1
|
Gooding JR, Jensen MV, Dai X, Wenner BR, Lu D, Arumugam R, Ferdaoussi M, MacDonald PE, Newgard CB. Adenylosuccinate Is an Insulin Secretagogue Derived from Glucose-Induced Purine Metabolism. Cell Rep 2015; 13:157-167. [PMID: 26411681 DOI: 10.1016/j.celrep.2015.08.072] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/04/2015] [Accepted: 08/26/2015] [Indexed: 02/05/2023] Open
Abstract
Pancreatic islet failure, involving loss of glucose-stimulated insulin secretion (GSIS) from islet β cells, heralds the onset of type 2 diabetes (T2D). To search for mediators of GSIS, we performed metabolomics profiling of the insulinoma cell line 832/13 and uncovered significant glucose-induced changes in purine pathway intermediates, including a decrease in inosine monophosphate (IMP) and an increase in adenylosuccinate (S-AMP), suggesting a regulatory role for the enzyme that links the two metabolites, adenylosuccinate synthase (ADSS). Inhibition of ADSS or a more proximal enzyme in the S-AMP biosynthesis pathway, adenylosuccinate lyase, lowers S-AMP levels and impairs GSIS. Addition of S-AMP to the interior of patch-clamped human β cells amplifies exocytosis, an effect dependent upon expression of sentrin/SUMO-specific protease 1 (SENP1). S-AMP also overcomes the defect in glucose-induced exocytosis in β cells from a human donor with T2D. S-AMP is, thus, an insulin secretagogue capable of reversing β cell dysfunction in T2D.
Collapse
Affiliation(s)
- Jessica R Gooding
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27701, USA
| | - Mette V Jensen
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27701, USA
| | - Xiaoqing Dai
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Brett R Wenner
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27701, USA
| | - Danhong Lu
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27701, USA
| | - Ramamani Arumugam
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27701, USA
| | - Mourad Ferdaoussi
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Patrick E MacDonald
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27701, USA.
| |
Collapse
|
2
|
Lv Q, Xue Y, Li G, Zou L, Zhang X, Ying M, Wang S, Guo L, Gao Y, Li G, Xu H, Liu S, Xie J, Liang S. Beneficial effects of evodiamine on P2X(4)-mediated inflammatory injury of human umbilical vein endothelial cells due to high glucose. Int Immunopharmacol 2015; 28:1044-9. [PMID: 26344431 DOI: 10.1016/j.intimp.2015.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 12/23/2022]
Abstract
Evodiamine has been reported to exhibit anti-inflammatory and anti-nociceptive effects, but the underlying mechanisms remain to be defined. P2X4 receptor (P2X4R) is a subtype of ATP receptors and plays important roles in pain, inflammatory and immune responses. We aimed to investigate whether evodiamine has beneficial effects on endothelial inflammatory injury mediated by chronic high glucose condition. We found that culturing human umbilical vein endothelial cells (HUVECs) with high glucose significantly increased the expression of P2X4 receptor in HUVECs, cytosolic Ca(2+) concentrations and intracellular reactive oxygen species (ROS) while decreasing nitric oxide (NO); these effects could be reversed by evodiamine. High glucose also significantly increased the expression of the pro-inflammatory activators (NF-κB) and TNFR-ɑ, which was accompanied by the elevation of P2X4R levels. Evodiamine was able to down-regulate the elevated NF-κB, TNFR-ɑ, P2X4R and ROS, and up-regulate the decreased NO. Thus the evodiamine may exert the anti-inflammation activity on high-glucose challenge HUVEC via suppressing the P2X4R signaling pathway, exhibiting beneficial ability to protect HUVECs from glucotoxicity.
Collapse
Affiliation(s)
- Qiulan Lv
- Department of Physiology, Medical School of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Yun Xue
- Department of Physiology, Medical School of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Guodong Li
- Department of Physiology, Medical School of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China; Department of Clinical Research, Singapore General Hospital, Singapore
| | - Lifang Zou
- Department of Physiology, Medical School of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Xi Zhang
- Department of Physiology, Medical School of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Mofeng Ying
- Department of Physiology, Medical School of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Shouyu Wang
- Department of Physiology, Medical School of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Lili Guo
- Department of Physiology, Medical School of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Yun Gao
- Department of Physiology, Medical School of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Hong Xu
- Department of Physiology, Medical School of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Jinyan Xie
- Department of Physiology, Medical School of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China; Key Laboratory of Molecular Medicine of JiangXi, The Second Affiliated Hospital of Nanchang University, People's Republic of China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China; Institute of Life Science of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China.
| |
Collapse
|
3
|
Gao Y, Zhang J, Li G, Xu H, Yi Y, Wu Q, Song M, Bee YM, Huang L, Tan M, Liang S, Li G. Protection of vascular endothelial cells from high glucose-induced cytotoxicity by emodin. Biochem Pharmacol 2015; 94:39-45. [PMID: 25619422 DOI: 10.1016/j.bcp.2015.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/19/2022]
Abstract
Induction of endothelial cytotoxicity by hyperglycemia in diabetes has been widely accepted. Emodin is a natural anthraquinone in rhubarb used for treatment of diabetes, but its mechanism of action is not fully understood. This study aimed to examine the potential beneficial effects of emodin on endothelial cytotoxicity caused by high glucose milieu. Culture of human umbilical vein endothelial cells (HUVECs) with high concentrations of glucose resulted in damage to the cells, leading to decreased formazan products by 14-27%, reduced DNA contents by 12-19%, and increased hypodiploid apoptosis by 40-109%. These adverse effects of high glucose could be prevented to a large extent by co-culture with 3 μM of emodin which per se did not affect HUVECs viability. In addition, CCL5 expression of HUVECs cultured in high glucose medium was significantly elevated at both mRNA and protein levels, an effect abolished after treatment with emodin. Moreover, the enhanced adhesion of monocytes to HUVECs (2.1-2.2 fold over control) and elevated chemotaxis activities (2.3-2.4 fold over control) in HUVECs cultured in high glucose medium were completely reversed by emodin. Emodin also suppressed activation of p38 MAPK and ERK1/2 due to high glucose. Our data demonstrated that endothelial cytotoxicity occurred clearly when HUVECs were exposed to high glucose milieu and emodin was able to alleviate the impairments. The protective effects of emodin might be related to the inhibition of CCL5 expression and subsequent cell stress/inflammatory events possibly mediated by activation of MAPK signaling pathways.
Collapse
Affiliation(s)
- Yun Gao
- Department of Physiology, Nanchang University Medical College, Jiangxi Province, China
| | - Jun Zhang
- Department of Clinical Research, Singapore General Hospital, Singapore
| | - Guilin Li
- Department of Physiology, Nanchang University Medical College, Jiangxi Province, China
| | - Hong Xu
- Department of Clinical Research, Singapore General Hospital, Singapore
| | - Yun Yi
- Department of Physiology, Nanchang University Medical College, Jiangxi Province, China
| | - Qin Wu
- Department of Physiology, Nanchang University Medical College, Jiangxi Province, China
| | - Miaomiao Song
- Department of Physiology, Nanchang University Medical College, Jiangxi Province, China
| | - Yong Mong Bee
- Department of Endocrinology, Singapore General Hospital, Singapore
| | - Liping Huang
- Department of Physiology, Nanchang University Medical College, Jiangxi Province, China
| | - Mengxia Tan
- Department of Physiology, Nanchang University Medical College, Jiangxi Province, China
| | - Shangdong Liang
- Department of Physiology, Nanchang University Medical College, Jiangxi Province, China
| | - GuoDong Li
- Department of Clinical Research, Singapore General Hospital, Singapore.
| |
Collapse
|
4
|
Zhang J, Luo R, Wu H, Wei S, Han W, Li G. Role of type Ialpha phosphatidylinositol-4-phosphate 5-kinase in insulin secretion, glucose metabolism, and membrane potential in INS-1 beta-cells. Endocrinology 2009; 150:2127-35. [PMID: 19116346 DOI: 10.1210/en.2008-0516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Insulin secretion from beta-cells is regulated by a complex signaling network. Our earlier study has reported that Rac1 participates in glucose- and cAMP-induced insulin secretion probably via maintaining a functional actin structure for recruitment of insulin granules. Type Ialpha phosphatidylinositol-4-phosphate 5-kinase (PIP5K-Ialpha) is a downstream effector of Rac1 and a critical enzyme for synthesis of phosphatidylinositol-4,5-bisphosphate (PIP(2)). By using an RNA interference technique, PIP5K-Ialpha in INS-1 beta-cells could be specifically knocked down by 70-75%. PIP5K-Ialpha knockdown disrupted filamentous actin structure and caused changes in cell morphology. In addition, PIP(2) content in the plasma membrane was reduced and the glucose effect on PIP(2) was abolished but without affecting glucose-induced formation of inositol 1,4,5-trisphosphate. At basal conditions (2.8 mM glucose), PIP5K-Ialpha knockdown doubled insulin secretion, elevated glucose metabolic rate, depolarized resting membrane potential, and raised cytoplasmic free Ca(2+) levels ([Ca(2+)](i)). The total insulin release at high glucose was increased upon PIP5K-Ialpha knockdown. However, the percent increment of insulin secretion by high glucose and forskolin over the basal release was significantly reduced, an effect more apparent on the late phase of insulin secretion. Metabolism and [Ca(2+)](i) rises at high glucose were also attenuated in cells after PIP5K-Ialpha knockdown. In contrast, PIP5K-Ialpha knockdown had no effect on cell growth and viability. Taken together, our data suggest that PIP5K-Ialpha may play an important role in both the proximal and distal steps of signaling cascade for insulin secretion in beta-cells.
Collapse
Affiliation(s)
- Jiping Zhang
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | | | | | | | | | | |
Collapse
|
5
|
Li G, Luo R, Zhang J, Yeo KS, Lian Q, Xie F, Tan EKW, Caille D, Kon OL, Salto-Tellez M, Meda P, Lim SK. Generating mESC-derived insulin-producing cell lines through an intermediate lineage-restricted progenitor line. Stem Cell Res 2009; 2:41-55. [DOI: 10.1016/j.scr.2008.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 07/25/2008] [Accepted: 07/26/2008] [Indexed: 10/21/2022] Open
|
6
|
Li GD, Luo R, Zhang J, Yeo KS, Xie F, Way Tan EK, Caille D, Que J, Kon OL, Salto-Tellez M, Meda P, Lim SK. Derivation of functional insulin-producing cell lines from primary mouse embryo culture. Stem Cell Res 2009; 2:29-40. [DOI: 10.1016/j.scr.2008.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 07/04/2008] [Accepted: 07/23/2008] [Indexed: 11/30/2022] Open
|
7
|
Gao R, Ustinov J, Korsgren O, Otonkoski T. Effects of immunosuppressive drugs on in vitro neogenesis of human islets: mycophenolate mofetil inhibits the proliferation of ductal cells. Am J Transplant 2007; 7:1021-6. [PMID: 17391142 DOI: 10.1111/j.1600-6143.2006.01728.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Assuming that neogenesis contributes to long-term function of islet grafts, it is important to study the effects of immunosuppressive drugs on precursor cell proliferation and differentiation. We examined the effects of low-dose immunosuppressive drugs on these processes in vitro. Immunosuppressive drugs, including sirolimus, tacrolimus, mycophenolate mofetil (MMF), daclizumab and their combinations were tested in parallel culture wells through either the expansion phase (5-7 days) or the entire culture period (4-5 weeks). MMF, alone or in combination with sirolimus or tacrolimus, severely hampered duct-cell proliferation by 8-fold during the expansion period, and significantly reduced the total DNA content by about 40% after 5-week culture. After 4-5 week exposure to different drugs, only sirolimus and daclizumab showed no adverse effects on insulin content, whereas significant reductions of 30-60% in insulin content were seen in all other experimental groups. Only tacrolimus decreased the insulin content per DNA, as well as the proportion of insulin-positive cells. In conclusion, MMF has a potent inhibitory effect on neogenesis primarily through an antiproliferative effect on the precursors, whereas tacrolimus mainly affects beta-cell differentiation. Sirolimus and daclizumab have no adverse effects on these parameters. The immunosuppressive protocol may be an important determinant of long-term clinical islet graft function.
Collapse
Affiliation(s)
- R Gao
- Program of Developmental and Reproductive Biology, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | | | |
Collapse
|
8
|
Li J, Luo R, Kowluru A, Li G. Novel regulation by Rac1 of glucose- and forskolin-induced insulin secretion in INS-1 beta-cells. Am J Physiol Endocrinol Metab 2004; 286:E818-27. [PMID: 14736704 DOI: 10.1152/ajpendo.00307.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Stimulation of insulin secretion by glucose and other secretagogues from pancreatic islet beta-cells is mediated by multiple signaling pathways. Rac1 is a member of Rho family GTPases regulating cytoskeletal organization, and recent evidence also implicates Rac1 in exocytotic processes. Herein, we report that exposure of insulin-secreting (INS) cells to stimulatory glucose concentrations caused translocation of Rac1 from cytosol to the membrane fraction (including the plasmalemma), an indication of Rac1 activation. Furthermore, glucose stimulation increased Rac1 GTPase activity. Time course study indicates that such an effect is demonstrable only after 15 min stimulation with glucose. Expression of a dominant-negative Rac1 mutant (N17Rac1) abolished glucose-induced translocation of Rac1 and significantly inhibited insulin secretion stimulated by glucose and forskolin. This inhibitory effect on glucose-stimulated insulin secretion was more apparent in the late phase of secretion. However, N17Rac1 expression did not significantly affect insulin secretion induced by high K+. INS-1 cells expressing N17Rac1 also displayed significant morphological changes and disappearance of F-actin structures. Expression of wild-type Rac1 or a constitutively active Rac1 mutant (V12Rac1) did not significantly affect either the stimulated insulin secretion or basal release, suggesting that Rac1 activation is essential, but not sufficient, for evoking secretory process. These data suggest, for the first time, that Rac1 may be involved in glucose- and forskolin-stimulated insulin secretion, possibly at the level of recruitment of secretory granules through actin cytoskeletal network reorganization.
Collapse
Affiliation(s)
- Jingsong Li
- Cardiovascular Research Institute, National Univ. Medical Institutes, National Institutes of Singapore, Singapore 117597, Singapore
| | | | | | | |
Collapse
|
9
|
Amin RH, Chen HQ, Veluthakal R, Silver RB, Li J, Li G, Kowluru A. Mastoparan-induced insulin secretion from insulin-secreting betaTC3 and INS-1 cells: evidence for its regulation by Rho subfamily of G proteins. Endocrinology 2003; 144:4508-18. [PMID: 12960065 DOI: 10.1210/en.2003-0106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mastoparan, a tetradecapeptide from wasp venom, stimulates insulin secretion from the islet beta-cells, presumably via activation of trimeric G proteins. Herein, we used Clostridial toxins, which selectively modify and inactivate the Rho subfamily of G proteins, to examine whether mastoparan-induced insulin secretion also involves activation of these signaling proteins. Mastoparan, but not mastoparan 17 (an inactive analog of mastoparan), significantly stimulated insulin secretion from betaTC3 and INS-1 cells. Preincubation of betaTC3 cells with either Clostridium difficille toxin B, which inactivates Rho, Cdc42, and Rac, or Clostridium sordellii toxin, which inactivates Ras, Rap, and Rac, markedly attenuated the mastoparan-induced insulin secretion, implicating Rac in this phenomenon. Mastoparan-stimulated insulin secretion was resistant to GGTI-2147, a specific inhibitor of geranylgeranylation of Rho G proteins (e.g. Rac), suggesting that mastoparan induces direct activation of Rac via GTP/GDP exchange. This was confirmed by a pull-down assay that quantifies the binding of activated (i.e. GTP-bound) Rac to p21-activated kinase. However, glucose-induced insulin secretion from these cells was abolished by toxin B or GGTI-2147, suggesting that the geranylgeranylation step is critical for glucose-stimulated secretion. Mastoparan significantly increased the translocation of cytosolic Rac and Cdc42 to the membrane fraction. Confocal light microscopy revealed a substantial degree of colocalization of Rac (and, to a lesser degree, Cdc42) with insulin in beta-cells exposed to mastoparan. Further, stable expression of a dominant negative (N17Rac) form of Rac into INS-1 cells resulted in a significant reduction in mastoparan-stimulated insulin secretion from these cells. Taken together, our findings implicate Rho G proteins, specifically Rac, in mastoparan-induced insulin release.
Collapse
Affiliation(s)
- Rajesh H Amin
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Huo J, Metz SA, Li G. Role of tissue transglutaminase in GTP depletion-induced apoptosis of insulin-secreting (HIT-T15) cells. Biochem Pharmacol 2003; 66:213-23. [PMID: 12826264 DOI: 10.1016/s0006-2952(03)00262-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The role of tissue transglutaminase (tTG), a calcium-dependent and GTP-modulated enzyme, in apoptotic death induced by GTP depletion in islet beta-cells was investigated. GTP depletion and apoptosis were induced by mycophenolic acid (MPA) in insulin-secreting HIT-T15 cells. MPA treatment increased in situ tTG activity (but not protein levels) in a dose- and time-dependent manner in parallel with the induction of apoptosis. MPA-induced increases of both tTG activity and apoptosis were entirely blocked by co-provision of guanosine but not adenosine. MPA-enhanced tTG activity could be substantially reduced by co-exposure to monodansylcadaverine or putrescine (tTG inhibitors), and largely blocked by lowering free Ca(2+) concentrations in the culture medium. However, MPA-induced cell death was either not changed or was only slightly reduced under these conditions. By contrast, a pan-caspase inhibitor (Z-VAD-FMK) entirely prevented apoptosis induced by MPA, but did not block the enhanced tTG activity, indicating that GTP depletion can induce apoptosis and activate tTG either independently or as part of a cascade of events involving caspases. Importantly, the morphological changes accompanying apoptosis could be markedly prevented by tTG inhibitors. These findings suggest that the effect of the marked increase in tTG activity in GTP depletion-induced apoptosis of insulin-secreting cells may be restricted to some terminal morphological changes.
Collapse
Affiliation(s)
- JianXin Huo
- Cardiovascular Research Institute, National University Medical Institutes, National University of Singapore, Blk MD11 #02-01, 10 Medical Drive, Singapore 117597, Singapore
| | | | | |
Collapse
|
11
|
Huo J, Luo RH, Metz SA, Li G. Activation of caspase-2 mediates the apoptosis induced by GTP-depletion in insulin-secreting (HIT-T15) cells. Endocrinology 2002; 143:1695-704. [PMID: 11956151 DOI: 10.1210/endo.143.5.8810] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study investigated the possible involvement of a specific caspase(s) (a family of aspartate-specific cysteine proteases) in programmed cell death of islet beta-cells due to sustained GTP depletion. Treatment (up to 48 h) with 3 microg/ml mycophenolic acid (MPA), which specifically depletes intracellular guanine nucleotides, reduced cell-cycle progression from G1 phase into S and G2/M phases (as assessed by flow cytometry) and, subsequently, induced apoptosis of HIT-15 cells (transformed pancreatic beta-cells). The latter was accompanied by a marked increase of caspase-2 activity (+343%) and moderate activation of caspase-9 (+150%) and caspase-3 (+145%). Importantly, only caspase-2 activation preceded induction of apoptosis. There was no change in activity of caspase-1, -4, -5, -6, and -8. Release of the mitochondrial protein cytochrome c into cytosol was also observed at a late stage. Cotreatment of cells with a permeable pan-caspase inhibitor (Z-VAD-FMK) blocked GTP depletion-induced cell death in a dose-dependent manner. A specific caspase-2 inhibitor (Z-VDVAD-FMK), but not a caspase-3 inhibitor (DEVD-CHO), was also capable of restoring cell viability. Interestingly, activation of caspase-2 leads to caspase-3 activation because the caspase-2 inhibitor abrogated caspase-3 activity. Our results indicate that, while activation of multiple caspases are involved in the execution phase of GTP depletion-induced apoptosis, caspase-2 appears to play the major role in the initiation of this program. This study revealed a novel, caspase-2 mediated form of apoptosis that may be consequent to impaired mitogenesis.
Collapse
Affiliation(s)
- Jianxin Huo
- Cardiovascular Research Institute, National University Medical Institutes, National University of Singapore, 10 Medical Drive, Singapore 117597
| | | | | | | |
Collapse
|
12
|
Paty BW, Harmon JS, Marsh CL, Robertson RP. Inhibitory effects of immunosuppressive drugs on insulin secretion from HIT-T15 cells and Wistar rat islets. Transplantation 2002; 73:353-7. [PMID: 11884930 DOI: 10.1097/00007890-200202150-00007] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Until recently, islet allotransplantation for type 1 diabetic patients has been largely unsuccessful. Previous pharmacologic studies of single drugs have suggested that one factor contributing to this poor success is toxicity of immunosuppressive drugs on transplanted islets. However, no comprehensive study of agents currently used for islet transplantation has been previously reported. Consequently, we exposed HIT-T15 cells and Wistar rat islets to various concentrations of five immunosuppressive agents for 48 and 24 hr, respectively, and measured glucose-stimulated insulin secretion during subsequent static incubations. Results are expressed as percent reduction of insulin secretion at the lower and upper limits, respectively, of plasma drug concentrations used in clinical transplantation compared with control (no drug exposure). Insulin secretion from HIT-T15 cells was significantly inhibited by 74% and 90% after exposure to methylprednisolone (P<0.05), 11% and 24% after exposure to cyclosporine (P<0.01), 60% and 83% after exposure to mycophenolate (P<0.05), 56% and 63% after exposure to sirolimus (P<0.001), and 10% and 20% after exposure to tacrolimus (P<0.001). Insulin secretion from Wistar rat islets was reduced by 0% and 48% after exposure to mycophenolate (P<0.001) and 20% and 31% after exposure to tacrolimus (P<0.05). No reduction in insulin secretion was observed from either HIT-T15 cells or rat islets after exposure to daclizumab. The results support the hypothesis that toxicity of certain immunosuppressive drugs on beta-cell function plays a role in the poor success of islet allotransplantation. This is especially true of intrahepatically transplanted islets, which are exposed to higher portal concentrations of immunosuppressive agents. These findings support the use of low-dose immunosuppressive drug protocols in clinical islet transplantation.
Collapse
Affiliation(s)
- B W Paty
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | | | | | | |
Collapse
|