < 0.01).
CONCLUSION: Cells with mitochondrial DNA depletion have resistance to chemotherapy, and the increased expression of P-gp and MRP may contribute to MDR of tumor cells.
Collapse
|
11
|
Lebrecht D, Geist A, Ketelsen UP, Haberstroh J, Setzer B, Kratz F, Walker UA. The 6-maleimidocaproyl hydrazone derivative of doxorubicin (DOXO-EMCH) is superior to free doxorubicin with respect to cardiotoxicity and mitochondrial damage. Int J Cancer 2006; 120:927-34. [PMID: 17131338 DOI: 10.1002/ijc.22409] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Doxorubicin causes a chronic cardiomyopathy in which genetic and functional lesions of mitochondria accumulate in the long-term and explain in part the delayed onset of heart dysfunction. DOXO-EMCH a 6-maleimidocaproyl hydrazone derivative of doxorubicin, is an albumin binding prodrug which has entered clinical trials because of its superior antitumor and toxicological profile. In the present work, we examined the chronic cardiotoxicity of DOXO-EMCH in direct comparison with doxorubicin. Rats (11 weeks of age) were treated with intravenous doxorubicin (0.8 mg/kg weekly for 7 weeks), an equimolar dose of DOXO-EMCH (1.1 mg/kg), or with 3.3 mg/kg of DOXO-EMCH. Controls received saline. Animals were euthanized at 48th week. Rats exposed to doxorubicin had a severe clinical, and histopathological cardiomyopathy with depressed myocardial activity of cytochrome c-oxidase (COX, 26% of controls), reduced expression of the mtDNA-encoded COX II subunit, decreased mtDNA copy numbers (46% of controls), and high levels of malondialdehyde and superoxide (787% of controls). All parameters were highly correlated with myocardial damage. Both DOXO-EMCH groups did not differ from controls with regard to clinical symptomatology, mortality and mitochondrial enzymes, although the myocardia of the high-dose group had slightly increased histopathological abnormalities, depressed mtDNA copies (74% of controls) and elevated superoxide levels (347% of controls). Doxorubicin-exposed hearts and to a lesser extent the myocardia of both DOXO-EMCH groups contained mtDNA-deletions. In summary both DOXO-EMCH doses were superior over doxorubicin with respect to clinical and histopathological evidence of cardiomyopathy, myocardial COX-activity, COX II expression, mtDNA-content, mtDNA mutation loads and superoxide production in rats.
Collapse
Affiliation(s)
- Dirk Lebrecht
- Department of Rheumatology, Medizinische Universitätsklinik, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Hickey FB, Cotter TG. Identification of transcriptional targets associated with the expression of p210 Bcr-Abl. Eur J Haematol 2006; 76:369-83. [PMID: 16494625 DOI: 10.1111/j.1600-0609.2006.00629.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Chronic myeloid leukaemia is caused by the expression of the p210 Bcr-Abl fusion protein which results from the Philadelphia translocation, t(9;22). This oncogene has been the focus of extensive research. However, the molecular mechanisms responsible for the haematological malignancy are not fully understood. The main objective of the current study was to identify novel transcriptional targets of Bcr-Abl. METHODS In order to achieve this, microarrays were employed in order to conduct a genome-wide expression analysis comparing 32D cells with a transfected clone expressing high levels of p210 Bcr-Abl. Quantitative RT-PCR was employed in order to confirm the observed increase/decrease in expression for a number of the deregulated genes. RESULTS AND CONCLUSIONS This comparison identified 138 genes of known function showing altered expression in response to Bcr-Abl-mediated signalling. Among the genes found to be upregulated in response to p210 Bcr-Abl were aldolase 1A and phosphofructokinase, both of which encode key enzymes in the glycolytic pathway. As a consequence of this, we demonstrate that the rate of glycolysis is significantly increased in Bcr-Abl expressing cells in a PI3K-dependent manner. Our results also indicate altered expression of genes involved in cell proliferation, cell adhesion and cell signalling.
Collapse
Affiliation(s)
- Fionnuala B Hickey
- Department of Biochemistry, Biosciences Institute, University College Cork, Cork, Ireland
| | | |
Collapse
|
13
|
Lebrecht D, Kokkori A, Ketelsen UP, Setzer B, Walker UA. Tissue-specific mtDNA lesions and radical-associated mitochondrial dysfunction in human hearts exposed to doxorubicin. J Pathol 2006; 207:436-44. [PMID: 16278810 DOI: 10.1002/path.1863] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Doxorubicin causes a chronic cardiomyopathy. Although the exact pathogenesis is unknown, recent animal data suggest that somatically acquired alterations of mitochondrial DNA (mtDNA) and concomitant mitochondrial dysfunction play an important role in its onset. In this study, skeletal and myocardial muscles were examined from human autopsies. Compared to controls (n = 8), doxorubicin-exposed hearts (n = 6) showed low absolute enzyme activity of mtDNA-encoded nicotinamide adenine dinucleotide hydrogen dehydrogenase (NADH DH, 79% residual activity, p = 0.03) and cytochrome c oxidase (COX, 59% residual activity, p < 0.001), but not of succinate dehydrogenase (SDH), which is encoded exclusively by nuclear DNA. NADH DH/SDH and COX/SDH ratios were 37% (p < 0.001) and 27% (p < 0.001) of controls. Expression of the mtDNA-encoded subunit II of COX was reduced (82%, p = 0.04), compared to its unchanged nucleus-encoded subunit IV. MtDNA-content was diminished (56%, p = 0.02), but the 'common' mtDNA-deletion was increased (9.2-fold, p = 0.004). Doxorubicin-exposed hearts harboured numerous additional mtDNA rearrangements lacking direct repeats. They contained elevated levels of malondialdehyde (MDA) (p = 0.006, compared to controls), which correlated inversely with the COX/SDH ratio (r = -0.45, p = 0.02) and the mtDNA-content (r = -0.75, p = 0.002), and correlated positively with the levels of the 'common' deletion (r = 0.80, p < 0.001). Doxorubicin-exposed hearts also contained the highest levels of superoxide (p < 0.001, compared to controls), which correlated negatively with the mtDNA-encoded respiratory chain activities, such as the COX/SDH ratio (r = -0.57, p = 0.02) and the NADH/SDH ratio (r = -0.52, p = 0.04), as well as with the mtDNA content (r = -0.69, p = 0.003), and correlated positively with the frequency of the 'common' deletion (r = 0.76, p < 0.001) and the MDA levels (r = 0.86, p < 0.001). Doxorubicin-exposed hearts contained electron-dense deposits within mitochondria. Hearts exposed to other anthracyclines (n = 6) or skeletal muscle (all groups) had no mitochondrial dysfunction. Doxorubicin, unlike other anthracyclines, augments lipid peroxidation, induces mtDNA mutations and decreases mtDNA content in human hearts. These lesions have an impact on mitochondrial function and could be of importance in the pathogenesis of clinical cardiomyopathy.
Collapse
Affiliation(s)
- Dirk Lebrecht
- Department of Rheumatology, Medizinische Universitätsklinik, Freiburg, Germany
| | | | | | | | | |
Collapse
|
14
|
De Oliveira F, Chauvin C, Ronot X, Mousseau M, Leverve X, Fontaine E. Effects of permeability transition inhibition and decrease in cytochrome c content on doxorubicin toxicity in K562 cells. Oncogene 2005; 25:2646-55. [PMID: 16331251 DOI: 10.1038/sj.onc.1209293] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As mitochondria play a key role in the commitment to cell death, we have investigated the mitochondrial consequences of resistance to doxorubicin (DOX) in K562 cells. We found that the permeability transition pore (PTP) inhibitor cyclosporine A (CsA) failed to inhibit PTP opening in the resistant clone. Moreover, the Ca2+ loading capacity in the resistant clone was identical to that observed in the parent cells in the presence of CsA, suggesting that the PTP was already inhibited in a CsA-like manner in the resistant cells. In agreement with this proposal, the mitochondrial target of CsA cyclophilin D (CyD) decreased by half in the resistant cells. The levels of adenine nucleotide translocator, voltage anion-dependent channel, Bax, Bcl-2, Bcl-xL, AIF and Smac/Diablo, were similar in both cell lines, whereas cytochrome c content was divided by three in the resistant cells. Since P-glycoprotein inhibition did not restore DOX toxicity in the resistant cells, while DOX-induced cell death in the parent cells was prevented by either PTP inhibition or siRNA-induced decrease in cytochrome c content, we conclude that the inhibition of PTP opening and the decrease in cytochrome c content participate in the mechanism that makes K562 cells resistant to DOX.
Collapse
Affiliation(s)
- F De Oliveira
- INSERM E-0221 Bioénergétique Fondamentale et Appliquée, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | |
Collapse
|
15
|
Sawicka M, Kalinowska M, Skierski J, Lewandowski W. A review of selected anti-tumour therapeutic agents and reasons for multidrug resistance occurrence. J Pharm Pharmacol 2004; 56:1067-81. [PMID: 15324475 DOI: 10.1211/0022357044265] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is assumed that proteins from the ABC family (i.e., glycoprotein P (Pgp)) and a multidrug resistance associated protein (MRP) play a main role in the occurrence of multidrug resistance (MDR) in tumour cells. Other factors that influence the rise of MDR are mechanisms connected with change in the effectiveness of the glutathione cycle and with decrease in expression of topoisomerases I and II. The aim of this review is to characterize drugs applied in anti-tumour therapy and to describe the present state of knowledge concerning the mechanisms of MDR occurrence, as well as the pharmacological agents applied in reducing this phenomenon.
Collapse
Affiliation(s)
- M Sawicka
- Department of Chemistry, Biatystok Technical University, Zamenhofa 29, 15-435 Biatystok, Poland
| | | | | | | |
Collapse
|
16
|
Ahn MJ, Lee KH, Ahn JI, Yu DH, Lee HS, Choi JH, Jang JS, Bae JM, Lee YS. The differential gene expression profiles between sensitive and resistant breast cancer cells to adriamycin by cDNA microarray. Cancer Res Treat 2004; 36:43-9. [PMID: 20396564 DOI: 10.4143/crt.2004.36.1.43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 02/24/2004] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Adriamycin is one of the most commonly used drugs in the treatment of breast cancer. This study was performed to understand the molecular mechanisms of drug resistance in breast cancer cells. MATERIALS AND METHODS We have analyzed the MCF-7 breast cell line and its adriamycin-resistant variants, MCF-7/ADR using human 10 K element cDNA microarrays. RESULTS We defined 68 genes that were up-regulated (14 genes) or down-regulated (54 genes) in adriamycin resistant breast cancer cells. Several genes, such as G protein-coupled receptor kinase 5, phospholipase A2, guanylate cyclase 1, vimentin, matrix metalloproteinase 1 are up-regulated in drug resistant cells. Several genes, such as interferon, alpha-inducible protein 27, forkhead box M1, mitogen-activated protein kinase 6, regulator of mitotic spindle assembly 1 and tumor necrosis factor superfamily are down-regulated in adriamycin resistant cells. The altered expression of genes observed in microarray was verified by RT-PCR. CONCLUSION These findings show that cDNA microarray analysis can be used to obtain gene expression profiles reflecting the effect of anticancer drugs on breast cancer cells. Such data may lead to the assigning of signature expression profiles of drug-resistant tumors which may help predict responses to drugs and assist in the design of tailored therapeutic regimens to overcome drug resistance.
Collapse
Affiliation(s)
- Myung-Ju Ahn
- Department of Internal Medicine, College of Medicine, Hanyang University, Seoul, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lebrecht D, Setzer B, Ketelsen UP, Haberstroh J, Walker UA. Time-Dependent and Tissue-Specific Accumulation of mtDNA and Respiratory Chain Defects in Chronic Doxorubicin Cardiomyopathy. Circulation 2003; 108:2423-9. [PMID: 14568902 DOI: 10.1161/01.cir.0000093196.59829.df] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Doxorubicin causes a chronic cardiomyopathy of unknown pathogenesis. We investigated whether acquired defects in mitochondrial DNA (mtDNA) and interconnected respiratory chain dysfunction may represent a molecular mechanism for its late onset.
Methods and Results—
Rats were treated weekly with intravenous doxorubicin (1 mg/kg) for 7 weeks, starting at 11 weeks of age (group B). Controls received saline. Group C received doxorubicin identically to group B, but the course was started at 41 weeks of age. All rats were killed at week 48. Doxorubicin was also injected once, either 6 days (group D) or 2 hours (group E) before euthanasia. Heart and skeletal muscle were examined. Only group B rats developed a significant clinical, macroscopic, histological, and ultrastructural cardiomyopathy. Group B hearts had the lowest cytochrome
c
oxidase (COX) activity (24% of controls;
P
=0.003), the highest citrate synthase activity (135% of controls;
P
=0.005), and the highest production of superoxide. In group B, the respiratory subunit COXI, which is encoded by mtDNA, was reduced (
P
<0.001), as was mtDNA (49% of controls,
P
<0.001). Group C hearts differed from group B in their lower cardiomyopathy score (
P
=0.006), higher COX activity (
P
=0.02), and higher mtDNA content (
P
=0.04). Group B and to a lesser extent group C hearts contained deleted mtDNA. There was no detectable mitochondrial toxicity in group D and E hearts or in skeletal muscle.
Conclusions—
In doxorubicin cardiomyopathy, mtDNA alterations, superoxide, and respiratory chain dysfunction accumulate long-term in the absence of the drug and are associated with a late onset.
Collapse
Affiliation(s)
- Dirk Lebrecht
- Medizinische Universitätsklinik, Departments of Rheumatology and Clinical Immunology, Freiburg, Germany
| | | | | | | | | |
Collapse
|
18
|
Abstract
Mitochondria play important roles in cellular energy metabolism, free radical generation, and apoptosis. Defects in mitochondrial function have long been suspected to contribute to the development and progression of cancer. In this review article, we aim to provide a brief summary of our current understanding of mitochondrial genetics and biology, review the mtDNA alterations reported in various types of cancer, and offer some perspective as to the emergence of mtDNA mutations, their functional consequences in cancer development, and therapeutic implications.
Collapse
Affiliation(s)
- Jennifer S Carew
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.
| | | |
Collapse
|