1
|
He J, Huang D, Zhong Q, Zhang J, Lai S, Wang Y, Zhang Y, Chen P, Chen G, Yan S, Lu X, Song X, Zhong S, Jia Y. Altered thyroid function and neurometabolic features provide clues to understand the comorbidity of bipolar II depression and obsessive-compulsive disorder. J Psychiatr Res 2025; 184:279-287. [PMID: 40069993 DOI: 10.1016/j.jpsychires.2025.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025]
Abstract
Bipolar disorder (BD) is highly comorbid with obsessive-compulsive disorder (OCD), leading to poor treatment outcome and prognosis. However, the neurobiological mechanisms underlying BD comorbid with OCD remain poorly understood. To address it, we recruited 69 untreated patients with bipolar II depression, including 35 comorbid with OCD (BD-II-Depression-OCD) and 34 without OCD (BD-II-Depression-nonOCD), and 38 healthy controls (HC). Serum thyroid hormones levels and neurometabolic ratios, including N-acetyl aspartate (NAA), choline-containing compounds (Cho), and creatine (Cr), were detected to explore the neuroendocrine and neurometabolic mechanisms of BD-II-Depression-OCD comorbidity. Multivariate logistic regression and restricted cubic spline analyses were performed to identify influential factors for comorbidity and their nonlinear relationships with symptom severity. Our results revealed that patients with BD-II-Depression-OCD demonstrated reduced thyroid-stimulating hormone (TSH) levels, decreased NAA/Cr in the left prefrontal white matter (PWM), and increased Cho/Cr in the right PWM compared to patients without comorbidity. These parameters demonstrated diagnostic potential for distinguishing BD-II-Depression-OCD comorbidity. Furthermore, nonlinear associations were observed between obsessive-compulsive symptom severity and both serum TSH levels and right PWM Cho/Cr ratios among patients with comorbidity. In conclusion, BD-II-Depression-OCD comorbidity is characterized by distinct thyroid dysfunction and neurometabolic alterations. Disruptions in serum TSH levels and bilateral PWM neurometabolism may represent potential mechanisms underlying BD-II-Depression-OCD comorbidity.
Collapse
Affiliation(s)
- Jiali He
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Department of Psychology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dong Huang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Qilin Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Jianzhao Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Shuya Yan
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Xiaodan Lu
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Xiaodong Song
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Boisvert M, Dugré JR, Potvin S. Altered resting-state amplitudes of low-frequency fluctuations in offspring of parents with a diagnosis of bipolar disorder or major depressive disorder. PLoS One 2025; 20:e0316330. [PMID: 39965009 PMCID: PMC11835319 DOI: 10.1371/journal.pone.0316330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/10/2024] [Indexed: 02/20/2025] Open
Abstract
Offspring of parents with bipolar disorder (BD) or major depressive disorder (MDD) are at high biological risk (HR) of these disorders given their significant heritability. Thus, studying neural correlates in youths at HR-MDD and HR-BD appears essential to understand the development of mood disorders before their onset. Resting-state amplitudes of low-frequency fluctuations (ALFF) and fractioned ALFF (fALFF) shows moderate to high test-retest reliability which makes it a great tool to identify biomarkers. However, this avenue is still largely unexplored. Using the Healthy Brain Network biobank, we identified 150 children and adolescents HR-MDD, 50 HR-BD and 150 not at risk of any psychiatric disorder (i.e., the control group). We then examined differences in relative ALFF/fALFF signals during resting-state. At a corrected threshold, participants HR-MDD displayed lower resting-state ALFF signals in the dorsal caudate nucleus compared to the control group. The HR-BD group showed increased fALFF values in the primary motor cortex compared to the control group. Therefore, robust differences were noted in regions that could be linked to important symptoms of mood disorders, namely psychomotor retardation, and agitation. At an uncorrected threshold, differences were noted in the central opercular cortex and the cerebellar. The database is a community-referred cohort and heterogeneous in terms of children's psychiatric diagnosis and symptomatology, which may have altered the results. ALFF and fALFF results for the comparison between both HR groups and the control group overlapped, suggesting good convergence. More studies measuring ALFF/fALFF in HR are needed to replicate these results.
Collapse
Affiliation(s)
- Mélanie Boisvert
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada
- Faculty of Medicine, Department of Psychiatry and Addictology, University of Montreal; Montreal, Canada
| | - Jules R. Dugré
- Centre for Human Brain Health & School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Stéphane Potvin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada
- Faculty of Medicine, Department of Psychiatry and Addictology, University of Montreal; Montreal, Canada
| |
Collapse
|
3
|
Zhang R, Zhou X, Yuan D, Lu Q, Chen X, Zhang Y. Associations between cerebellum and major psychiatric disorders: a bidirectional Mendelian randomization study. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-025-01971-8. [PMID: 39921725 DOI: 10.1007/s00406-025-01971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
Despite its small size the cerebellum is an anatomically complex and functionally important part of the brain. Previous studies have demonstrated associations between characteristic features/anatomic anomalies of cerebellum and psychiatric disorders. However, the potential causal relationships are unknown. In this study, a bidirectional two-sample Mendelian randomization approach was employed to investigate single nucleotide polymorphism (SNP) heritability and genetic causal associations between 77 imaging derived phenotypes (IDPs) of the cerebellum and major psychiatric disorder, including major depressive disorder (MDD), bipolar disorder (BD), schizophrenia (SCZ) and attention deficit hyperactivity disorder (ADHD). We identified thirty IDPs for which there was evidence of a causal effect on risk of MDD, BD, SCZ and ADHD. For example, 1 s.d. increase in the mean diffusivity (MD) of the left superior cerebellar peduncle was associated with 32% lower odds of BD risk. Reverse MR indicated that psychiatric disorders was associated with fourteen IDPs. For example, MDD were causally associated with three IDPs of gray matter volume (GMV) of right and left X cerebellum, and vermis crus II cerebellum. These results suggested that there were genetic causal associations between psychiatric disorders and certain cerebellum regions, such as the cognitive function of posterior cerebellar lobes and the connection of cerebellar to cerebrum. Further investigations need to enhance prediction and intervention strategies for potential psychiatric disorder risks.
Collapse
Affiliation(s)
- Ruoyi Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, 139 Renmin Rd, Changsha, Hunan, 410011, China
| | - Xiao Zhou
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, 139 Renmin Rd, Changsha, Hunan, 410011, China
| | - Dongling Yuan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, 139 Renmin Rd, Changsha, Hunan, 410011, China
| | - Qing Lu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, 139 Renmin Rd, Changsha, Hunan, 410011, China
| | - Xinyu Chen
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, 139 Renmin Rd, Changsha, Hunan, 410011, China
| | - Yi Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, 139 Renmin Rd, Changsha, Hunan, 410011, China.
- Medical Psychological Institute of Central South University, Central South University, Changsha, China.
- National Clinical Research Center on Mental Disorders (Xiangya) and National Center for Mental Disorder, Changsha, China.
| |
Collapse
|
4
|
Leveille C, Saad M, Brabant D, Birnie D, Fonseca K, Lee EK, Douglass A, Northoff G, Nikolitch K, Carrier J, Fogel S, Higginson C, Kendzerska T, Robillard R. Modulation of cardiac autonomic activity across consciousness states and levels of sleep depth in individuals with sleep complaints and bipolar disorder or unipolar depressive disorders. J Psychosom Res 2025; 189:111996. [PMID: 39644882 DOI: 10.1016/j.jpsychores.2024.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE Autonomic nervous system dysfunction and reduced heart rate variability (HRV) often co-exist with mood disorders, a phenomenon likely influenced by sleep disturbances. This study investigated heart rate (HR) and HRV across wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep in individuals with sleep complaints and bipolar or unipolar depressive disorder. METHODS Polysomnographic data was retrospectively collated for 120 adult patients with sleep complaints and depressive symptoms [60 diagnosed with bipolar disorder, 60 diagnosed with a unipolar depressive disorder], and 60 healthy controls. HR and time-based HRV variables were computed on 30-s segments and averaged across the night for wake, NREM and REM sleep. RESULTS Significant group by consciousness state interactions showed that the unipolar and bipolar groups had lower standard deviation of normal-to-normal intervals root mean square of successive R-R interval differences compared to controls during NREM and REM sleep, but not during wake (SDNN: F(4, 330) = 3.0, p = .021, np2 = 0.035; RMSSD: F(4, 332) = 5.8, p < .001, np2 = 0.065). The magnitude of these group differences did not vary significantly between NREM 1, NREM 2 and NREM 3 sleep. These interactions persisted after excluding individuals taking 3rd generation antipsychotic, lithium, anticonvulsant, and cardiovascular medications. CONCLUSION Although further work is required to account for the impact of psychotropic and cardiac medications, as well as manic and euthymic states, these findings suggest that the sleep-based autonomic signature of depressive states differs across different types of mood disorders and could potentially inform the development of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chloe Leveille
- School of Psychology, University of Ottawa, Canada; Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada
| | - Mysa Saad
- Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada; Faculty of Medicine, Department of Medicine, University of Ottawa, Canada
| | - Daniel Brabant
- Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada
| | | | - Karina Fonseca
- Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada
| | - Elliott Kyung Lee
- Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada; Department of Psychiatry, Faculty of Medicine, University of Ottawa, Canada
| | - Alan Douglass
- Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada; Department of Psychiatry, Faculty of Medicine, University of Ottawa, Canada
| | - Georg Northoff
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Canada
| | - Katerina Nikolitch
- Department of Psychiatry, Faculty of Medicine, University of Ottawa, Canada
| | - Julie Carrier
- Center for advanced research in sleep medicine, Research Center of the CIUSSS du Nord-de-l'Ile-de-, Montréal, Canada
| | - Stuart Fogel
- School of Psychology, University of Ottawa, Canada; Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada
| | - Caitlin Higginson
- Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada
| | - Tetyana Kendzerska
- Faculty of Medicine, Department of Medicine, University of Ottawa, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Rebecca Robillard
- School of Psychology, University of Ottawa, Canada; Sleep Research Unit, The University of Ottawa Institute of Mental Health Research at The Royal, Canada.
| |
Collapse
|
5
|
Wang C, Qu Y, Shen X, Tang X, Tong G, Wati M, Naibi M, Zhang C, Zou S. Exploration of neurometabolic alterations in adolescent patients with bipolar depression and non-suicidal self-injury based on proton magnetic resonance spectroscopy. Front Psychiatry 2025; 15:1474170. [PMID: 39925701 PMCID: PMC11802566 DOI: 10.3389/fpsyt.2024.1474170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/30/2024] [Indexed: 02/11/2025] Open
Abstract
Background Adolescent bipolar depression (ABD) refers to depressive episodes that arise in adolescent patients with bipolar disorder. Its identification and diagnosis are challenging, and it is characterized by a high rate of misdiagnosis and disability. Studies have revealed that patients with ABD are more prone to non-suicidal self-injury (NSSI) compared to those with unipolar depression. However, the neuropathophysiological mechanisms behind NSSI in ABD remain unclear. Therefore, this study employed proton magnetic resonance spectroscopy (1H-MRS) technology to investigate the potential relationship between NSSI and neurometabolism in the ventromedial prefrontal cortex (vmPFC) of patients with ABD. Methods This study compared brain biochemical metabolism between ABD with and without NSSI. Forty ABD were recruited and divided into groups with (n=21) and without NSSI (n=19). Proton magnetic resonance spectroscopy (1H-MRS) was used to detect the ratio of biochemical metabolites in the ventromedial prefrontal cortex (vmPFC) of all patients. Results There was no statistically significant difference (P>0.05) in the age, gender, only child status, residential status, education level, age of onset, disease course, family history, and 24-item Hamilton Depression Scale (HAMD) score between patients in the NSSI group and those without NSSI group. The N-acetylaspartate (NAA)/creatine (Cr) of patients with NSSI was lower than that of patients without NSSI, and the difference was statistically significant (Z=-4.347,P<0.001). There was no statistically significant difference in choline (Cho)/Cr and myo-inositol (mI)/Cr between the group with NSSI and the group without NSSI (P>0.05).There is a positive correlation (r=0.703,P<0.00625) between Cho/Cr and HAMD scores in patients with NSSI, while there is a varying degree of negative correlation (r=-0.605,P=0.006;r=0.624,P=0.004) between mI/Cr and age and onset age in patients without NSSI. There is no correlation (P>0.05) between other indicators. Conclusion Compared with ABD without NSSI, ABD with NSSI have reduced NAA/Cr metabolism in the vmPFC brain area. The level of membrane phospholipid breakdown metabolism in the vmPFC brain area of ABD with NSSI may be related to the severity of depression. The level of phosphoinositol cycle in the vmPFC brain area of ABD without NSSI may be related to age or onset age. Therefore, further validation was required.
Collapse
Affiliation(s)
- Chengji Wang
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yuan Qu
- Department of Radiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiaoqin Shen
- Department of Clinical Psychology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiaoxiao Tang
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Clinical Psychology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Gaiyu Tong
- Department of Clinical Psychology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Meier Wati
- Department of Clinical Psychology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Manzeremu Naibi
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Clinical Psychology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Cheng Zhang
- Department of Clinical Psychology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Shaohong Zou
- Department of Clinical Psychology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| |
Collapse
|
6
|
Russo A, Örzsik B, Yalin N, Simpson I, Nwaubani P, Pinna A, De Marco R, Sharp H, Kartar A, Singh N, Blockley N, Stone AJL, Turkheimer FE, Young AH, Cercignani M, Zelaya F, Asllani I, Colasanti A. Altered oxidative neurometabolic response to methylene blue in bipolar disorder revealed by quantitative neuroimaging. J Affect Disord 2024; 362:790-798. [PMID: 39019231 DOI: 10.1016/j.jad.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Cerebral mitochondrial and hemodynamic abnormalities have been implicated in Bipolar Disorder pathophysiology, likely contributing to neurometabolic vulnerability-leading to worsen clinical outcomes and mood instability. To investigate neurometabolic vulnerability in patients with BD, we combined multi-modal quantitative MRI assessment of cerebral oxygenation with acute administration of Methylene Blue, a neurometabolic/hemodynamic modulator acting on cerebral mitochondria. METHODS Fifteen euthymic patients with chronic BD-type 1, and fifteen age/gender-matched healthy controls underwent two separate MRI sessions in a single-blinded randomized cross-over design, each after intravenous infusion of either MB (0.5 mg/kg) or placebo. MRI-based measures of Cerebral Blood Flow and Oxygen Extraction Fraction were integrated to compute Cerebral Metabolic Rate of Oxygen in Frontal Lobe, Anterior Cingulate, and Hippocampus-implicated in BD neurometabolic pathophysiology. Inter-daily variation in mood rating was used to assess mood instability. RESULTS A decrease in global CBF and CMRO2 was observed after acutely administrating MB to all participants. Greater regional CMRO2 reductions were observed after MB, in patients compared to controls in FL (mean = -14.2 ± 19.5 % versus 2.3 ± 14.8 %), ACC (mean = -14.8 ± 23.7 % versus 2.4 ± 15.7 %). The effects on CMRO2 in those regions were primarily driven by patients with longer disease duration and higher mood instability. LIMITATIONS Sample size; medications potentially impacting on response to MB. CONCLUSIONS An altered neurometabolic response to MB, a mitochondrial/hemodynamic modulator, was observed in patients, supporting the hypothesis of vulnerability to neurometabolic stress in BD. Integrating quantitative imaging of cerebral oxygen metabolism with a mitochondrial-targeting pharmacological challenge could provide a novel biomarker of neurometabolic and cerebrovascular pathophysiology in BD.
Collapse
Affiliation(s)
- Alfonso Russo
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK; Sussex Partnership NHS Foundation Trust, Worthing, UK.
| | - Balázs Örzsik
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK; Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Nefize Yalin
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Ivor Simpson
- School of Engineering and Informatics, University of Sussex, Falmer, Brighton, UK
| | - Prince Nwaubani
- Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Antonello Pinna
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK
| | - Riccardo De Marco
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK
| | - Harriet Sharp
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK
| | - Amy Kartar
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK
| | - Nisha Singh
- Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | | | - Allan H Young
- Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Mara Cercignani
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Fernando Zelaya
- Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Iris Asllani
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK; Biomedical Engineering, Rochester Institute of Technology, Rochester, USA
| | - Alessandro Colasanti
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK; Sussex Partnership NHS Foundation Trust, Worthing, UK
| |
Collapse
|
7
|
Laurent N, Bellamy EL, Hristova D, Houston A. Ketogenic diets in clinical psychology: examining the evidence and implications for practice. Front Psychol 2024; 15:1468894. [PMID: 39391844 PMCID: PMC11464436 DOI: 10.3389/fpsyg.2024.1468894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction The application of ketogenic dietary interventions to mental health treatments is increasingly acknowledged within medical and psychiatric fields, yet its exploration in clinical psychology remains limited. This article discusses the potential implications of ketogenic diets, traditionally utilized for neurological disorders, within broader mental health practices. Methods This article presents a perspective based on existing ketogenic diet research on historical use, biological mechanisms, and therapeutic benefits. It examines the potential application of these diets in mental health treatment and their relevance to clinical psychology research and practice. Results The review informs psychologists of the therapeutic benefits of ketogenic diets and introduces to the psychology literature the underlying biological mechanisms involved, such as modulation of neurotransmitters, reduction of inflammation, and stabilization of brain energy metabolism, demonstrating their potential relevance to biopsychosocial practice in clinical psychology. Conclusion By considering metabolic therapies, clinical psychologists can broaden their scope of biopsychosocial clinical psychology practice. This integration provides a care model that incorporates knowledge of the ketogenic diet as a treatment option in psychiatric care. The article emphasizes the need for further research and training for clinical psychologists to support the effective implementation of this metabolic psychiatry intervention.
Collapse
|
8
|
Truong TTT, Liu ZSJ, Panizzutti B, Dean OM, Berk M, Kim JH, Walder K. Use of gene regulatory network analysis to repurpose drugs to treat bipolar disorder. J Affect Disord 2024; 350:230-239. [PMID: 38190860 DOI: 10.1016/j.jad.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/03/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
BACKGROUND Bipolar disorder (BD) presents significant challenges in drug discovery, necessitating alternative approaches. Drug repurposing, leveraging computational techniques and expanding biomedical data, holds promise for identifying novel treatment strategies. METHODS This study utilized gene regulatory networks (GRNs) to identify significant regulatory changes in BD, using network-based signatures for drug repurposing. Employing the PANDA algorithm, we investigated the variations in transcription factor-GRNs between individuals with BD and unaffected individuals, incorporating binding motifs, protein interactions, and gene co-expression data. The differences in edge weights between BD and controls were then used as differential network signatures to identify drugs potentially targeting the disease-associated gene signature, employing the CLUEreg tool in the GRAND database. RESULTS Using a large RNA-seq dataset of 216 post-mortem brain samples from the CommonMind consortium, we constructed GRNs based on co-expression for individuals with BD and unaffected controls, involving 15,271 genes and 405 TFs. Our analysis highlighted significant influences of these TFs on immune response, energy metabolism, cell signalling, and cell adhesion pathways in the disorder. By employing drug repurposing, we identified 10 promising candidates potentially repurposed as BD treatments. LIMITATIONS Non-drug-naïve transcriptomics data, bulk analysis of BD samples, potential bias of GRNs towards well-studied genes. CONCLUSIONS Further investigation into repurposing candidates, especially those with preclinical evidence supporting their efficacy, like kaempferol and pramocaine, is warranted to understand their mechanisms of action and effectiveness in treating BD. Additionally, novel targets such as PARP1 and A2b offer opportunities for future research on their relevance to the disorder.
Collapse
Affiliation(s)
- Trang T T Truong
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Zoe S J Liu
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Bruna Panizzutti
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Olivia M Dean
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville 3010, Australia
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Ken Walder
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia.
| |
Collapse
|
9
|
Liu S, He Y, Guo D, Liu X, Hao X, Hu P, Ming D. Transcranial alternating current stimulation ameliorates emotional attention through neural oscillations modulation. Cogn Neurodyn 2023; 17:1473-1483. [PMID: 37969947 PMCID: PMC10640550 DOI: 10.1007/s11571-022-09880-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/04/2022] [Accepted: 08/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background Numerous clinical reports have suggested that psychopathy like schizophrenia, anxiety and depression is accompanied by early attentional abnormalities in emotional processing. Recently, the efficacy of transcranial alternating current stimulation (tACS) in changing emotional functioning has been repeatedly observed and demonstrated a causal relationship between endogenous oscillations and emotional processing. Aims Up to now, tACS effects on emotional attention have not yet been tested. To assess such ability, we delivered active-tACS at individual alpha frequency (IAF), 10 Hz or sham-tACS for 7 consecutive days in the bilaterally dorsolateral prefrontal cortex (dlPFC) to totally 79 healthy participants. Results IAF-tACS group showed significant alpha entrainment at-rest, especially in open state around stimulation area and showed an obvious advantage compared to 10 Hz-tACS. Event-related potential revealed a significant larger P200 amplitude after active-tACS and IAF group showed wider range of emotions than 10 Hz-tACS, indicating the attentional improvement in facial emotion processing. A notable positive correlation between alpha power and P200 amplitude provided an electrophysiological interpretation regarding the role of tACS in emotional attention modulation instead of somatosensory effects. Conclusion These results support a seminal outcome for the effect of IAF-tACS on emotional attention modulation, demonstrating a feasible and individual-specific therapy for neuropsychiatric disorders related to emotion processing, especially regarding oscillatory disturbances.
Collapse
Affiliation(s)
- Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Yuchen He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Dongyue Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Xiaoya Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Xinyu Hao
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072 Tianjin, China
| | - Pengchong Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072 Tianjin, China
- Tianjin International Joint Research Center for Neural Engineering, 300072 Tianjin, China
| |
Collapse
|
10
|
Sankar A, Shen X, Colic L, Goldman DA, Villa LM, Kim JA, Pittman B, Scheinost D, Constable RT, Blumberg HP. Predicting depressed and elevated mood symptomatology in bipolar disorder using brain functional connectomes. Psychol Med 2023; 53:6656-6665. [PMID: 36891769 PMCID: PMC10491744 DOI: 10.1017/s003329172300003x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND The study is aimed to identify brain functional connectomes predictive of depressed and elevated mood symptomatology in individuals with bipolar disorder (BD) using the machine learning approach Connectome-based Predictive Modeling (CPM). METHODS Functional magnetic resonance imaging data were obtained from 81 adults with BD while they performed an emotion processing task. CPM with 5000 permutations of leave-one-out cross-validation was applied to identify functional connectomes predictive of depressed and elevated mood symptom scores on the Hamilton Depression and Young Mania rating scales. The predictive ability of the identified connectomes was tested in an independent sample of 43 adults with BD. RESULTS CPM predicted the severity of depressed [concordance between actual and predicted values (r = 0.23, pperm (permutation test) = 0.031) and elevated (r = 0.27, pperm = 0.01) mood. Functional connectivity of left dorsolateral prefrontal cortex and supplementary motor area nodes, with inter- and intra-hemispheric connections to other anterior and posterior cortical, limbic, motor, and cerebellar regions, predicted depressed mood severity. Connectivity of left fusiform and right visual association area nodes with inter- and intra-hemispheric connections to the motor, insular, limbic, and posterior cortices predicted elevated mood severity. These networks were predictive of mood symptomatology in the independent sample (r ⩾ 0.45, p = 0.002). CONCLUSIONS This study identified distributed functional connectomes predictive of depressed and elevated mood severity in BD. Connectomes subserving emotional, cognitive, and psychomotor control predicted depressed mood severity, while those subserving emotional and social perceptual functions predicted elevated mood severity. Identification of these connectome networks may help inform the development of targeted treatments for mood symptoms.
Collapse
Affiliation(s)
- Anjali Sankar
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Lejla Colic
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, Halle-Jena-Magdeburg, Magdeburg, Germany
| | - Danielle A. Goldman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Luca M. Villa
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Jihoon A. Kim
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Chen G, Wang J, Gong J, Qi Z, Fu S, Tang G, Chen P, Huang L, Wang Y. Functional and structural brain differences in bipolar disorder: a multimodal meta-analysis of neuroimaging studies. Psychol Med 2022; 52:2861-2873. [PMID: 36093787 DOI: 10.1017/s0033291722002392] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Numerous studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed differences in specific brain regions of patients with bipolar disorder (BD), but the results have been inconsistent. METHODS A whole-brain voxel-wise meta-analysis was conducted on resting-state functional imaging and VBM studies that compared differences between patients with BD and healthy controls using Seed-based d Mapping with Permutation of Subject Images software. RESULTS A systematic literature search identified 51 functional imaging studies (1842 BD and 2190 controls) and 83 VBM studies (2790 BD and 3690 controls). Overall, patients with BD displayed increased resting-state functional activity in the left middle frontal gyrus, right inferior frontal gyrus (IFG) extending to the right insula, right superior frontal gyrus and bilateral striatum, as well as decreased resting-state functional activity in the left middle temporal gyrus extending to the left superior temporal gyrus and post-central gyrus, left cerebellum, and bilateral precuneus. The meta-analysis of VBM showed that patients with BD displayed decreased VBM in the right IFG extending to the right insula, temporal pole and superior temporal gyrus, left superior temporal gyrus extending to the left insula, temporal pole, and IFG, anterior cingulate cortex, left superior frontal gyrus (medial prefrontal cortex), left thalamus, and right fusiform gyrus. CONCLUSIONS The multimodal meta-analyses suggested that BD showed similar patterns of aberrant brain activity and structure in the insula extending to the temporal cortex, fronto-striatal-thalamic, and default-mode network regions, which provide useful insights for understanding the underlying pathophysiology of BD.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, 510006, China
| | - Jiaying Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
- Department of Radiology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Siying Fu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
12
|
Zhang ZF, Bo QJ, Li F, Zhao L, Gao P, Wang Y, Liu R, Chen XY, Wang CY, Zhou Y. Altered frequency-specific/universal amplitude characteristics of spontaneous brain oscillations in patients with bipolar disorder. Neuroimage Clin 2022; 36:103207. [PMID: 36162237 PMCID: PMC9668601 DOI: 10.1016/j.nicl.2022.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
The human brain is a dynamic system with intrinsic oscillations in spontaneous neural activity. Whether the dynamic characteristics of these spontaneous oscillations are differentially altered across different frequency bands in patients with bipolar disorder (BD) remains unclear. This study recruited 65 patients with BD and 85 healthy controls (HCs). The entire frequency range of resting-state fMRI data was decomposed into four frequency intervals. Two-way repeated-measures ANCOVA was employed to detect frequency-specific/universal alterations in the dynamic oscillation amplitude in BD. The patients were then divided into two subgroups according to their mood states to explore whether these alterations were independent of their mood states. Finally, other window sizes, step sizes, and window types were tested to replicate all analyses. Frequency-specific abnormality of the dynamic oscillation amplitude was detected within the posterior medial parietal cortex (centered at the precuneus extending to the posterior cingulate cortex). This specific profile indicates decreased amplitudes in the lower frequency bands (slow-5/4) and no amplitude changes in the higher frequency bands (slow-3/2) compared with HCs. Frequency-universal abnormalities of the dynamic oscillation amplitude were also detectable, indicating increased amplitudes in the thalamus and left cerebellum anterior lobe but decreased amplitudes in the medial superior frontal gyrus. These alterations were independent of the patients' mood states and replicable across multiple analytic and parametric settings. In short, frequency-specific/universal amplitude characteristics of spontaneous oscillations were observed in patients with BD. These abnormal characteristics have important implications for specific functional changes in BD from multiple frequency and dynamic perspectives.
Collapse
Affiliation(s)
- Zhi-Fang Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qi-Jing Bo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Feng Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Peng Gao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yun Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Rui Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiong-Ying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Chuan-Yue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China,Corresponding authors at: The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No. 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, China (C.-Y. Wang). CAS Key Laboratory of Behavioral Science, Institute of Psychology, No. 16 Lincui Road, Chaoyang District, Beijing, PR China (Y. Zhou).
| | - Yuan Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China,Corresponding authors at: The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No. 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, China (C.-Y. Wang). CAS Key Laboratory of Behavioral Science, Institute of Psychology, No. 16 Lincui Road, Chaoyang District, Beijing, PR China (Y. Zhou).
| |
Collapse
|
13
|
Sweet JA, Gao K, Chen Z, Tatsuoka C, Calabrese JR, Sajatovic M, Miller JP, McIntyre CC. Cingulum bundle connectivity in treatment-refractory compared to treatment-responsive patients with bipolar disorder and healthy controls: a tractography and surgical targeting analysis. J Neurosurg 2022; 137:709-721. [PMID: 35061996 PMCID: PMC10193487 DOI: 10.3171/2021.11.jns211833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/15/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The clinical response of patients with bipolar disorder to medical treatment is variable. A better understanding of the underlying neural circuitry involved in bipolar treatment responsivity subtypes may provide insight into treatment resistance and aid in identifying an effective surgical target for deep brain stimulation (DBS) specific to the disorder. Despite considerable imaging research related to the disease, a paucity of comparative imaging analyses of treatment responsiveness exists. There are also no DBS targets designed expressly for patients with bipolar disorder. Therefore, the authors analyzed cingulum bundle axonal connectivity in relation to cortico-striatal-thalamo-cortical (CSTC) loops implicated in bipolar disorder across subjects who are responsive to treatment (RSP) and those who are refractory to therapy (REF), compared to healthy controls (HCs). METHODS Twenty-five subjects with bipolar disorder (13 RSP and 12 REF), diagnosed using the Mini International Neuropsychiatric Interview and classified with standardized rating scales, and 14 HCs underwent MRI with diffusion sequences for probabilistic diffusion-weighted tractography analysis. Image processing and tractography were performed using MRTrix. Region of interest (ROI) masks were created manually for 10 anterior cingulum bundle subregions, including surgical targets previously evaluated for the treatment of bipolar disorder (cingulotomy and subgenual cingulate DBS targets). Cortical and subcortical ROIs of brain areas thought to be associated with bipolar disorder and described in animal tract-tracing models were created via FreeSurfer. The number of axonal projections from the cingulum bundle subregion ROIs to cortical/subcortical ROIs for each group was compared. RESULTS Significant differences were found across groups involving cingulum bundle and CSTC loops. Subjects in the RSP group had increased connections from rostral cingulum bundle to medial orbitofrontal cortex, which is part of the limbic CSTC loop, whereas subjects in the REF group had increased connectivity from rostral cingulum bundle to thalamus. Additionally, compared to HCs, both RSP and REF subjects had decreased cingulum bundle dorsal connectivity (dorsal anterior/posterior cingulate, dorsomedial/lateral frontal cortex) and increased cingulum bundle ventral connectivity (subgenual cingulate, frontal pole, lateral orbitofrontal cortex) involving limbic and associative CSTC loops. CONCLUSIONS Findings demonstrate that bipolar treatment responsivity may be associated with significant differences in cingulum bundle connectivity in relation to CSTC loops, which may help identify a surgical target for bipolar disorder treatment via DBS in the future.
Collapse
Affiliation(s)
- Jennifer A. Sweet
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine
| | - Keming Gao
- Department of Psychiatry, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine
| | - Zhengyi Chen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine; and
| | - Curtis Tatsuoka
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine; and
| | - Joseph R. Calabrese
- Department of Psychiatry, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine
| | - Martha Sajatovic
- Department of Psychiatry, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine
| | - Jonathan P. Miller
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine
| | - Cameron C. McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
14
|
Zhu Z, Zhao Y, Wen K, Li Q, Pan N, Fu S, Li F, Radua J, Vieta E, Kemp GJ, Biswa BB, Gong Q. Cortical thickness abnormalities in patients with bipolar disorder: A systematic review and meta-analysis. J Affect Disord 2022; 300:209-218. [PMID: 34971699 DOI: 10.1016/j.jad.2021.12.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/10/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND An increasing number of neuroimaging studies report alterations of cortical thickness (CT) related to the neuropathology of bipolar disorder (BD). We provide here a whole-brain vertex-wise meta-analysis, which may help improve the spatial precision of these identifications. METHODS A comprehensive meta-analysis was performed to investigate the differences in CT between patients with BD and healthy controls (HCs) by using a newly developed mask for CT analysis in seed-based d mapping (SDM) meta-analytic software. We used meta-regression to explore the effects of demographics and clinical characteristics on CT. This meta-review was conducted in accordance with PRISMA guideline. RESULTS We identified 21 studies meeting criteria for the systematic review, of which 11 were eligible for meta-analysis. The meta-analysis comprising 649 BD patients and 818 HCs showed significant cortical thinning in the left insula extending to left Rolandic operculum and Heschl gyrus, the orbital part of left inferior frontal gyrus (IFG), the medial part of left superior frontal gyrus (SFG) as well as bilateral anterior cingulate cortex (ACC) in BD. In meta-regression analyses, mean patient age was negatively correlated with reduced CT in the left insula. LIMITATIONS All enrolled studies were cross-sectional; we could not explore the potential effects of medication and mood states due to the limited data. CONCLUSIONS Our results suggest that BD patients have significantly thinner frontoinsular cortex than HCs, and the results may be helpful in revealing specific neuroimaging biomarkers of BD patients.
Collapse
Affiliation(s)
- Ziyu Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Keren Wen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shiqin Fu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Joaquim Radua
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, Northern Ireland United Kingdom
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Bharat B Biswa
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
15
|
Xu Y, Peremans K, Courtyn J, Audenaert K, Dobbeleir A, D'Asseler Y, Achten E, Saunders J, Baeken C. The Impact of Accelerated HF-rTMS on Canine Brain Metabolism: An [18F]-FDG PET Study in Healthy Beagles. Front Vet Sci 2022; 9:800158. [PMID: 35280129 PMCID: PMC8907524 DOI: 10.3389/fvets.2022.800158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) has been proven to be a useful tool for the treatment of several severe neuropsychiatric disorders. Accelerated (a)rTMS protocols may have the potential to result in faster clinical improvements, but the effects of such accelerated paradigms on brain function remain to be elucidated. Objectives This sham-controlled arTMS study aimed to evaluate the immediate and delayed effects of accelerated high frequency rTMS (aHF-rTMS) on glucose metabolism in healthy beagle dogs when applied over the left frontal cortex. Methods Twenty-four dogs were randomly divided into four unequal groups: five active (n = 8)/ sham (n = 4) stimulation sessions (five sessions in 1 day), 20 active (n = 8)/ sham (n = 4) stimulation sessions (five sessions/ day for 4 days), respectively. [18F] FDG PET scans were obtained at baseline, 24 h poststimulation, after 1 and 3 months post the last stimulation session. We explicitly focused on four predefined regions of interest (left/right prefrontal cortex and left/right hippocampus). Results One day of active aHF-rTMS- and not sham- significantly increased glucose metabolism 24 h post-active stimulation in the left frontal cortex only. Four days of active aHF-rTMS only resulted in a nearly significant metabolic decrease in the left hippocampus after 1 month. Conclusions Like in human psychiatric disorders, active aHF-rTMS in healthy beagles modifies glucose metabolism, although differently immediately or after 1 month post stimulation. aHF-rTMS may be also a valid option to treat mentally disordered dogs.
Collapse
Affiliation(s)
- Yangfeng Xu
- Ghent Experimental Psychiatry (GHEP) Laboratory, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- *Correspondence: Yangfeng Xu
| | - Kathelijne Peremans
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan Courtyn
- Department of Radiology and Nuclear Medicine, Medical Molecular Imaging and Therapy, Ghent University Hospital, Ghent, Belgium
| | - Kurt Audenaert
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Andre Dobbeleir
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yves D'Asseler
- Department of Radiology and Nuclear Medicine, Medical Molecular Imaging and Therapy, Ghent University Hospital, Ghent, Belgium
| | - Eric Achten
- Department of Radiology and Nuclear Medicine, Medical Molecular Imaging and Therapy, Ghent University Hospital, Ghent, Belgium
| | - Jimmy Saunders
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chris Baeken
- Ghent Experimental Psychiatry (GHEP) Laboratory, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Psychiatry, Faculty of Medicine and Pharmacy, Vrije University Brussels, Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
16
|
Chung JK, Ahn YM, Kim SA, Joo EJ. Differences in mitochondrial DNA copy number between patients with bipolar I and II disorders. J Psychiatr Res 2022; 145:325-333. [PMID: 33190840 DOI: 10.1016/j.jpsychires.2020.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/08/2020] [Accepted: 11/05/2020] [Indexed: 02/01/2023]
Abstract
Mitochondria play a critical role in energy metabolism. Genetic, postmortem brain, and brain imaging studies of bipolar disorder (BD) patients indicated that mitochondrial dysfunction might explain BD pathophysiology. Mitochondrial function can be indirectly evaluated by measuring mitochondrial DNA (mtDNA) copy numbers. We recruited 186 bipolar I disorder (BD1) and 95 bipolar II disorder (BD2) patients, and age- and sex-matched controls. MtDNA copy numbers in peripheral blood cells were measured via quantitative polymerase chain reaction. We explored parameters (including age and clinical features) that might affect mtDNA copy numbers. We found that BD1 patients had a lower mtDNA copy number than controls and that mtDNA copy number was negatively associated with the number of mood episodes. BD2 patients had a higher mtDNA copy number than controls. Thus, changes in mitochondrial function may influence BD pathophysiology. The opposite directions of the association with mtDNA copy number in BD1 and BD2 patients suggests that the difference in pathophysiology may be associated with mitochondrial function.
Collapse
Affiliation(s)
- Jae Kyung Chung
- Department of Psychiatry, Eumsung-somang Hospital, Eumsung, Republic of Korea
| | - Yong Min Ahn
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea.
| | - Eun-Jeong Joo
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon, Republic of Korea; Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
McLean M, Henderson TA, Pavel DG, Cohen P. Increased Asymmetric Perfusion of the Cerebral Cortices and Thalamus Indicates Individuals at Risk for Bipolar Disorder: A Family Cohort Single Photon Emission Computed Tomography Neuroimaging Study. Front Psychiatry 2022; 13:829561. [PMID: 35619621 PMCID: PMC9127269 DOI: 10.3389/fpsyt.2022.829561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Bipolar disorder is a significant mental illness affecting over 4 million people in North America and approximately 46 million worldwide. While the onset of bipolar disorder is typically in late adolescence and early adulthood, the correct diagnosis can be delayed for several years. This delay can result in inappropriate pharmaceutical interventions, loss of career or productivity, suicide, family hardship, and unnecessary expense. Moreover, prolonged untreated or inappropriately treated bipolar disorder may cause damage to the brain. Early diagnosis is a critical need to circumvent the damage, suffering, and expense caused by the current delay. Brain perfusion single photon emission computed tomography (SPECT) neuroimaging reveals visual correlates of brain function. Herein, a family cohort all with bipolar disorder is described and their symptoms correlated with findings on the individual SPECT brain scans. The family consisted of two parents and three children (one female). The scans were interpreted by a panel of experts. Then a post hoc region-of-interest (ROI) analysis was conducted on SPECT data normalized to the cerebellum maximum with comparison to similarly normalized data from a normative sample. These findings support two distinct patterns of SPECT perfusion scan changes that can be found in individuals with bipolar disorder. In addition, these findings indicate that SPECT scan findings may be predictive of individual risk for progressing to symptomatic bipolar disorder. While preliminary, the findings in this cohort support the need for larger, diverse cohort studies of bipolar and control subjects to assess the predictive value of these particular SPECT perfusion findings in bipolar disorder.
Collapse
Affiliation(s)
- Mary McLean
- Private Practice, Toronto, ON, Canada.,The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States
| | - Theodore A Henderson
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,The Synaptic Space, Inc., Denver, CO, United States.,Neuro-Luminance, Inc., Denver, CO, United States.,Dr. Theodore Henderson, Inc., Denver, CO, United States.,The Neuro-Laser Foundation, Denver, CO, United States
| | - Dan G Pavel
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,PathFinder Brain SPECT, Deerfield, IL, United States
| | - Phil Cohen
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,Lions Gate Hospital, Vancouver, BC, Canada.,Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Zhang Z, Bo Q, Li F, Zhao L, Wang Y, Liu R, Chen X, Wang C, Zhou Y. Increased ALFF and functional connectivity of the right striatum in bipolar disorder patients. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110140. [PMID: 33068681 DOI: 10.1016/j.pnpbp.2020.110140] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/19/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a serious neuropsychiatric disorder characterized by alternating periods of mania, depression, and euthymia. Abnormal spontaneous brain activity within the cortical-striatal neural circuits has been observed in patients with BD. However, whether the abnormality appears in patients with BD while not in a manic mood state is unclear. METHODS This study collected resting-state fMRI data from 65 patients with BD who were not in a manic mood state and 85 matched healthy controls. First, we examined differences in amplitude of low-frequency fluctuations (ALFF) between the patients with BD and the healthy controls to identify regions that show abnormal local spontaneous activity in the patients. Based on the ALFF results, we conducted seed-based resting-state functional connectivity (rsFC) analysis to identify the changes in brain networks that are centered on the regions showing abnormal local spontaneous activity in the patients. Finally, we repeated these analyses in a sub-sample comprising euthymic BD patients (N = 37) and between the euthymic BD patients and all the other patients who had at least mild depressive symptoms. RESULTS BD patients exhibited increased ALFF in the right caudate/putamen and increased rsFC in the right caudate/putamen with the right inferior parietal lobe (cluster-level FWE p < 0.05). Further analyses showed that the euthymic BD patients showed similar abnormalities in ALFF and rsFC maps as found in all patients with BD. And the euthymic BD patients were comparable with all the other patients who had at least mild depressive symptoms in ALFF values. CONCLUSIONS Our results indicated the important role of the right striatum in the baseline brain function of BD patients and suggested that the abnormality of spontaneous brain activity in the cortical-striatal neural circuits may be a trait-like variant in patients with BD. The results deepen our understanding of the neurobiological mechanisms associated with BD etiology.
Collapse
Affiliation(s)
- Zhifang Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qijing Bo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Feng Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Lei Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yun Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Rui Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuan Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; CAS Key Laboratory of Behavioral Science, Institute of Psychology & Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101,China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Trace amine-associated receptor 1 (TAAR1): Potential application in mood disorders: A systematic review. Neurosci Biobehav Rev 2021; 131:192-210. [PMID: 34537265 DOI: 10.1016/j.neubiorev.2021.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/29/2022]
Abstract
There is a need for innovation with respect to therapeutics in psychiatry. Available evidence indicates that the trace amine-associated receptor 1 (TAAR1) agonist SEP-363856 is promising, as it improves measures of cognitive and reward function in schizophrenia. Hedonic and cognitive impairments are transdiagnostic and constitute major burdens in mood disorders. Herein, we systematically review the behavioural and genetic literature documenting the role of TAAR1 in reward and cognitive function, and propose a mechanistic model of TAAR1's functions in the brain. Notably, TAAR1 activity confers antidepressant-like effects, enhances attention and response inhibition, and reduces compulsive reward seeking without impairing normal function. Further characterization of the responsible mechanisms suggests ion-homeostatic, metabolic, neurotrophic, and anti-inflammatory enhancements in the limbic system. Multiple lines of evidence establish the viability of TAAR1 as a biological target for the treatment of mood disorders. Furthermore, the evidence suggests a role for TAAR1 in reward and cognitive function, which is attributed to a cascade of events that are relevant to the cellular integrity and function of the central nervous system.
Collapse
|
20
|
Brain reactivity to emotional stimuli in women with premenstrual dysphoric disorder and related personality characteristics. Aging (Albany NY) 2021; 13:19529-19541. [PMID: 34349039 PMCID: PMC8386568 DOI: 10.18632/aging.203363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/08/2021] [Indexed: 11/27/2022]
Abstract
Aims: Premenstrual dysphoric disorder (PMDD) is a psychiatric condition that is associated with the menstrual cycle. Elucidation of the neural regulation mechanisms of brain reactivity to emotional stimuli among women with PMDD may inform PMDD treatment. Methods: Eighty-six women (42 PMDD, 44 healthy controls) were allocated into two groups (anger-induced group: 23 PMDD vs. 23 controls; depression-induced group: 19 PMDD vs. 21 controls). During the luteal phases of the menstrual cycle, all the women were subjected to functional magnetic resonance imaging (fMRI). fMRI resting-state scans were performed before and after the study participants had performed an emotional stimuli task. After the emotional stimuli task, emotional status of the participants were evaluated by Self-Rating Depression Scales (SDS) and Trait Anger Expression Inventory–II (STAXI-II). In addition, all the participants were requested to complete the Eysenck Personality Questionnaire (EPQ) and the Twenty-Item Toronto Alexithymia Scale (TAS-20). Results: Compared to healthy controls, all women with PMDD exhibited significantly high scores in Tas-20 (p<0.001), higher neuroticism and psychoticism scores as well as significantly low extraversion and social desirability scores (p<0.05). Compared to the controls, f-MRI revealed that PMDD women had elevated ReHo in the middle frontal gyrus (BA10), temporal lobe (BA42), left cerebellum (BA37), as well as decreased activation in the precuneus (BA7), superior frontal gyrus (BA8), lobulus paracentralis (BA6), and right cerebellum (BA48) (p<0.05). Moreover, depression stimuli showed that women with PMDD had elevated ReHo levels in the middle frontal gyrus (BA11), the middle gyrus (BA47) and in the cingulate gyrus (BA23) vs. healthy controls (p<0.05). Conclusions: Women with more neuroticism and psychoticism, less extraversion and social desirability tend to report PMDD symptoms. Women with this condition experience difficulties in regulating emotions during the luteal phase of the menstrual cycle. Abnormal ReHo levels in the precuneus, superior frontal gyrus, lobulus paracentralis, and right cerebellum may contribute to anger dysregulation. Hypoactivation in the middle frontal gyrus, the middle gyrus and the cingulate gyrus may be generally associated with depression dysregulation in PMDD.
Collapse
|
21
|
Altered neurochemistry in the anterior white matter of bipolar children and adolescents: a multivoxel 1H MRS study. Mol Psychiatry 2021; 26:4117-4126. [PMID: 33173193 PMCID: PMC8664279 DOI: 10.1038/s41380-020-00927-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/13/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Abnormalities within frontal lobe gray and white matter of bipolar disorder (BD) patients have been consistently reported in adult and pediatric studies, yet little is known about the neurochemistry of the anterior white matter (AWM) in pediatric BD and how medication status may affect it. The present cross-sectional 3T 1H MRS study is the first to use a multivoxel approach to study the AWM of BD youth. Absolute metabolite levels from four bilateral AWM voxels were collected from 49 subjects between the ages of 8 and 18 (25 healthy controls (HC); 24 BD) and quantified. Our study found BD subjects to have lower levels of N-acetylaspartate (NAA) and glycerophosphocholine plus phosphocholine (GPC + PC), metabolites that are markers of neuronal viability and phospholipid metabolism and have also been implicated in adult BD. Further analysis indicated that the observed patterns were mostly driven by BD subjects who were medicated at the time of scanning and had an ADHD diagnosis. Although limited by possible confounding effects of mood state, medication, and other mood comorbidities, these findings serve as evidence of altered neurochemistry in BD youth that is sensitive to medication status and ADHD comorbidity.
Collapse
|
22
|
Luciw NJ, Toma S, Goldstein BI, MacIntosh BJ. Correspondence between patterns of cerebral blood flow and structure in adolescents with and without bipolar disorder. J Cereb Blood Flow Metab 2021; 41:1988-1999. [PMID: 33487070 PMCID: PMC8323335 DOI: 10.1177/0271678x21989246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/06/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022]
Abstract
Adolescence is a period of rapid development of the brain's inherent functional and structural networks; however, little is known about the region-to-region organization of adolescent cerebral blood flow (CBF) or its relationship to neuroanatomy. Here, we investigate both the regional covariation of CBF MRI and the covariation of structural MRI, in adolescents with and without bipolar disorder. Bipolar disorder is a disease with increased onset during adolescence, putative vascular underpinnings, and evidence of anomalous CBF and brain structure. In both groups, through hierarchical clustering, we found CBF covariance was principally described by clusters of regions circumscribed to the left hemisphere, right hemisphere, and the inferior brain; these clusters were spatially reminiscent of cerebral vascular territories. CBF covariance was associated with structural covariance in both the healthy group (n = 56; r = 0.20, p < 0.0001) and in the bipolar disorder group (n = 68; r = 0.36, p < 0.0001), and this CBF-structure correspondence was higher in bipolar disorder (p = 0.0028). There was lower CBF covariance in bipolar disorder compared to controls between the left angular gyrus and pre- and post-central gyri. Altogether, CBF covariance revealed distinct brain organization, had modest correspondence to structural covariance, and revealed evidence of differences in bipolar disorder.
Collapse
Affiliation(s)
- Nicholas J Luciw
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Hurvitz Brain Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Simina Toma
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Benjamin I Goldstein
- Hurvitz Brain Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada
- Departments of Pharmacology and Psychiatry, University of Toronto, Toronto, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Hurvitz Brain Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Grey and white matter alteration in euthymic children with bipolar disorder: a combined source-based morphometry (SBM) and voxel-based morphometry (VBM) study. Brain Imaging Behav 2021; 16:22-30. [PMID: 33846953 DOI: 10.1007/s11682-021-00473-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/18/2021] [Indexed: 01/01/2023]
Abstract
Bipolar disorder (BPD) is a psychiatric condition driving frequent mood swings between periodic extremes of happiness and depression in patients. In this study, a source-based morphometry (SBM) and voxel-based morphometry (VBM) analysis was utilized to measure the differences in the white matter (WM) and grey matter (GM) between euthymic children with BPD and typically developing (TD) children. We adapted both multivariate (SBM) and univariate (VBM) analysis in 20 children with BPD euthymia /remission and compared to the same number of TD age-matched children. The VBM did not reveal any increase in GM and WM voxel values in children with BPD. However, a decrease in the GM voxel values in the bilateral middle frontal and WM voxels in the left hippocampus, left caudate, left orbitofrontal and right inferior parietal cortices was identified. Conversely, SBM analysis in BPD displayed a high GM value in bilateral angular gyrus, bilateral inferior temporal, left supplementary motor area and left middle temporal region, while a low value was observed in left inferior and middle occipital, cerebellum, thalamus, left premotor area and left lingual gyrus. These findings suggested a crucial GM and WM alteration in multiple neural regions in BPD children even during sustained and substantial remission.
Collapse
|
24
|
Argyropoulos GD, Christidi F, Karavasilis E, Velonakis G, Antoniou A, Bede P, Seimenis I, Kelekis N, Douzenis A, Papakonstantinou O, Efstathopoulos E, Ferentinos P. Cerebro-cerebellar white matter connectivity in bipolar disorder and associated polarity subphenotypes. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110034. [PMID: 32710925 DOI: 10.1016/j.pnpbp.2020.110034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The cerebellum has a crucial role in mood regulation. While cerebellar grey matter (GM) alterations have been previously reported in bipolar disorder (BD), cerebro-cerebellar white matter (WM) connectivity alterations and cerebellar GM profiles have not been characterised in the context of predominant polarity (PP) and onset polarity (OP) subphenotypes of BD patients which is the aim of the present study. METHODS Forty-two euthymic BD patients stratified for PP and OP and 42 healthy controls (HC) were included in this quantitative neuroimaging study to evaluate cerebellar GM patterns and cerebro-cerebellar WM connections. Diffusion tensor tractography was used to characterise afferent and efferent cerebro-cerebellar tract integrity. False discovery rate corrections were applied in post-hoc comparisons. RESULTS BD patients exhibited higher fractional anisotropy (FA) in fronto-ponto-cerebellar tracts bilaterally compared to HC. Subphenotype-specific FA profiles were identified within the BD cohort. Regarding PP subgroups, we found FA changes in a) left contralateral fronto-ponto-cerebellar tract (depressive-PP > HC) and b) contralateral/ipsilateral fronto-ponto-cerebellar tracts bilaterally (manic-PP > HC). Regarding OP subgroups, we observed FA changes in a) left/right contralateral fronto-ponto-cerebellar tracts (depressive-OP > HC) and b) all fronto-ponto-cerebellar, most parieto-ponto-cerebellar and right contralateral occipito-ponto-cerebellar tracts (manic-OP>HC). In general, greater and more widespread cerebro-cerebellar changes were observed in manic-OP patients than in depressive-OP patients compared to HC. Manic-OP showed higher FA compared to depressive-OP patients in several afferent WM tracts. No GM differences were identified between BD and HC and across BD subgroups. CONCLUSIONS Our findings highlight fronto-ponto-cerebellar connectivity alterations in euthymic BD. Polarity-related subphenotypes have distinctive cerebro-cerebellar WM signatures with potential clinical and pathobiological implications.
Collapse
Affiliation(s)
- Georgios D Argyropoulos
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Christidi
- 2nd Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Efstratios Karavasilis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Antoniou
- 2nd Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter Bede
- Biomedical Imaging Laboratory, Sorbonne University, CNRS, INSERM, Paris, France; Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Ioannis Seimenis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Douzenis
- 2nd Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Olympia Papakonstantinou
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Efstathopoulos
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Ferentinos
- 2nd Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Shen J, Tomar JS. Elevated Brain Glutamate Levels in Bipolar Disorder and Pyruvate Carboxylase-Mediated Anaplerosis. Front Psychiatry 2021; 12:640977. [PMID: 33708149 PMCID: PMC7940766 DOI: 10.3389/fpsyt.2021.640977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
In vivo 1H magnetic resonance spectroscopy studies have found elevated brain glutamate or glutamate + glutamine levels in bipolar disorder with surprisingly high reproducibility. We propose that the elevated glutamate levels in bipolar disorder can be explained by increased pyruvate carboxylase-mediated anaplerosis in brain. Multiple independent lines of evidence supporting increased pyruvate carboxylase-mediated anaplerosis as a common mechanism underlying glutamatergic hyperactivity in bipolar disorder and the positive association between bipolar disorder and obesity are also described.
Collapse
Affiliation(s)
- Jun Shen
- Section on Magnetic Resonance Spectroscopy, Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, United States
| | - Jyoti Singh Tomar
- Section on Magnetic Resonance Spectroscopy, Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Beyer DKE, Horn L, Klinker N, Freund N. Risky decision-making following prefrontal D1 receptor manipulation. Transl Neurosci 2021; 12:432-443. [PMID: 34760299 PMCID: PMC8569284 DOI: 10.1515/tnsci-2020-0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
The prefrontal dopamine D1 receptor (D1R) is involved in cognitive processes. Viral overexpression of this receptor in rats further increases the reward-related behaviors and even its termination induces anhedonia and helplessness. In this study, we investigated the risky decision-making during D1R overexpression and its termination. Rats conducted the rodent version of the Iowa gambling task daily. In addition, the methyl CpG–binding protein-2 (MeCP2), one regulator connecting the dopaminergic system, cognitive processes, and mood-related behavior, was investigated after completion of the behavioral tasks. D1R overexpressing subjects exhibited maladaptive risky decision-making and risky decisions returned to control levels following termination of D1R overexpression; however, after termination, animals earned less reward compared to control subjects. In this phase, MeCP2-positive cells were elevated in the right amygdala. Our results extend the previously reported behavioral changes in the D1R-manipulated animal model to increased risk-taking and revealed differential MeCP2 expression adding further evidence for a bipolar disorder-like phenotype of this model.
Collapse
Affiliation(s)
- Dominik K. E. Beyer
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44801 Bochum, Germany
| | - Lisa Horn
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44801 Bochum, Germany
| | - Nadine Klinker
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44801 Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44801 Bochum, Germany
| |
Collapse
|
27
|
Levenberg K, Hajnal A, George DR, Saunders EFH. Prolonged functional cerebral asymmetry as a consequence of dysfunctional parvocellular paraventricular hypothalamic nucleus signaling: An integrative model for the pathophysiology of bipolar disorder. Med Hypotheses 2020; 146:110433. [PMID: 33317848 DOI: 10.1016/j.mehy.2020.110433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
Abstract
Approximately 45 million people worldwide are diagnosed with bipolar disorder (BD). While there are many known risk factors and models of the pathologic processes influencing BD, the exact neurologic underpinnings of BD are unknown. We attempt to integrate the existing literature and create a unifying hypothesis regarding the pathophysiology of BD with the hope that a concrete model may potentially facilitate more specific diagnosis, prevention, and treatment of BD in the future. We hypothesize that dysfunctional signaling from the parvocellular neurons of the paraventricular hypothalamic nucleus (PVN) results in the clinical presentation of BD. Functional damage to this nucleus and its signaling pathways may be mediated by myriad factors (e.g. immune dysregulation and auto-immune processes, polygenetic variation, dysfunctional interhemispheric connections, and impaired or overactivated hypothalamic axes) which could help explain the wide variety of clinical presentations along the BD spectrum. The neurons of the PVN regulate ultradian rhythms, which are observed in cyclic variations in healthy individuals, and mediate changes in functional hemispheric lateralization. Theoretically, dysfunctional PVN signaling results in prolonged functional hemispheric dominance. In this model, prolonged right hemispheric dominance leads to depressive symptoms, whereas left hemispheric dominance correlated to the clinical picture of mania. Subsequently, physiologic processes that increase signaling through the PVN (hypothalamic-pituitaryadrenal axis, hypothalamic- pituitary-gonadal axis, and hypothalamic-pituitary-thyroid axis activity, suprachiasmatic nucleus pathways) as well as, neuro-endocrine induced excito-toxicity, auto-immune and inflammatory flairs may induce mood episodes in susceptible individuals. Potentially, ultradian rhythms slowing with age, in combination with changes in hypothalamic axes and maturation of neural circuitry, accounts for BD clinically presenting more frequently in young adulthood than later in life.
Collapse
Affiliation(s)
- Kate Levenberg
- College of Medicine, Penn State University College of Medicine, State College, USA.
| | - Andras Hajnal
- Neural & Behavioral Sciences, Penn State University College of Medicine, State College, USA
| | - Daniel R George
- Department of Humanities, Penn State University College of Medicine, Hershey, USA
| | - Erika F H Saunders
- Psychiatry and Behavioral Health, Penn State University College of Medicine, State College, USA
| |
Collapse
|
28
|
Tseng CEJ, Gilbert TM, Catanese MC, Hightower BG, Peters AT, Parmar AJ, Kim M, Wang C, Roffman JL, Brown HE, Perlis RH, Zürcher NR, Hooker JM. In vivo human brain expression of histone deacetylases in bipolar disorder. Transl Psychiatry 2020; 10:224. [PMID: 32641695 PMCID: PMC7343804 DOI: 10.1038/s41398-020-00911-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023] Open
Abstract
The etiology of bipolar disorder (BD) is unknown and the neurobiological underpinnings are not fully understood. Both genetic and environmental factors contribute to the risk of BD, which may be linked through epigenetic mechanisms, including those regulated by histone deacetylase (HDAC) enzymes. This study measures in vivo HDAC expression in individuals with BD for the first time using the HDAC-specific radiotracer [11C]Martinostat. Eleven participants with BD and 11 age- and sex-matched control participants (CON) completed a simultaneous magnetic resonance - positron emission tomography (MR-PET) scan with [11C]Martinostat. Lower [11C]Martinostat uptake was found in the right amygdala of BD compared to CON. We assessed uptake in the dorsolateral prefrontal cortex (DLPFC) to compare previous findings of lower uptake in the DLPFC in schizophrenia and found no group differences in BD. Exploratory whole-brain voxelwise analysis showed lower [11C]Martinostat uptake in the bilateral thalamus, orbitofrontal cortex, right hippocampus, and right amygdala in BD compared to CON. Furthermore, regional [11C]Martinostat uptake was associated with emotion regulation in BD in fronto-limbic areas, which aligns with findings from previous structural, functional, and molecular neuroimaging studies in BD. Regional [11C]Martinostat uptake was associated with attention in BD in fronto-parietal and temporal regions. These findings indicate a potential role of HDACs in BD pathophysiology. In particular, HDAC expression levels may modulate attention and emotion regulation, which represent two core clinical features of BD.
Collapse
Affiliation(s)
- Chieh-En J. Tseng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Tonya M. Gilbert
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Mary C. Catanese
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Baileigh G. Hightower
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Amy T. Peters
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Anjali J. Parmar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Minhae Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Joshua L. Roffman
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA ,grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Hannah E. Brown
- grid.475010.70000 0004 0367 5222Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Roy H. Perlis
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Nicole R. Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| |
Collapse
|
29
|
Kim J, Cho H, Kim J, Kim A, Kang Y, Kang W, Choi KW, Ham BJ, Han KM, Tae WS. Changes in cortical thickness and volume of cerebellar subregions in patients with bipolar disorders. J Affect Disord 2020; 271:74-80. [PMID: 32479334 DOI: 10.1016/j.jad.2020.03.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/26/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Numerous studies have suggested that structural changes in the cerebellum are implicated in the pathophysiology of bipolar disorder (BD). We aimed to investigate differences in the volume and cortical thickness of the cerebellar subregions between patients with BD and healthy controls (HCs). METHODS Ninety patients with BD and one hundred sixty-six HCs participated in this study and underwent T1-weighted structural magnetic resonance imaging. We analyzed the volume and cortical thickness of each cerebellar hemisphere divided into 12 subregions using T1-weighted images of participants. One-way analysis of covariance was used to evaluate differences between the groups, with age, sex, medication, and total intracranial cavity volume used as covariates. RESULTS The BD group had significantly increased cortical thickness of the cerebellum in all cerebellar subregions compared to the HC group. The cortical thicknesses of the whole cerebellum and each hemisphere were also significantly thicker in the BD group than in the HC group. The volume of the left lobule IX was significantly lower in patients with BD than in HCs, whereas no significant differences in the volumes were observed in the other subregions. LIMITATIONS Our cross-sectional design cannot provide a causal relationship between the increased cortical thickness of the cerebellum and the risk of BD. CONCLUSIONS We observed widespread and significant cortical thickening in all the cerebellar subregions. Our results provide evidence for the involvement of the cerebellum in BD. Further studies are required to integrate neurobiological evidence and structural brain imaging to elucidate the pathophysiology of BD.
Collapse
Affiliation(s)
- Jooyeon Kim
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Heejoon Cho
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jinha Kim
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwan Woo Choi
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Kreitz S, Zambon A, Ronovsky M, Budinsky L, Helbich TH, Sideromenos S, Ivan C, Konerth L, Wank I, Berger A, Pollak A, Hess A, Pollak DD. Maternal immune activation during pregnancy impacts on brain structure and function in the adult offspring. Brain Behav Immun 2020; 83:56-67. [PMID: 31526827 DOI: 10.1016/j.bbi.2019.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
Gestational infection constitutes a risk factor for the occurrence of psychiatric disorders in the offspring. Activation of the maternal immune system (MIA) with subsequent impact on the development of the fetal brain is considered to form the neurobiological basis for aberrant neural wiring and the psychiatric manifestations later in offspring life. The examination of validated animal models constitutes a premier resource for the investigation of the neural underpinnings. Here we used a mouse model of MIA based upon systemic treatment of pregnant mice with Poly(I:C) (polyriboinosinic-polyribocytidilic acid), for the unbiased and comprehensive analysis of the impact of MIA on adult offspring brain activity, morphometry, connectivity and function by a magnetic resonance imaging (MRI) approach. Overall lower neural activity, smaller brain regions and less effective fiber structure were observed for Poly(I:C) offspring compared to the control group. The corpus callosum was significantly smaller and presented with a disruption in myelin/ fiber structure in the MIA progeny. Subsequent resting-state functional MRI experiments demonstrated a paralleling dysfunctional interhemispheric connectivity. Additionally, while the overall flow of information was intact, cortico-limbic connectivity was hampered and limbic circuits revealed hyperconnectivity in Poly(I:C) offspring. Our study sheds new light on the impact of maternal infection during pregnancy on the offspring brain and identifies aberrant resting-state functional connectivity patterns as possible correlates of the behavioral phenotype with relevance for psychiatric disorders.
Collapse
Affiliation(s)
- Silke Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Alice Zambon
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Marianne Ronovsky
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Lubos Budinsky
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Austria
| | - Spyros Sideromenos
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Claudiu Ivan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Laura Konerth
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Isabel Wank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Angelika Berger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Arnold Pollak
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany.
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria.
| |
Collapse
|
31
|
Gutiérrez-Menéndez A, Banqueri M, Méndez M, Arias JL. How Does Maternal Separation Affect the Cerebellum? Assessment of the Oxidative Metabolic Activity and Expression of the c-Fos Protein in Male and Female Rats. THE CEREBELLUM 2019; 19:68-77. [DOI: 10.1007/s12311-019-01087-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
He Z, Sheng W, Lu F, Long Z, Han S, Pang Y, Chen Y, Luo W, Yu Y, Nan X, Cui Q, Chen H. Altered resting-state cerebral blood flow and functional connectivity of striatum in bipolar disorder and major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:177-185. [PMID: 30500413 DOI: 10.1016/j.pnpbp.2018.11.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/26/2018] [Accepted: 11/15/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Clinically distinguishing bipolar disorder (BD) from major depressive disorder (MDD) during depressive states is difficult. Neuroimaging findings suggested that patients with BD and those with MDD differed with respect to the gray matter volumes of their subcortical structures, especially in their striatum. However, whether these disorders have different effects on functionally striatal neuronal activity and connectivity is unclear. METHODS Arterial spin labeling and resting-state functional MRI was performed on 25 currently depressive patients with BD, 25 depressive patients with MDD, and 34 healthy controls (HCs). The functional properties of striatal neuronal activity (cerebral blood flow, CBF) and its functional connectivity (FC) were analyzed, and the results from the three groups were compared. The result of the multiple comparisons was corrected on the basis of the Gaussian Random Field theory. RESULTS The patients with BD and those with MDD both had higher CBF values than the HCs in the right caudate and right putamen. The hyper-metabolism of right striatum in BD patients was associated with increased average duration per depressive episode. The two disorders showed commonly increased FC between the striatum and dorsolateral prefrontal cortex, whereas the altered FC of the striatum with precuneus/cuneus was observed only in patients with BD. CONCLUSIONS Patients with BD and those with MDD had a common deficit in their prefrontal-limbic-striatal circuits. The altered striato-precuneus FC can be considered as a marker for the differentiation of patients with BD from those with MDD.
Collapse
Affiliation(s)
- Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Sheng
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhiliang Long
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shaoqiang Han
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yajing Pang
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuyan Chen
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyu Nan
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qian Cui
- School of Public Administration, University of Electronic Science and Technology of China, Chengdu, China.
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
33
|
Marotta G, Delvecchio G, Pigoni A, Mandolini G, Ciappolino V, Oldani L, Madonna D, Grottaroli M, Altamura AC, Brambilla P. The metabolic basis of psychosis in bipolar disorder: A positron emission tomography study. Bipolar Disord 2019; 21:151-158. [PMID: 30506616 DOI: 10.1111/bdi.12710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Psychotic symptoms are a common feature in bipolar disorder (BD), especially during manic phases, and are associated with a more severe course of illness. However, not all bipolar subjects experience psychosis during the course of their illness, and this difference often guides assessment and pharmacological treatment. The aim of the present study is to elucidate, for the first time, the FDG uptake dysfunctions associated with psychosis in BD patients with and without a history of past psychotic symptoms, through a positron emission tomography (PET) approach. METHODS Fifty BD patients with lifetime psychotic symptoms, 40 BD patients without lifetime psychotic symptoms and 27 healthy controls (HC) were recruited and underwent an 18F-FDG-PET session. RESULTS Compared to HC, BD subjects shared common FDG uptake deficits in several brain areas, including insula, inferior temporal gyrus and middle occipital gyrus. Moreover, we found that BD patients with a history of past psychotic symptoms had a unique FDG uptake alteration in the right fusiform gyrus compared to both BD patients without lifetime psychotic symptoms and HC (all P < 0.01, cFWE corrected). CONCLUSIONS Overall, our results suggest that FDG uptake alterations in brain regions involved in emotion regulation are a key feature of BD, regardless the presence of past psychosis. Finally, we demonstrated that the FDG uptake reduction in fusiform gyrus is associated with the presence of past psychotic symptoms in BD, ultimately leading towards the idea that the fusiform gyrus might be considered a putative biomarker of psychosis.
Collapse
Affiliation(s)
- Giorgio Marotta
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Scientific Institute, IRCCS E. Medea, Pordenone, Italy
| | - Alessandro Pigoni
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianmario Mandolini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucio Oldani
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Domenico Madonna
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marika Grottaroli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alfredo Carlo Altamura
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Psychiatry and Behavioural Sciences, UT Houston Medical School, Houston, TX, USA
| |
Collapse
|
34
|
Abstract
OBJECTIVES Bipolar disorder (BD) is associated with impairments in facial emotion and emotional prosody perception during both mood episodes and periods of remission. To expand on previous research, the current study investigated cross-modal emotion perception, that is, matching of facial emotion and emotional prosody in remitted BD patients. METHODS Fifty-nine outpatients with BD and 45 healthy volunteers were included into a cross-sectional study. Cross-modal emotion perception was investigated by using two subtests out of the Comprehensive Affective Testing System (CATS). RESULTS Compared to control subjects patients were impaired in matching sad (p < .001) and angry emotional prosody (p = .034) to one of five emotional faces exhibiting the corresponding emotion and significantly more frequently matched sad emotional prosody to happy faces (p < .001) and angry emotional prosody to neutral faces (p = .017). In addition, patients were impaired in matching neutral emotional faces to the emotional prosody of one of three sentences (p = .006) and significantly more often matched neutral faces to sad emotional prosody (p = .014). CONCLUSIONS These findings demonstrate that, even during periods of symptomatic remission, patients suffering from BD are impaired in matching facial emotion and emotional prosody. As this type of emotion processing is relevant in everyday life, our results point to the necessity to provide specific training programs to improve psychosocial outcomes. (JINS, 2019, 25, 336-342).
Collapse
|
35
|
Kazemi R, Rostami R, Khomami S, Baghdadi G, Rezaei M, Hata M, Aoki Y, Ishii R, Iwase M, Fitzgerald PB. Bilateral Transcranial Magnetic Stimulation on DLPFC Changes Resting State Networks and Cognitive Function in Patients With Bipolar Depression. Front Hum Neurosci 2018; 12:356. [PMID: 30233346 PMCID: PMC6135217 DOI: 10.3389/fnhum.2018.00356] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/20/2018] [Indexed: 01/13/2023] Open
Abstract
Introduction: Bipolar patients have abnormalities in cognitive functions and emotional processing. Two resting state networks (RSNs), the default mode network (DMN) and the sensorimotor network (SMN), play a decisive role in these two functions. Dorsolateral prefrontal cortex (DLPFC) is one of the main areas in the central executive network (CEN), which is linked to the activities of each of the two networks. Studies have found DLPFC abnormalities in both hemispheres of patients with bipolar depression. We hypothesized that the bilateral repetitive transcranial magnetic stimulation (rTMS) of DLPFC would produce changes in the activity of both the SMN and DMN as well as relevant cognitive function in patients with bipolar depression that responded to treatment. Methods: 20 patients with bipolar depression underwent 10 sessions of 1 Hz rTMS on right DLPFC with subsequent 10 Hz rTMS on left DLPFC. Changes in electroencephalography resting networks between pre and post rTMS were evaluated utilizing low-resolution electromagnetic tomography (eLORETA). Depression symptom was assessed using the Beck Depression Inventory (BDI-II) and cognitive function was assessed by Verbal Fluency Test (VFT), Rey Auditory Verbal Learning Test (RAVLT), Stroop Test, and Wisconsin Card Sorting Test (WCST). Results: Responders to rTMS showed significantly lower DMN activity at baseline and a significant decrease in SMN connectivity after treatment. Non-responders did not significantly differ from the control group at the baseline and they showed higher activity in the SMN, visual network, and visual perception network compared to control group following treatment. Bilateral rTMS resulted in significant changes in the executive functions, verbal memory, and depression symptoms. No significant changes were observed in selective attention and verbal fluency. Conclusion: Bilateral stimulation of DLPFC, as the main node of CEN, results in changes in the activity of the SMN and consequently improves verbal memory and executive functions in patients with bipolar depression.
Collapse
Affiliation(s)
- Reza Kazemi
- Cognitive Lab, Department of Psychology, University of Tehran, Tehran, Iran.,Atieh Clinical Neuroscience Center, Tehran, Iran
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran
| | - Sanaz Khomami
- Cognitive Lab, Department of Psychology, University of Tehran, Tehran, Iran
| | - Golnaz Baghdadi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Rezaei
- Behavioral Sciences Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masahiro Hata
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasunori Aoki
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryouhei Ishii
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masao Iwase
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Paul B Fitzgerald
- Epworth Healthcare, Epworth Clinic Camberwell, Victoria Australia and Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Shaffer JJ, Johnson CP, Fiedorowicz JG, Christensen GE, Wemmie JA, Magnotta VA. Impaired sensory processing measured by functional MRI in Bipolar disorder manic and depressed mood states. Brain Imaging Behav 2018; 12:837-847. [PMID: 28674759 PMCID: PMC5752628 DOI: 10.1007/s11682-017-9741-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bipolar disorder is characterized by recurring episodes of depression and mania. Defining differences in brain function during these states is an important goal of bipolar disorder research. However, few imaging studies have directly compared brain activity between bipolar mood states. Herein, we compare functional magnetic resonance imaging (fMRI) responses during a flashing checkerboard stimulus between bipolar participants across mood states (euthymia, depression, and mania) in order to identify functional differences between these states. 40 participants with bipolar I disorder and 33 healthy controls underwent fMRI during the presentation of the stimulus. A total of 23 euthymic-state, 16 manic-state, 15 depressed-state, and 32 healthy control imaging sessions were analyzed in order to compare functional activation during the stimulus between mood states and with healthy controls. A reduced response was identified in the visual cortex in both the depressed and manic groups compared to euthymic and healthy participants. Functional differences between bipolar mood states were also observed in the cerebellum, thalamus, striatum, and hippocampus. Functional differences between mood states occurred in several brain regions involved in visual and other sensory processing. These differences suggest that altered visual processing may be a feature of mood states in bipolar disorder. The key limitations of this study are modest mood-state group size and the limited temporal resolution of fMRI which prevents the segregation of primary visual activity from regulatory feedback mechanisms.
Collapse
Affiliation(s)
- Joseph J Shaffer
- Department of Radiology, University of Iowa, Iowa City, IA, USA.
- , PBDB L420, 169 Newton Rd., Iowa City, IA, 52242, USA.
| | - Casey P Johnson
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Jess G Fiedorowicz
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Epidemiology, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| | - Gary E Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - John A Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Vincent A Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
37
|
Metin SZ, Erguzel TT, Ertan G, Salcini C, Kocarslan B, Cebi M, Metin B, Tanridag O, Tarhan N. The Use of Quantitative EEG for Differentiating Frontotemporal Dementia From Late-Onset Bipolar Disorder. Clin EEG Neurosci 2018; 49:171-176. [PMID: 29284291 DOI: 10.1177/1550059417750914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The behavioral variant frontotemporal dementia (bvFTD) usually emerges with behavioral changes similar to changes in late-life bipolar disorder (BD) especially in the early stages. According to the literature, a substantial number of bvFTD cases have been misdiagnosed as BD. Since the literature lacks studies comparing differential diagnosis ability of electrophysiological and neuroimaging findings in BD and bvFTD, we aimed to show their classification power using an artificial neural network and genetic algorithm based approach. Eighteen patients with the diagnosis of bvFTD and 20 patients with the diagnosis of late-life BD are included in the study. All patients' clinical magnetic resonance imaging (MRI) scan and electroencephalography recordings were assessed by a double-blind method to make diagnosis from MRI data. Classification of bvFTD and BD from total 38 participants was performed using feature selection and a neural network based on general algorithm. The artificial neural network method classified BD from bvFTD with 76% overall accuracy only by using on EEG power values. The radiological diagnosis classified BD from bvFTD with 79% overall accuracy. When the radiological diagnosis was added to the EEG analysis, the total classification performance raised to 87% overall accuracy. These results suggest that EEG and MRI combination has more powerful classification ability as compared with EEG and MRI alone. The findings may support the utility of neurophysiological and structural neuroimaging assessments for discriminating the 2 pathologies.
Collapse
Affiliation(s)
- Sinem Zeynep Metin
- 1 Department of Psychology, Uskudar University, Istanbul, Turkey.,2 NPIstanbul Brain Hospital, Istanbul, Turkey
| | | | - Gulhan Ertan
- 4 Department of Radiology, Medipol University, Istanbul, Turkey
| | | | - Betul Kocarslan
- 5 Department of Neuroscience, Uskudar University, Istanbul, Turkey
| | - Merve Cebi
- 1 Department of Psychology, Uskudar University, Istanbul, Turkey
| | - Baris Metin
- 1 Department of Psychology, Uskudar University, Istanbul, Turkey.,5 Department of Neuroscience, Uskudar University, Istanbul, Turkey
| | - Oguz Tanridag
- 1 Department of Psychology, Uskudar University, Istanbul, Turkey.,5 Department of Neuroscience, Uskudar University, Istanbul, Turkey
| | - Nevzat Tarhan
- 1 Department of Psychology, Uskudar University, Istanbul, Turkey.,2 NPIstanbul Brain Hospital, Istanbul, Turkey
| |
Collapse
|
38
|
Surguladze S, Keedwell P, Phillips M. Neural systems underlying affective disorders. ACTA ACUST UNITED AC 2018. [DOI: 10.1192/apt.9.6.446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Three main approaches are used to explore the neural correlates of mood disorder: neuropsychological studies, neuroimaging studies and post-mortem investigations. Lesion studies implicate disturbances in the frontal lobe, basal ganglia, striatum and anterior temporal cortex. Early neurocognitive and neuropathological investigations led to a ‘hypofrontality’ hypothesis of unipolar and bipolar depression, but functional neuroimaging has revealed a more complex picture. Thus, increased metabolism may occur in the subgenual anterior cingulate gyrus in resting-state studies of depression and sad-mood induction. Antidepressants may reduce this activity. Amygdala hyperactivation also is associated with affective disorders. Task-related studies reveal abnormal biases in memory, the experience of pleasure and the perception of emotional facial expressions. There is still little clarity whether the abnormalities in brain activation represent state or trait characteristics of affective disorders.
Collapse
|
39
|
Zsido RG, Villringer A, Sacher J. Using positron emission tomography to investigate hormone-mediated neurochemical changes across the female lifespan: implications for depression. Int Rev Psychiatry 2017; 29:580-596. [PMID: 29199875 DOI: 10.1080/09540261.2017.1397607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ovarian hormones, particularly oestrogen and progesterone, undergo major fluctuations across the female lifespan. These hormone transition periods, such as the transition from pregnancy to postpartum, as well as the transition into menopause (perimenopause), are also known to be times of elevated susceptibility to depression. This study reviews how these transition periods likely influence neurochemical changes in the brain that result in disease vulnerability. While there are known associations between oestrogen/progesterone and different monoaminergic systems, the interactions and their potential implications for mood disorders are relatively unknown. Positron Emission Tomography (PET) allows for the in-vivo quantification of such neurochemical changes, and, thus, can provide valuable insight into how both subtle and dramatic shifts in hormones contribute to the elevated rates of depression during pre-menstrual, post-partum, and perimenopausal periods in a woman's life. As one better understands how to address the challenges of PET studies involving highly vulnerable populations, such as women who have recently given birth, one will gain the insight necessary to design and individualize treatment and therapy. Understanding the precise time-line in younger women when dramatic fluctuations in the hormonal milieu may contribute to brain changes may present a powerful opportunity to intervene before a vulnerable state develops into a diseased state in later life.
Collapse
Affiliation(s)
- Rachel G Zsido
- a Emotion NeuroimaGinG(EGG)-Lab , Max Planck Institute for Cognitive and Brain Sciences , Leipzig , Germany.,b Department of Neurology , Max Planck Institute for Cognitive and Brain Sciences , Leipzig , Germany
| | - Arno Villringer
- b Department of Neurology , Max Planck Institute for Cognitive and Brain Sciences , Leipzig , Germany.,c Clinic for Cognitive Neurology , University of Leipzig , Leipzig , Germany
| | - Julia Sacher
- a Emotion NeuroimaGinG(EGG)-Lab , Max Planck Institute for Cognitive and Brain Sciences , Leipzig , Germany.,b Department of Neurology , Max Planck Institute for Cognitive and Brain Sciences , Leipzig , Germany.,c Clinic for Cognitive Neurology , University of Leipzig , Leipzig , Germany
| |
Collapse
|
40
|
Shinn AK, Roh YS, Ravichandran CT, Baker JT, Öngür D, Cohen BM. Aberrant cerebellar connectivity in bipolar disorder with psychosis. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:438-448. [PMID: 28730183 DOI: 10.1016/j.bpsc.2016.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The cerebellum, which modulates affect and cognition in addition to motor functions, may contribute substantially to the pathophysiology of mood and psychotic disorders, such as bipolar disorder. A growing literature points to cerebellar abnormalities in bipolar disorder. However, no studies have investigated the topographic representations of resting state cerebellar networks in bipolar disorder, specifically their functional connectivity to cerebral cortical networks. METHODS Using a well-defined cerebral cortical parcellation scheme as functional connectivity seeds, we compared ten cerebellar resting state networks in 49 patients with bipolar disorder and a lifetime history of psychotic features and 55 healthy control participants matched for age, sex, and image signal-to-noise ratio. RESULTS Patients with psychotic bipolar disorder showed reduced cerebro-cerebellar functional connectivity in somatomotor A, ventral attention, salience, and frontoparietal control A and B networks relative to healthy control participants. These findings were not significantly correlated with current symptoms. CONCLUSIONS Patients with psychotic bipolar disorder showed evidence of cerebro-cerebellar dysconnectivity in selective networks. These disease-related changes were substantial and not explained by medication exposure or substance use. Therefore, they may be mechanistically relevant to the underlying susceptibility to mood dysregulation and psychosis. Cerebellar mechanisms deserve further exploration in psychiatric conditions, and this study's findings may have value in guiding future studies on pathophysiology and treatment of mood and psychotic disorders, in particular.
Collapse
Affiliation(s)
- Ann K Shinn
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Youkyung S Roh
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
| | - Caitlin T Ravichandran
- Program for Neuropsychiatric Research, McLean Hospital, Belmont, MA, USA.,Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Justin T Baker
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Dost Öngür
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bruce M Cohen
- Program for Neuropsychiatric Research, McLean Hospital, Belmont, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Morris G, Walder K, McGee SL, Dean OM, Tye SJ, Maes M, Berk M. A model of the mitochondrial basis of bipolar disorder. Neurosci Biobehav Rev 2017; 74:1-20. [PMID: 28093238 DOI: 10.1016/j.neubiorev.2017.01.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
|
42
|
Kao CF, Chen HW, Chen HC, Yang JH, Huang MC, Chiu YH, Lin SK, Lee YC, Liu CM, Chuang LC, Chen CH, Wu JY, Lu RB, Kuo PH. Identification of Susceptible Loci and Enriched Pathways for Bipolar II Disorder Using Genome-Wide Association Studies. Int J Neuropsychopharmacol 2016; 19:pyw064. [PMID: 27450446 PMCID: PMC5203756 DOI: 10.1093/ijnp/pyw064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This study aimed to identify susceptible loci and enriched pathways for bipolar disorder subtype II. METHODS We conducted a genome-wide association scan in discovery samples with 189 bipolar disorder subtype II patients and 1773 controls, and replication samples with 283 bipolar disorder subtype II patients and 500 controls in a Taiwanese Han population using Affymetrix Axiom Genome-Wide CHB1 Array. We performed single-marker and gene-based association analyses, as well as calculated polygeneic risk scores for bipolar disorder subtype II. Pathway enrichment analyses were employed to reveal significant biological pathways. RESULTS Seven markers were found to be associated with bipolar disorder subtype II in meta-analysis combining both discovery and replication samples (P<5.0×10-6), including markers in or close to MYO16, HSP90AB3P, noncoding gene LOC100507632, and markers in chromosomes 4 and 10. A novel locus, ETF1, was associated with bipolar disorder subtype II (P<6.0×10-3) in gene-based association tests. Results of risk evaluation demonstrated that higher genetic risk scores were able to distinguish bipolar disorder subtype II patients from healthy controls in both discovery (P=3.9×10-4~1.0×10-3) and replication samples (2.8×10-4~1.7×10-3). Genetic variance explained by chip markers for bipolar disorder subtype II was substantial in the discovery (55.1%) and replication (60.5%) samples. Moreover, pathways related to neurodevelopmental function, signal transduction, neuronal system, and cell adhesion molecules were significantly associated with bipolar disorder subtype II. CONCLUSION We reported novel susceptible loci for pure bipolar subtype II disorder that is less addressed in the literature. Future studies are needed to confirm the roles of these loci for bipolar disorder subtype II.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ru-Band Lu
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan (Dr Kao, Mr Lee, and Dr Kuo); Department of Agronomy, College of Agriculture & Natural Resources, National Chung Hsing University, Taichung, Taiwan (Dr Kao); National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (Mrs Chen, Dr Yang, Dr Chen, and Dr Wu); Department of Psychiatry & Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan (Dr Chen); Department of Nursing, Cardinal Tien Junior College of Healthcare & Management, Yilan, Taiwan (Dr Chuang); Department of Psychiatry, School of Medicine, Taipei Medical University, Taipei, Taiwan (Drs Huang, Chiu, and Lin); Department of Psychiatry, Taipei City Psychiatric Center, Taipei, Taiwan (Dr Huang); Department of Psychiatry, Wan Fang Medical Center, Taipei, Taiwan (Dr Chiu); Department of Psychiatry, Taipei City Hospital and Psychiatric Center, Taipei, Taiwan (Dr Lin); Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan (Dr Liu); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan (Dr Liu); Department of Psychiatry, National Cheng Kung University and Hospital, Tainan, Taiwan (Dr Lu); Research Center for Genes, Environment and Human Health, National Taiwan University, Taipei, Taiwan (Dr Kuo).
| | - Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan (Dr Kao, Mr Lee, and Dr Kuo); Department of Agronomy, College of Agriculture & Natural Resources, National Chung Hsing University, Taichung, Taiwan (Dr Kao); National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (Mrs Chen, Dr Yang, Dr Chen, and Dr Wu); Department of Psychiatry & Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan (Dr Chen); Department of Nursing, Cardinal Tien Junior College of Healthcare & Management, Yilan, Taiwan (Dr Chuang); Department of Psychiatry, School of Medicine, Taipei Medical University, Taipei, Taiwan (Drs Huang, Chiu, and Lin); Department of Psychiatry, Taipei City Psychiatric Center, Taipei, Taiwan (Dr Huang); Department of Psychiatry, Wan Fang Medical Center, Taipei, Taiwan (Dr Chiu); Department of Psychiatry, Taipei City Hospital and Psychiatric Center, Taipei, Taiwan (Dr Lin); Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan (Dr Liu); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan (Dr Liu); Department of Psychiatry, National Cheng Kung University and Hospital, Tainan, Taiwan (Dr Lu); Research Center for Genes, Environment and Human Health, National Taiwan University, Taipei, Taiwan (Dr Kuo).
| |
Collapse
|
43
|
Levothyroxine effects on depressive symptoms and limbic glucose metabolism in bipolar disorder: a randomized, placebo-controlled positron emission tomography study. Mol Psychiatry 2016; 21:229-36. [PMID: 25600111 PMCID: PMC4790155 DOI: 10.1038/mp.2014.186] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/30/2014] [Accepted: 11/24/2014] [Indexed: 02/07/2023]
Abstract
Adding supraphysiologic doses of levothyroxine (L-T4) to standard treatment for bipolar depression shows promise, but the mechanisms underlying clinical improvement are unknown. In a previous pilot study, L-T4 treatment reduced depression scores and activity within the anterior limbic network. Here we extended this work in a randomized, double-blind, placebo-controlled study of patients with bipolar depression. Cerebral glucose metabolism was assessed with positron emission tomography and [F-18]fluorodeoxyglucose before and after 6 weeks of treatment with L-T4 (n=15) or placebo (n=10) in 12 volumes of interest (VOIs): the bilateral thalamus, amygdala, hippocampus, dorsal striatum and ventral striatum, and midline cerebellar vermis and subgenual cingulate cortex. Radioactivity in the VOIs, normalized to whole-brain radioactivity was taken as a surrogate index of glucose metabolism, and markers of thyroid function were assayed. Changes in brain activity and their association with clinical response were assessed using statistical parametric mapping. Adjunctive L-T4 treatment produced a significant decline in depression scores during the 6-week treatment. In patients treated with L-T4, we found a significant decrease in regional activity at P<0.05 after Bonferroni correction in the left thalamus, right amygdala, right hippocampus, left ventral striatum and the right dorsal striatum. Decreases in the left thalamus, left dorsal striatum and the subgenual cingulate were correlated with a reduction in depression scores (P<0.05 after Bonferroni correction). Placebo treatment was associated with a significant decrease in activity only in the right amygdala, and no region had a change in activity that was correlated with change in depression scores. The groups differed significantly in the relationship between the changes in depression scores and in activity in the thalamus bilaterally and the left ventral striatum. The findings provide evidence that administration of supraphysiologic thyroid hormone improves depressive symptoms in patients with bipolar disorder by modulating function in components of the anterior limbic network.
Collapse
|
44
|
Savitz J, Morris HM, Drevets WC. Neuroimaging Studies of Bipolar Depression: Therapeutic Implications. BIPOLAR DEPRESSION: MOLECULAR NEUROBIOLOGY, CLINICAL DIAGNOSIS, AND PHARMACOTHERAPY 2016. [DOI: 10.1007/978-3-319-31689-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Phillips JR, Hewedi DH, Eissa AM, Moustafa AA. The cerebellum and psychiatric disorders. Front Public Health 2015; 3:66. [PMID: 26000269 PMCID: PMC4419550 DOI: 10.3389/fpubh.2015.00066] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/07/2015] [Indexed: 01/05/2023] Open
Abstract
The cerebellum has been considered for a long time to play a role solely in motor coordination. However, studies over the past two decades have shown that the cerebellum also plays a key role in many motor, cognitive, and emotional processes. In addition, studies have also shown that the cerebellum is implicated in many psychiatric disorders including attention deficit hyperactivity disorder, autism spectrum disorders, schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorders. In this review, we discuss existing studies reporting cerebellar dysfunction in various psychiatric disorders. We will also discuss future directions for studies linking the cerebellum to psychiatric disorders.
Collapse
Affiliation(s)
- Joseph R. Phillips
- School of Social Sciences and Psychology, University of Western Sydney, Sydney, NSW, Australia
| | - Doaa H. Hewedi
- Psychogeriatric Research Center, Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Abeer M. Eissa
- Psychogeriatric Research Center, Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed A. Moustafa
- School of Social Sciences and Psychology, University of Western Sydney, Sydney, NSW, Australia
- Marcs Institute for Brain and Behaviour, University of Western Sydney, Sydney, NSW, Australia
- Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ, USA
| |
Collapse
|
46
|
Ma Y, Li B, Wang C, Zhang W, Rao Y, Han S. Allelic variation in 5-HTTLPR and the effects of citalopram on the emotional neural network. Br J Psychiatry 2015; 206:385-92. [PMID: 25745133 DOI: 10.1192/bjp.bp.114.150128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/15/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs), such as citalopram, which selectively block serotonin transporter (5-HTT) activity, are widely used in the treatment of depression and anxiety disorders. Numerous neuroimaging studies have examined the effects of SSRIs on emotional processes. However, there are considerable inter-individual differences in SSRI effect, and a recent meta-analysis further revealed discrepant effects of acute SSRI administration on neural responses to negative emotions in healthy adults. AIMS We examined how a variant of the serotonin-transporter polymorphism (5-HTTLPR), which affects the expression and function of 5-HTT, influenced the acute effects of an SSRI (citalopram) on emotion-related brain activity in healthy adults. METHOD Combining genetic neuroimaging, pharmacological technique and a psychological paradigm of emotion recognition, we scanned the short/short (s/s) and long/long (l/l) variants of 5-HTTLPR during perception of fearful, happy and neutral facial expressions after the acute administration of an SSRI (i.e. 30 mg citalopram administered orally) or placebo administration. RESULTS We found that 5-HTTLPR modulated the acute effects of citalopram on neural responses to negative emotions. Specifically, relative to placebo, citalopram increased amygdala and insula activity in l/l but not s/s homozygotes during perception of fearful faces. Similar analyses of brain activity in response to happy faces did not show any significant effects. CONCLUSIONS Our combined pharmacogenetic and functional imaging results provide a neurogenetic mechanism for discrepant acute effects of SSRIs.
Collapse
Affiliation(s)
- Yina Ma
- Yina Ma, PhD, Department of Psychology, Peking University, China, and Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, USA; Bingfeng Li, BS, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chenbo Wang, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Wenxia Zhang, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Yi Rao, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Shihui Han, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Bingfeng Li
- Yina Ma, PhD, Department of Psychology, Peking University, China, and Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, USA; Bingfeng Li, BS, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chenbo Wang, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Wenxia Zhang, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Yi Rao, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Shihui Han, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Chenbo Wang
- Yina Ma, PhD, Department of Psychology, Peking University, China, and Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, USA; Bingfeng Li, BS, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chenbo Wang, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Wenxia Zhang, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Yi Rao, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Shihui Han, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Wenxia Zhang
- Yina Ma, PhD, Department of Psychology, Peking University, China, and Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, USA; Bingfeng Li, BS, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chenbo Wang, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Wenxia Zhang, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Yi Rao, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Shihui Han, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yi Rao
- Yina Ma, PhD, Department of Psychology, Peking University, China, and Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, USA; Bingfeng Li, BS, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chenbo Wang, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Wenxia Zhang, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Yi Rao, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Shihui Han, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Shihui Han
- Yina Ma, PhD, Department of Psychology, Peking University, China, and Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, USA; Bingfeng Li, BS, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chenbo Wang, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Wenxia Zhang, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Yi Rao, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Shihui Han, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
47
|
Li XB, Tang YL, Wang CY, de Leon J. Clozapine for treatment-resistant bipolar disorder: a systematic review. Bipolar Disord 2015; 17:235-47. [PMID: 25346322 DOI: 10.1111/bdi.12272] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/11/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of clozapine for treatment-resistant bipolar disorder (TRBD). METHODS A systematic review of randomized controlled studies, open-label prospective studies, and retrospective studies of patients with TRBD was carried out. Interventions included clozapine monotherapy or clozapine combined with other medications. Outcome measures were efficacy and adverse drug reactions (ADRs). RESULTS Fifteen clinical trials with a total sample of 1,044 patients met the inclusion criteria. Clozapine monotherapy or clozapine combined with other treatments for TRBD was associated with improvement in: (i) symptoms of mania, depression, rapid cycling, and psychotic symptoms, with many patients with TRBD achieving a remission or response; (ii) the number and duration of hospitalizations, the number of psychotropic co-medications, and the number of hospital visits for somatic reasons for intentional self-harm/overdose; (iii) suicidal ideation and aggressive behavior; and (iv) social functioning. In addition, patients with TRBD showed greater clinical improvement in long-term follow-up when compared with published schizophrenia data. Sedation (12%), constipation (5.0%), sialorrhea (5.2%), weight gain (4%), and body ache/pain (2%) were the commonly reported ADRs; however, these symptoms but did not usually require drug discontinuation. The percentage of severe ADRs reported, such as leukopenia (2%), agranulocytosis (0.3%), and seizure (0.5%), appeared to be lower than those reported in the published schizophrenia literature. CONCLUSION The limited current evidence supports the concept that clozapine may be both an effective and a relatively safe medication for TRBD.
Collapse
Affiliation(s)
- Xian-Bin Li
- Beijing Key Laboratory of Mental Disorders, Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China; Center of Schizophrenia, Beijing Institute for Brain Disorders, Laboratory of Brain Disorders (Capital Medical University), Ministry of Science and Technology, Beijing, China
| | | | | | | |
Collapse
|
48
|
Lin K, Xu G, Lu W, Ouyang H, Dang Y, Guo Y, So KF, Lee TM. Neuropsychological performance of patients with soft bipolar spectrum disorders. Bipolar Disord 2015; 17:194-204. [PMID: 25048414 DOI: 10.1111/bdi.12236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/09/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVES There is much evidence that shows that a substantial number of individuals with DSM-IV-defined unipolar depression (UP) manifest hypomanic sub-syndrome and bipolar diathesis. Other definitions have conceptualized the term soft bipolar spectrum (SBP) for these individuals. Little is known about the cognitive profiles of individuals with SBP. We hypothesized that they are representative of individuals with bipolar II disorder and are different from that of 'strict' UP. METHODS Consecutive referrals suffering major depressive episodes were categorically assigned to groups of either bipolar I disorder (n = 98), bipolar II disorder (n = 138), or UP (n = 300). Based on the SBP criteria by Akiskal and Pinto (17), patients with UP were subdivided into 81 SBP and 219 strict UP. We administered self- and clinician-administered scales to evaluate affective temperaments, and neuropsychological tests to assess seven cognitive domains. RESULTS Patients with SBP performed significantly better than strict UP patients in the domains of processing speed (p = 0.002), visual-spatial memory (p = 0.017), and verbal working memory (p = 0.017). Compared to patients with bipolar I disorder, patients with SBP were significantly better in set shifting (p < 0.001) and visual-spatial memory (p = 0.042). Patients with SBP performed similarly to patients with bipolar II disorder in all of the cognitive domains tested (p > 0.05). There was a group × cognitive domain interaction effect between bipolar I disorder, bipolar II disorder, SBP, and strict UP groups [Pillai's F = 2.231, df = (18,1437), p = 0.002]. CONCLUSIONS Our data suggest that patients with SBP differ from patients with UP not only in external validators (e.g., family history of bipolar disorder) and hypomanic symptoms, but also in neuropsychological performance and that the profiles of cognitive functioning were different across bipolar I disorder and 'bipolar II spectrum' that subsumes bipolar II disorder and SBP.
Collapse
Affiliation(s)
- Kangguang Lin
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Department of Psychiatry, Guangzhou Psychiatric Hospital, Affiliated Hospital of Guangzhou Medical University, Guangzhou; Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
49
|
John CS, Sypek EI, Carlezon WA, Cohen BM, Öngür D, Bechtholt AJ. Blockade of the GLT-1 Transporter in the Central Nucleus of the Amygdala Induces both Anxiety and Depressive-Like Symptoms. Neuropsychopharmacology 2015; 40:1700-8. [PMID: 25586634 DOI: 10.1038/npp.2015.16] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/15/2014] [Accepted: 01/05/2015] [Indexed: 02/06/2023]
Abstract
Depression has been associated with abnormalities in glutamatergic neurotransmission and decreased astrocyte number in limbic areas. We previously demonstrated that global and prefrontal cortical blockade of the astrocytic glutamate transporter (GLT-1) induces anhedonia and c-Fos expression in areas that regulate anxiety, including the central amygdala (CEA). Given the role of the amygdala in anxiety and the high degree of comorbidity between anxiety and depression, we hypothesized that GLT-1 blockade in the CEA would induce symptoms of anhedonia and anxiety in rats. We microinjected the GLT-1 inhibitor, dihydrokainic acid (DHK), into the CEA and examined effects on intracranial self-stimulation (ICSS) as an index of hedonic state, and on behavior in two anxiety paradigms, elevated plus maze (EPM) and fear conditioning. At lower doses, intra-CEA DHK produced modest increases in ICSS responding (T0). Higher doses resulted in complete cessation of responding for 15 min, suggesting an anhedonic or depressive-like effect. Intra-CEA DHK also increased anxiety-like behavior such that percent time in the open arms and total entries were decreased in the EPM and acquisition of freezing behavior to the tone was increased in a fear-conditioning paradigm. These effects did not appear to be explained by non-specific changes in activity, because effects on fear conditioning were assessed in a drug-free state, and a separate activity test showed no significant effects of intra-CEA DHK on locomotion. Taken together, these studies suggest that blockade of GLT-1 in the CEA is sufficient to induce both anhedonia and anxiety and therefore that a lack of glutamate uptake resulting from glial deficits may contribute to the comorbidity of depression and anxiety.
Collapse
Affiliation(s)
- Catherine S John
- Department of Psychiatry, Harvard Medical School-McLean Hospital, Belmont, MA, USA
| | - Elizabeth I Sypek
- Department of Psychiatry, Harvard Medical School-McLean Hospital, Belmont, MA, USA
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School-McLean Hospital, Belmont, MA, USA
| | - Bruce M Cohen
- Department of Psychiatry, Harvard Medical School-McLean Hospital, Belmont, MA, USA
| | - Dost Öngür
- Department of Psychiatry, Harvard Medical School-McLean Hospital, Belmont, MA, USA
| | - Anita J Bechtholt
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
50
|
Alloy LB, Nusslock R, Boland EM. The development and course of bipolar spectrum disorders: an integrated reward and circadian rhythm dysregulation model. Annu Rev Clin Psychol 2015; 11:213-50. [PMID: 25581235 PMCID: PMC4380533 DOI: 10.1146/annurev-clinpsy-032814-112902] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this article, we present and review the evidence for two major biopsychosocial theories of the onset and course of bipolar spectrum disorders (BSDs) that integrate behavioral, environmental, and neurobiological mechanisms: the reward hypersensitivity and the social/circadian rhythm disruption models. We describe the clinical features, spectrum, age of onset, and course of BSDs. We then discuss research designs relevant to demonstrating whether a hypothesized mechanism represents a correlate, vulnerability, or predictor of the course of BSDs, as well as important methodological issues. We next present the reward hypersensitivity model of BSD, followed by the social/circadian rhythm disruption model of BSD. For each model, we review evidence regarding whether the proposed underlying mechanism is associated with BSDs, provides vulnerability to the onset of BSDs, and predicts the course of BSDs. We then present a new integrated reward/circadian rhythm (RCR) dysregulation model of BSD and discuss how the RCR model explains the symptoms, onset, and course of BSDs. We end with recommendations for future research directions.
Collapse
Affiliation(s)
- Lauren B Alloy
- Department of Psychology, Temple University, Philadelphia, Pennsylvania 19122; ,
| | | | | |
Collapse
|