1
|
Prego-Faraldo MV, Valdiglesias V, Méndez J, Eirín-López JM. Okadaic acid meet and greet: an insight into detection methods, response strategies and genotoxic effects in marine invertebrates. Mar Drugs 2013; 11:2829-45. [PMID: 23939476 PMCID: PMC3766868 DOI: 10.3390/md11082829] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 12/24/2022] Open
Abstract
Harmful Algal Blooms (HABs) constitute one of the most important sources of contamination in the oceans, producing high concentrations of potentially harmful biotoxins that are accumulated across the food chains. One such biotoxin, Okadaic Acid (OA), is produced by marine dinoflagellates and subsequently accumulated within the tissues of filtering marine organisms feeding on HABs, rapidly spreading to their predators in the food chain and eventually reaching human consumers causing Diarrhetic Shellfish Poisoning (DSP) syndrome. While numerous studies have thoroughly evaluated the effects of OA in mammals, the attention drawn to marine organisms in this regard has been scarce, even though they constitute primary targets for this biotoxin. With this in mind, the present work aimed to provide a timely and comprehensive insight into the current literature on the effect of OA in marine invertebrates, along with the strategies developed by these organisms to respond to its toxic effect together with the most important methods and techniques used for OA detection and evaluation.
Collapse
Affiliation(s)
- María Verónica Prego-Faraldo
- XENOMAR Group, Department of Cellular and Molecular Biology, University of A Coruna, E15071 A Coruña, Spain; E-Mails: (M.V.P.-F.); (J.M.)
| | - Vanessa Valdiglesias
- Toxicology Unit, Department of Psychobiology, University of A Coruña, E15071 A Coruña, Spain; E-Mail:
| | - Josefina Méndez
- XENOMAR Group, Department of Cellular and Molecular Biology, University of A Coruna, E15071 A Coruña, Spain; E-Mails: (M.V.P.-F.); (J.M.)
| | - José M. Eirín-López
- XENOMAR Group, Department of Cellular and Molecular Biology, University of A Coruna, E15071 A Coruña, Spain; E-Mails: (M.V.P.-F.); (J.M.)
- Chromatin Structure and Evolution (CHROMEVOL) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-981-167-000; Fax: +34-981-167-065
| |
Collapse
|
2
|
Espiña B, Louzao MC, Cagide E, Alfonso A, Vieytes MR, Yasumoto T, Botana LM. The methyl ester of okadaic acid is more potent than okadaic acid in disrupting the actin cytoskeleton and metabolism of primary cultured hepatocytes. Br J Pharmacol 2009; 159:337-44. [PMID: 20015092 DOI: 10.1111/j.1476-5381.2009.00512.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Okadaic acid (OA) and microcystins (MCs) are structurally different toxins with the same mechanism of action, inhibition of serine/threonine protein phosphatases (PPs). Methyl okadaate (MeOk), a methyl ester derivative of OA, was considered almost inactive due to its weak inhibition of PP1 and PP2A. Here, we have investigated the activity and potency of MeOk in hepatic cells in comparison with that of OA and MCs. EXPERIMENTAL APPROACH We tested the effects of MeOK, OA and microcystin-leucine and arginine (MC-LR) on the metabolic rate, the actin cytoskeleton and glucose uptake in a rat hepatocyte cell line (Clone 9) and in primary cultured rat hepatocytes. PP2A was assayed to compare OA and MeOk activity. KEY RESULTS MeOk disrupted the actin cytoskeleton and depressed the metabolic rate of both types of rat hepatocytes, being six-fold less potent than OA in Clone 9 cells but nearly six-fold more potent in primary cultured hepatocytes. However, unlike OA, MeOk did not change glucose uptake in these cells, suggesting a weak inhibition of PP2A, as confirmed in direct assays of PP2A activity. CONCLUSIONS AND IMPLICATIONS Although MeOk was originally described as a weakly bioactive molecule, it clearly depressed the metabolic rate and disrupted the cytoskeleton in primary and immortalized rat hepatocytes. Furthermore, MeOk affected primary hepatocytes at much lower concentrations than those affecting immortalized cells. These effects were unrelated to PP2A inhibition. Our results suggest the risk to public health from MeOk in foodstuffs should be re-evaluated.
Collapse
Affiliation(s)
- Begoña Espiña
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | | | | | | | | | | | | |
Collapse
|
3
|
Vilariño N, Ares IR, Cagide E, Louzao MC, Vieytes MR, Yasumoto T, Botana LM. Induction of actin cytoskeleton rearrangement by methyl okadaate - comparison with okadaic acid. FEBS J 2008; 275:926-34. [DOI: 10.1111/j.1742-4658.2008.06256.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Zhang X, Wu J, Fang L, Willis WD. The effects of protein phosphatase inhibitors on the duration of central sensitization of rat dorsal horn neurons following injection of capsaicin. Mol Pain 2006; 2:23. [PMID: 16846502 PMCID: PMC1559591 DOI: 10.1186/1744-8069-2-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 07/17/2006] [Indexed: 11/10/2022] Open
Abstract
Protein kinases and phosphatases catalyze opposing reactions of phosphorylation and dephosphorylation, which may modulate the function of crucial signaling proteins in central nervous system. This is an important mechanism in the regulation of intracellular signal transduction pathways in nociceptive neurons. To explore the role of protein phosphatase in central sensitization of spinal nociceptive neurons following peripheral noxious stimulation, using electrophysiological recording techniques, we investigated the role of two inhibitors of protein phosphatase type 2A (PP2A), fostriecin and okadaic acid (OA), on the responses of dorsal horn neurons to mechanical stimuli in anesthetized rats following intradermal injection of capsaicin. Central sensitization was initiated by injection of capsaicin into the plantar surface of the left paw. A microdialysis fiber was implanted in the spinal cord dorsal horn for perfusion of ACSF and inhibitors of PP2A, fostriecin and okadaic acid. We found that in ACSF pretreated animals, the responses to innocuous and noxious stimuli following capsaicin injection increased over a period of 15 min after injection and had mostly recovered by 60 min later. However, pre- or post-treatment with the phosphatase inhibitors, fostriecin or OA, significantly enhanced the effects of capsaicin injection by prolonging the responses to more than 3 hours. These results confirm that blockade of protein phosphatase activity may potentiate central sensitization of nociceptive transmission in the spinal cord following capsaicin injection and indicate that protein phosphatase type 2A may be involved in determining the duration of capsaicin-induced central sensitization.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | - Jing Wu
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | - Li Fang
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX 77555-1069, USA
- Division of Neurosurgery, Department of Surgery, The University of Texas Medical Branch, Galveston, TX 77555-0517, USA
| | - William D Willis
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| |
Collapse
|
5
|
Svensson S, Särngren A, Förlin L. Mussel blood cells, resistant to the cytotoxic effects of okadaic acid, do not express cell membrane p-glycoprotein activity (multixenobiotic resistance). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2003; 65:27-37. [PMID: 12932699 DOI: 10.1016/s0166-445x(03)00097-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Okadaic acid (OA) is a dinoflagellate toxin, accumulating in shellfish and causing diarrhetic shellfish poisoning (DSP) in humans. OA is a highly cytotoxic agent in most cell lines because of its inhibiting properties of protein phosphatases. So far, the cytotoxicity of OA in mussels, the main vectors of DSP, has not been investigated. In this paper, the viability of mussel (Mytilus edulis) blood cells incubated in 10 nM-1 microM OA was studied. After 72 h of exposure, viability was reduced to 54% in 1 microM OA compared with 88% in control cells. This yielded a LC50 of >1 microM for OA, which is 30-1000-times higher compared with other cell types. It was hypothesised that P-glycoprotein (p-gp) activity (multixenobiotic resistance, MXR) contributed to the resistance to OA. Vincristine and rhodamine B was used as p-gp substrates and verapamil or staurosporine (ST) as inhibitors of p-gp transport. However, no indications of cell membrane p-gp activity were detected. Instead, experimental observations led to the conclusion that a MXR transport system was present within lysosomal membranes. Various concentrations of OA did not affect the dynamics of vincristine in blood cells. As a positive control for the assay, p-gp activity was measured in mussel gill tissue. The efflux of rhodamine B was reduced by verapamil, which is, considered evidence for cell membrane p-gp activity, thus the accuracy of the method was confirmed. Rhodamine B efflux was also reduced by OA in gill tissue, which suggested that OA is either a competitive substrate or inhibitor of p-gp activity. When the volume of the lysosomal compartment was measured in blood cells pre-exposed to OA, a significant increase was detected compared with control cells. It was proposed that uptake and storage of OA within the lysosomal system might protect mussel blood cells from the cytotoxic effects of this compound.
Collapse
Affiliation(s)
- Susanne Svensson
- Department of Zoology/Zoophysiology, Göteborg University, Box 463, SE-405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
6
|
Mareková M, Cáp J, Vokurková D, Vávrová J, Cerman J. Effect of therapeutic doses of ionising radiation on the somatomammotroph pituitary cell line, GH3. Endocr J 2003; 50:621-8. [PMID: 14614219 DOI: 10.1507/endocrj.50.621] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ionising radiation is used for the treatment of pituitary tumours as fractionated radiotherapy, where the total dose reaching the tumour area is in the range of 40-50 Gy, or during stereotactic radiosurgery, where the total dose reaching the tumour area during one session is in the range of 20-90 Gy. In this study, we investigated the effect of ionising radiation of (60)Co (dose rate of 3 Gy/min, similar to that used during gamma knife procedure) on the mode of cell death of the somatomammotroph pituitary cell line, GH3, an immortalized cell line derived from a rat pituitary adenoma. We found that the basic mechanism of cell death induced by irradiation of this GH3 cell line by gamma-rays was programmed cell death-apoptosis. Doses of 20-50 Gy were shown to inhibit proliferation in these cells. 24 hours after irradiation with a dose of 20 and 50 Gy, cells were shown to accumulate in the G(2)/M phase of cell cycle. This cell cycle arrest lasted for at least ten days. Apoptosis was detected 72 hours towards until the end of the study (10 days). However, a significant number of cells were still alive ten days following irradiation. We conclude that ionising radiation doses of 20 and 50 Gy induce pituitary GH3 cell apoptosis following cell cycle arrest in the G(2)/M phase.
Collapse
Affiliation(s)
- Martina Mareková
- Department of Medical Biochemistry, Faculty of Medicine Hradec Králové, Charles University, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
7
|
Ritz V, Steinfelder HJ. Spin column assay to study apoptotic DNA fragmentation in 10(5)-10(6) adherently growing cells. Anal Biochem 2000; 287:183-5. [PMID: 11078599 DOI: 10.1006/abio.2000.4803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- V Ritz
- Institute of Pharmacology, University of Göttingen, Robert-Koch-Str. 40, Göttingen, D-37075, Germany
| | | |
Collapse
|
8
|
Yoshinaga N, Murayama T, Nomura Y. Apoptosis induction by a dopaminergic neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP(+)), and inhibition by epidermal growth factor in GH3 cells. Biochem Pharmacol 2000; 60:111-20. [PMID: 10807952 DOI: 10.1016/s0006-2952(00)00304-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A dopaminergic neurotoxin, 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP), can induce dopaminergic denervation and Parkinsonism in humans. The active metabolite of MPTP is the 1-methyl-4-phenylpyridinium ion (MPP(+)). Previously we reported that MPP(+) is incorporated via the dopamine transport system and causes delayed cell death in GH3 cells, a clonal strain from the rat anterior pituitary. In this study, we investigated whether MPP(+) induces apoptosis. GH3 cells cultured with MPP(+) exhibited DNA laddering and fragmentation in a time- and concentration-dependent manner. The effect of MPP(+) was inhibited in GH3 cells treated with a pan-caspase inhibitor (100 microM ZVAD-fmk), an antioxidant (25 mM N-acetyl-l-cysteine), or epidermal growth factor (EGF; 50 ng/mL). Because EGF stimulated tyrosine phosphorylation of the EGF receptor and tyrphostin AG1478 [4-(3-chloroanilino)-6,7-dimethoxyquinazoline; 5 microM, a specific inhibitor of EGF receptor kinase] abolished EGF inhibition, involvement of EGF receptor kinase is assumed. Protein kinase C-dependent processes and Bcl-2 protein expression were shown not to be involved in EGF inhibition. MPP(+) increased cytochrome c immunoreactivity in cytosolic fractions in GH3 cells. The addition of 200 microM MPP(+) to isolated mitochondrial fractions from GH3 cells stimulated the release of a 13-kDa protein that cross-reacted with anti-cytochrome c antibody. The release was inhibited in EGF-treated GH3 cells. Our findings demonstrated that (i) MPP(+) induces apoptosis of GH3 cells via cytochrome c release and caspase activation, and (ii) apoptosis by MPP(+) can be blocked by N-acetyl-l-cysteine or EGF treatment.
Collapse
Affiliation(s)
- N Yoshinaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
9
|
Taylor BK, Stoops TD, Everett AD. Protein phosphatase inhibitors arrest cell cycle and reduce branching morphogenesis in fetal rat lung cultures. Am J Physiol Lung Cell Mol Physiol 2000; 278:L1062-70. [PMID: 10781439 DOI: 10.1152/ajplung.2000.278.5.l1062] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a key signal transduction intermediate in the regulation of cellular proliferation and differentiation in vitro. However, the role of PP2A in the context of a developing organ is unknown. To explore the role of PP2A in the regulation of lung development, we studied the effect of PP2A inhibition on new airway branching, induction of apoptosis, DNA synthesis, and expression of epithelial marker genes in whole organ explant cultures of embryonic (E14) rat lung. Microdissected lung primordia were cultured in medium containing one of either two PP2A inhibitors, okadaic acid (OA, 0-9 nM) or cantharidin (Can, 0-3,600 nM), or with the PP2B inhibitor deltamethrin (Del, 0-10 microM) as a control for a PP2A-specific effect for 48 h. PP2A inhibition with OA and Can significantly inhibited airway branching and overall lung growth. PP2B inhibition with Del did not affect lung growth or new airway development. Histologically, both PP2A- and PP2B-inhibited explants were similar to controls. Increased apoptosis was not the mechanism of decreased lung growth and new airway branching inasmuch as OA-treated explant sections subjected to the terminal deoxynucleotidyltransferase dUTP nick end labeling reaction demonstrated a decrease in apoptosis. However, PP2A inhibition with OA increased DNA content and 5-bromo-2'-deoxyuridine uptake that correlated with a G(2)/M cell cycle arrest. PP2A inhibition also resulted in altered differentiation of the respiratory epithelium as evidenced by decreased mRNA levels of the early epithelial marker surfactant protein C. These findings suggest that inhibition of protein phosphatases with OA and Can halted mesenchymal cell cycle progression and reduced branching morphogenesis in fetal rat lung explant culture.
Collapse
Affiliation(s)
- B K Taylor
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia 22908-1356, USA
| | | | | |
Collapse
|
10
|
Krautheim A, Brechlin P, Becker K, Winkler M, Steinfelder HJ. Hamster pancreatic beta cell lines with altered sensitivity towards apoptotic signalling by phosphatase inhibitors. Br J Pharmacol 2000; 129:687-94. [PMID: 10683193 PMCID: PMC1571898 DOI: 10.1038/sj.bjp.0703113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Specific inhibitors of serine/threonine phosphatases like okadaic acid can induce apoptotic cell death in the pancreatic beta cell line HIT. Cultivation in stepwise increased concentrations of okadaic acid enabled the isolation of HIT100R cells which proliferate at 100 nM okadaic acid (8 - 10 times the initially lethal concentration). These two cell lines were used to characterize the events triggered by okadaic acid that led to apoptosis. Biochemical markers, e.g. cytochrome c release from mitochondria and increase of caspase-3-like activity, revealed that induction of apoptosis by 100 nM okadaic acid in parental HIT cells started with the release of cytochrome c. In HIT100R cells 500 nM okadaic acid were necessary to induce alterations comparable to those observed with 100 nM okadaic acid in non-resistant HIT cells. In contrast to okadaic acid, the potency of the structurally different phosphatase inhibitor cantharidic acid to induce cytochrome c release, increase of caspase-3-like activity and DNA fragmentation was comparable in HIT and HIT100R cells. Thus, no cross-resistance between these phosphatase inhibitors seemed to exist. Phosphatase activity in extracts from HIT and HIT100R cells did not differ in its total amount or in its sensitivity for okadaic acid. Since higher concentrations of okadaic acid were needed to induce apoptosis in HIT100R cells, a compromised intracellular accumulation of the toxin appeared likely. Functional and structural analysis revealed that this was achieved by the development of the multidrug resistance phenotype in HIT100R cells. The underlying mechanism appeared to be the enhanced expression of the pgp1 but not the pgp2 gene.
Collapse
Affiliation(s)
- Andrea Krautheim
- Institute of Pharmacology and Toxicology, University of Göttingen, D-37075 Göttingen, Germany
| | - Peter Brechlin
- Institute of Pharmacology and Toxicology, University of Göttingen, D-37075 Göttingen, Germany
| | - Klaus Becker
- Institute of Pharmacology and Toxicology, University of Göttingen, D-37075 Göttingen, Germany
| | - Monika Winkler
- Institute of Pharmacology and Toxicology, University of Göttingen, D-37075 Göttingen, Germany
| | - Hans Jürgen Steinfelder
- Institute of Pharmacology and Toxicology, University of Göttingen, D-37075 Göttingen, Germany
- Author for correspondence:
| |
Collapse
|
11
|
Steinfelder HJ, Quentin I, Ritz V. A fast and sensitive technique to study the kinetics and the concentration dependencies of DNA fragmentation during drug-induced apoptosis. J Pharmacol Toxicol Methods 2000; 43:79-84. [PMID: 11091133 DOI: 10.1016/s1056-8719(00)00088-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Apoptotic cell death with its characteristic coordinated cellular breakdown can be triggered by cytotoxic drugs. One prominent feature that differentiates apoptotic from necrotic cell death is the caspase-mediated activation of an endonuclease that internucleosomally cleaves DNA resulting in the so-called apoptotic DNA ladder. Here we report a new rapid, sensitive and inexpensive column separation technique to study drug-induced DNA fragmentation from 10(6) or less cells. This technique, which is based on a modified plasmid spin column kit, avoids the use of hazardous chemicals. With this procedure and subsequent densitometric analysis it was possible to study the concentration dependencies and the kinetics of drug-induced DNA fragmentation. The applicability of this technique is shown for okadaic acid- and cantharidic-acid-treated pituitary GH(3) cells as well as highly okadaic-acid-resistant sublines. These studies allowed us to compare as well as to differentiate the effects and potencies of these structurally different but functionally quite similar inhibitors of ser/thr phosphatases 1 and 2A.
Collapse
Affiliation(s)
- H J Steinfelder
- Institute of Pharmacology, University of Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.
| | | | | |
Collapse
|
12
|
Yasuda Y, Yoshinaga N, Murayama T, Nomura Y. Inhibition of hydrogen peroxide-induced apoptosis but not arachidonic acid release in GH3 cell by EGF. Brain Res 1999; 850:197-206. [PMID: 10629765 DOI: 10.1016/s0006-8993(99)02143-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) and arachidonic acid (AA) can both function as extra- and intra-cellular messengers to regulate various cell functions including cell death. The effect of ROS on phospholipase A2 (PLA2) activity and/or AA release has not been extensively studied in neuronal cells. In this study, we investigated the effects of H2O2 on AA release and apoptosis in GH3 cells, a clonal strain from rat anterior pituitary. Incubation with H2O2 for 1 h stimulated [3H]AA release in a concentration-dependent manner from prelabeled GH3 cells. [3H]AA release was inhibited by arachidonyl trifluoromethyl ketone, a specific inhibitor of cytosolic PLA2, and cytosolic PLA2 protein with a molecular mass of 100 kDa was detected by immunoblotting. Culture with 0.2 mM H2O2 and 30 microM AA for 24 h induced lactate dehydrogenase (LDH) leakage, DNA laddering and DNA fragmentation in GH3 cells. In GH3 cells pretreated with EGF (50 ng/ml) for 24 h, LDH leakage and DNA fragmentation by H2O2 and AA were inhibited, although H2O2-induced [3H]AA release was not modified. Mastoparan, a wasp venom peptide, induced [3H]AA release and cell death in GH3 cells. Neither effect of mastoparan was inhibited by EGF treatment. These findings suggest that (1) H2O2 stimulates AA release via activation of cytosolic PLA2, (2) H2O2 and AA induce apoptotic death of GH3 cells and (3) treatment with EGF protects H2O2- and AA-, but not mastoparan-, induced GH3 cell death.
Collapse
Affiliation(s)
- Y Yasuda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
13
|
Sieder S, Richter E, Becker K, Heins R, Steinfelder HJ. Doxorubicin-resistant LoVo adenocarcinoma cells display resistance to apoptosis induction by some but not all inhibitors of ser/thr phosphatases 1 and 2A. Toxicology 1999; 134:109-15. [PMID: 10403630 DOI: 10.1016/s0300-483x(99)00017-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LoVo adenocarcinoma cells are fairly sensitive to cytostatic drugs, e.g. doxorubicin, but can develop drug resistance by expression of a P-glycoprotein-mediated MDR1 phenotype. LoVo cells respond with apoptosis to nanomolar concentrations of okadaic acid and micromolar concentrations of cantharidic acid. Interestingly, LoVoDx cells which had become about 10-fold less sensitive to doxorubicin by incubation in increasing concentrations of this cytostatic drug were also less sensitive to the toxicity of okadaic acid. Resistance to both agents was lost or significantly reduced by incubation in drug-free medium for about 4 months. On the other hand, LoVoDx cells did not lose responsiveness to the structurally different phosphatase inhibitor cantharidic acid but were about twofold more sensitive to the cytotoxic effect of this agent. Thus, MDR expression protects LoVo cells from the toxicity of phosphatase inhibitors that presumably are substrates of the P-glycoprotein, e.g. okadaic acid and its derivatives but not cantharidic acid, despite the fact that both agents are potent inducers of apoptotic cell death via ser/thr phosphatase inhibition.
Collapse
Affiliation(s)
- S Sieder
- Institute of Pharmacology and Toxicology, University of Göttingen, Germany
| | | | | | | | | |
Collapse
|