1
|
Tatsukawa H, Furutani Y, Hitomi K, Kojima S. Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death. Cell Death Dis 2016; 7:e2244. [PMID: 27253408 PMCID: PMC5143380 DOI: 10.1038/cddis.2016.150] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 01/27/2023]
Abstract
Transglutaminase 2 (TG2) is primarily known as the most ubiquitously expressed member of the transglutaminase family with Ca2+-dependent protein crosslinking activity; however, this enzyme exhibits multiple additional functions through GTPase, cell adhesion, protein disulfide isomerase, kinase, and scaffold activities and is associated with cell growth, differentiation, and apoptosis. TG2 is found in the extracellular matrix, plasma membrane, cytosol, mitochondria, recycling endosomes, and nucleus, and its subcellular localization is an important determinant of its function. Depending upon the cell type and stimuli, TG2 changes its subcellular localization and biological activities, playing both anti- and pro-apoptotic roles. Increasing evidence indicates that the GTP-bound form of the enzyme (in its closed form) protects cells from apoptosis but that the transamidation activity of TG2 (in its open form) participates in both facilitating and inhibiting apoptosis. A difficulty in the study and understanding of this enigmatic protein is that opposing effects have been reported regarding its roles in the same physiological and/or pathological systems. These include neuroprotective or neurodegenerative effects, hepatic cell growth-promoting or hepatic cell death-inducing effects, exacerbating or having no effect on liver fibrosis, and anti- and pro-apoptotic effects on cancer cells. The reasons for these discrepancies have been ascribed to TG2's multifunctional activities, genetic variants, conformational changes induced by the immediate environment, and differences in the genetic background of the mice used in each of the experiments. In this article, we first report that TG2 has opposing roles like the protagonist in the novel Dr. Jekyll and Mr. Hyde, followed by a summary of the controversies reported, and finally discuss the possible reasons for these discrepancies.
Collapse
Affiliation(s)
- H Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Y Furutani
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - K Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - S Kojima
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Diamanti A, Capriati T, Bizzarri C, Ferretti F, Ancinelli M, Romano F, Perilli A, Laureti F, Locatelli M. Autoimmune diseases and celiac disease which came first: genotype or gluten? Expert Rev Clin Immunol 2015; 12:67-77. [DOI: 10.1586/1744666x.2016.1095091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Yang SN, Shi Y, Yang G, Li Y, Yu J, Berggren PO. Ionic mechanisms in pancreatic β cell signaling. Cell Mol Life Sci 2014; 71:4149-77. [PMID: 25052376 PMCID: PMC11113777 DOI: 10.1007/s00018-014-1680-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023]
Abstract
The function and survival of pancreatic β cells critically rely on complex electrical signaling systems composed of a series of ionic events, namely fluxes of K(+), Na(+), Ca(2+) and Cl(-) across the β cell membranes. These electrical signaling systems not only sense events occurring in the extracellular space and intracellular milieu of pancreatic islet cells, but also control different β cell activities, most notably glucose-stimulated insulin secretion. Three major ion fluxes including K(+) efflux through ATP-sensitive K(+) (KATP) channels, the voltage-gated Ca(2+) (CaV) channel-mediated Ca(2+) influx and K(+) efflux through voltage-gated K(+) (KV) channels operate in the β cell. These ion fluxes set the resting membrane potential and the shape, rate and pattern of firing of action potentials under different metabolic conditions. The KATP channel-mediated K(+) efflux determines the resting membrane potential and keeps the excitability of the β cell at low levels. Ca(2+) influx through CaV1 channels, a major type of β cell CaV channels, causes the upstroke or depolarization phase of the action potential and regulates a wide range of β cell functions including the most elementary β cell function, insulin secretion. K(+) efflux mediated by KV2.1 delayed rectifier K(+) channels, a predominant form of β cell KV channels, brings about the downstroke or repolarization phase of the action potential, which acts as a brake for insulin secretion owing to shutting down the CaV channel-mediated Ca(2+) entry. These three ion channel-mediated ion fluxes are the most important ionic events in β cell signaling. This review concisely discusses various ionic mechanisms in β cell signaling and highlights KATP channel-, CaV1 channel- and KV2.1 channel-mediated ion fluxes.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76, Stockholm, Sweden,
| | | | | | | | | | | |
Collapse
|
4
|
Huh KH, Cho Y, Kim BS, Do JH, Park YJ, Joo DJ, Kim MS, Kim YS. The role of thioredoxin 1 in the mycophenolic acid-induced apoptosis of insulin-producing cells. Cell Death Dis 2013; 4:e721. [PMID: 23846223 PMCID: PMC3730420 DOI: 10.1038/cddis.2013.247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/07/2013] [Accepted: 06/07/2013] [Indexed: 01/12/2023]
Abstract
Mycophenolic acid (MPA) is one of many effective immunosuppressive drugs. However, MPA can induce cellular toxicity and impair cellular function in β-cells. To explore the effects of MPA and the relation between MPA and Trx-1, we used various methods, including an Illumina microarray, to identify the genes regulated during pancreatic β-cell death following MPA treatment. INS-1E cells (a pancreatic β-cell line) and isolated rat islets were treated with MPA for 12, 24, or 36 h, and subsequent microarray analysis showed that (Trx1) gene expression was significantly reduced by MPA. Further, Trx1 overexpression increased the cell viability, decreased the activations of c-jun N-terminal kinase (JNK) and caspase-3 by MPA, and attenuated ROS upregulation by MPA. Furthermore, siRNA knockdown of Trx1 increased MPA-induced cell death and the activations of p-JNK and caspase-3, and MPA significantly provoked the apoptosis of insulin-secreting cells via Trx1 downregulation. Our findings suggest that the prevention of Trx1 downregulation in response to MPA is critical for successful islet transplantation.
Collapse
Affiliation(s)
- K H Huh
- Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Shleikin AG, Danilov NP. Evolutionary-biological peculiarities of transglutaminase. Structure, physiological functions, application. J EVOL BIOCHEM PHYS+ 2011. [DOI: 10.1134/s0022093011010014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Molecular Mechanisms of Cell Death of Mycophenolic Acid-Treated Primary Isolated Rat Islets: Implication of Mitogen-Activated Protein Kinase Activation. Transplant Proc 2008; 40:2575-7. [DOI: 10.1016/j.transproceed.2008.07.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Shaoul R, Lerner A. Associated autoantibodies in celiac disease. Autoimmun Rev 2007; 6:559-65. [PMID: 17854749 DOI: 10.1016/j.autrev.2007.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Accepted: 02/14/2007] [Indexed: 11/30/2022]
Abstract
Celiac disease (CD) is a life-long inflammatory autoimmune condition of the gastrointestinal tract affecting genetically susceptible individuals. Several autoimmune disorders are more prevalent in patients and their close relatives and that risk is gluten exposure duration related. The most frequent reported CD associated conditions are type 1 diabetes mellitus and autoimmune thyroiditis. Associated autoimmune antibodies are frequent in CD and their first-degree relatives, spanning anti-endocrine, anti-gastrointestinal, anti-nuclear, anti-cytoskeleton and anti-neurological antibodies. More specifically, antibodies against thyroid and the endocrine pancreas, anti-gastric and liver, anti-nuclear constituents, anti-reticulin, actin, smooth muscle, calreticulin, desmin, collagens and bone, anti-brain, ganglioside, neuronal and blood vessel were described in sera of the patients in numerous studies. The common immunogenetic theories for the above associations are: sharing common HLA and non-HLA genes, antigenic mimicry, damage-induced neoantigen exposure, altered intestinal permeability, idiotype network dysregulation and epitope spreading. The CD associated autoantibodies enigma, being an epiphenomenon or pathogenic, remains unresolved and presents a challenging area for future research.
Collapse
Affiliation(s)
- Ron Shaoul
- Department of Pediatrics, Bnai Zion Medical Center, Haifa, Israel
| | | |
Collapse
|
8
|
Kim JY, Yoon SY, Park J, Kim YS. Mycophenolic Acid Induces Islet Apoptosis by Regulating Mitogen-Activated Protein Kinase Activation. Transplant Proc 2006; 38:3277-9. [PMID: 17175248 DOI: 10.1016/j.transproceed.2006.10.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Indexed: 11/23/2022]
Abstract
Mycophenolic acid (MPA), an inosine monophosphate dehydrogenase inhibitor, is widely used as an immunosuppressive drug after transplantations including those of pancreas islet cells. However, recent reports have indicated that MPA has apoptotic effects on islet cells in vitro. To study the effect of MPA on islet cells and determine its mechanism, we used an insulin secreting cell-line, HIT-T15. We examined mitogen-activated protein kinase (MAPK) activation after MPA treatment, and determining cell death levels using methylthiazdetetrazolium assays. The activations of extracellular signal-regulated protein kinase (ERK), c-jun N-terminal kinase (JNK), and p38 MAPK and caspase-3 cleavage were measured by Western blotting. MPA (1, 10, 30 micromol/L) increased cell death and caspase-3 cleavage within 24 hours. Exogenous 500 micromol/L guanosine reversed the MPA-induced islet cell death, but exogenous adenosine did not. MPA 10 micromol/L induced cell apoptosis and increased the activations of JNK, ERK, and p38 MAPK. Furthermore, exogenous guanosine, but not exogenous adenosine, reversed these effects induced by MPA. This study demonstrated that MPA may induce islet apoptosis in HIT-T15 cells by increasing activations of JNK, ERK, and p38 MAPK in a guanosine-dependent manner.
Collapse
Affiliation(s)
- J Y Kim
- Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
9
|
Yang SN, Berggren PO. The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev 2006; 27:621-76. [PMID: 16868246 DOI: 10.1210/er.2005-0888] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Voltage-gated calcium (CaV) channels are ubiquitously expressed in various cell types throughout the body. In principle, the molecular identity, biophysical profile, and pharmacological property of CaV channels are independent of the cell type where they reside, whereas these channels execute unique functions in different cell types, such as muscle contraction, neurotransmitter release, and hormone secretion. At least six CaValpha1 subunits, including CaV1.2, CaV1.3, CaV2.1, CaV2.2, CaV2.3, and CaV3.1, have been identified in pancreatic beta-cells. These pore-forming subunits complex with certain auxiliary subunits to conduct L-, P/Q-, N-, R-, and T-type CaV currents, respectively. beta-Cell CaV channels take center stage in insulin secretion and play an important role in beta-cell physiology and pathophysiology. CaV3 channels become expressed in diabetes-prone mouse beta-cells. Point mutation in the human CaV1.2 gene results in excessive insulin secretion. Trinucleotide expansion in the human CaV1.3 and CaV2.1 gene is revealed in a subgroup of patients with type 2 diabetes. beta-Cell CaV channels are regulated by a wide range of mechanisms, either shared by other cell types or specific to beta-cells, to always guarantee a satisfactory concentration of Ca2+. Inappropriate regulation of beta-cell CaV channels causes beta-cell dysfunction and even death manifested in both type 1 and type 2 diabetes. This review summarizes current knowledge of CaV channels in beta-cell physiology and pathophysiology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology L1:03, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| | | |
Collapse
|
10
|
Chica RA, Gagnon P, Keillor JW, Pelletier JN. Tissue transglutaminase acylation: Proposed role of conserved active site Tyr and Trp residues revealed by molecular modeling of peptide substrate binding. Protein Sci 2004; 13:979-91. [PMID: 15010546 PMCID: PMC2280066 DOI: 10.1110/ps.03433304] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 11/27/2003] [Accepted: 12/01/2003] [Indexed: 10/26/2022]
Abstract
Transglutaminases (TGases) catalyze the cross-linking of peptides and proteins by the formation of gamma-glutamyl-epsilon-lysyl bonds. Given the implication of tissue TGase in various physiological disorders, development of specific tissue TGase inhibitors is of current interest. To aid in the design of peptide-based inhibitors, a better understanding of the mode of binding of model peptide substrates to the enzyme is required. Using a combined kinetic/molecular modeling approach, we have generated a model for the binding of small acyl-donor peptide substrates to tissue TGase from red sea bream. Kinetic analysis of various N-terminally derivatized Gln-Xaa peptides has demonstrated that many CBz-Gln-Xaa peptides are typical in vitro substrates with K(M) values between 1.9 mM and 9.4 mM, whereas Boc-Gln-Gly is not a substrate, demonstrating the importance of the CBz group for recognition. Our binding model of CBz-Gln-Gly on tissue TGase has allowed us to propose the following steps in the acylation of tissue TGase. First, the active site is opened by displacement of conserved W329. Second, the substrate Gln side chain enters the active site and is stabilized by hydrophobic interaction with conserved residue W236. Third, a hydrogen bond network is formed between the substrate Gln side chain and conserved residues Y515 and the acid-base catalyst H332 that helps to orient and activate the gamma-carboxamide group for nucleophilic attack by the catalytic sulphur atom. Finally, an H-bond with Y515 stabilizes the oxyanion formed during the reaction.
Collapse
Affiliation(s)
- Roberto A Chica
- Département de chimie, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Québec, Canada H3C 3J7.
| | | | | | | |
Collapse
|