1
|
Golla VK, Prajapati JD, Kleinekathöfer U. Millisecond-Long Simulations of Antibiotics Transport through Outer Membrane Channels. J Chem Theory Comput 2021; 17:549-559. [PMID: 33378186 DOI: 10.1021/acs.jctc.0c01088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To reach their target site inside Gram-negative bacteria, almost all antibiotics need to cross the outer membrane. Computational modeling of such processes can be numerically demanding due to the size of the systems and especially due to the timescales involved. Recently, a hybrid Brownian and molecular dynamics approach, i.e., Brownian dynamics including explicit atoms (BRODEA), has been developed and evaluated for studying the transport of monoatomic ions through membrane channels. Later on, this numerically efficient scheme has been applied to determine the free energy surfaces of the ciprofloxacin and enrofloxacin translocation through the porin OmpC using temperature-accelerated simulations. To improve the usability and accuracy of the approach, schemes to approximate the position-dependent diffusion constant of the molecule while traversing the pore had to be established. To this end, we have studied the translocation of the charged phosphonic acid antibiotic fosfomycin through the porin OmpF from Escherichia coli devising and benchmarking several diffusion models. To test the efficiency and sensitivity of these models, the effect of OmpF mutations on the permeation of fosfomycin was analyzed. Permeation events have been recorded over millisecond-long biased and unbiased simulations, from which thermodynamics and kinetics quantities of the translocation processes were determined. As a result, the use of the BRODEA approach, together with the appropriate diffusion model, was seen to accurately reproduce the findings observed in electrophysiology experiments and all-atom molecular dynamics simulations. These results suggest that the BRODEA approach can become a valuable tool for screening numerous compounds to evaluate their outer membrane permeability, a property important in the development of new antibiotics.
Collapse
Affiliation(s)
- Vinaya Kumar Golla
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | | | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
2
|
Bartsch A, Llabrés S, Pein F, Kattner C, Schön M, Diehn M, Tanabe M, Munk A, Zachariae U, Steinem C. High-resolution experimental and computational electrophysiology reveals weak β-lactam binding events in the porin PorB. Sci Rep 2019; 9:1264. [PMID: 30718567 PMCID: PMC6362148 DOI: 10.1038/s41598-018-37066-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
The permeation of most antibiotics through the outer membrane of Gram-negative bacteria occurs through porin channels. To design drugs with increased activity against Gram-negative bacteria in the face of the antibiotic resistance crisis, the strict constraints on the physicochemical properties of the permeants imposed by these channels must be better understood. Here we show that a combination of high-resolution electrophysiology, new noise-filtering analysis protocols and atomistic biomolecular simulations reveals weak binding events between the β-lactam antibiotic ampicillin and the porin PorB from the pathogenic bacterium Neisseria meningitidis. In particular, an asymmetry often seen in the electrophysiological characteristics of ligand-bound channels is utilised to characterise the binding site and molecular interactions in detail, based on the principles of electro-osmotic flow through the channel. Our results provide a rationale for the determinants that govern the binding and permeation of zwitterionic antibiotics in porin channels.
Collapse
Affiliation(s)
- Annika Bartsch
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Salomé Llabrés
- Computational Biology, School of Life Sciences, University of Dundee, Nethergate, Dundee, DD1 5EH, UK
| | - Florian Pein
- Institute for Mathematical Stochastics, University of Göttingen, Goldschmidtstraße 7, 37077, Göttingen, Germany
| | - Christof Kattner
- ZIK HALOmem, Membrane Protein Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Straße 3, 06120, Halle (Saale), Germany
- Juno Therapeutics GmbH, Göttingen, Germany
| | - Markus Schön
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Manuel Diehn
- Institute for Mathematical Stochastics, University of Göttingen, Goldschmidtstraße 7, 37077, Göttingen, Germany
| | - Mikio Tanabe
- Institute of Materials Structure Science, Structural Biology Research Center, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Axel Munk
- Institute for Mathematical Stochastics, University of Göttingen, Goldschmidtstraße 7, 37077, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Nethergate, Dundee, DD1 5EH, UK.
- Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee, DD1 4NH, UK.
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.
| |
Collapse
|
3
|
Golla VK, Sans-Serramitjana E, Pothula KR, Benier L, Bafna JA, Winterhalter M, Kleinekathöfer U. Fosfomycin Permeation through the Outer Membrane Porin OmpF. Biophys J 2019; 116:258-269. [PMID: 30616836 PMCID: PMC6350074 DOI: 10.1016/j.bpj.2018.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/21/2018] [Accepted: 12/03/2018] [Indexed: 01/14/2023] Open
Abstract
Fosfomycin is a frequently prescribed drug in the treatment of acute urinary tract infections. It enters the bacterial cytoplasm and inhibits the biosynthesis of peptidoglycans by targeting the MurA enzyme. Despite extensive pharmacological studies and clinical use, the permeability of fosfomycin across the bacterial outer membrane is largely unexplored. Here, we investigate the fosfomycin permeability across the outer membrane of Gram-negative bacteria by electrophysiology experiments as well as by all-atom molecular dynamics simulations including free-energy and applied-field techniques. Notably, in an electrophysiological zero-current assay as well as in the molecular simulations, we found that fosfomycin can rapidly permeate the abundant Escherichia coli porin OmpF. Furthermore, two triple mutants in the constriction region of the porin have been investigated. The permeation rates through these mutants are slightly lower than that of the wild type but fosfomycin can still permeate. Altogether, this work unravels molecular details of fosfomycin permeation through the outer membrane porin OmpF of E. coli and moreover provides hints for understanding the translocation of phosphonic acid antibiotics through other outer membrane pores.
Collapse
Affiliation(s)
- Vinaya Kumar Golla
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany
| | | | | | - Lorraine Benier
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Jayesh Arun Bafna
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany.
| |
Collapse
|
4
|
Tamburrino G, Llabrés S, Vickery ON, Pitt SJ, Zachariae U. Modulation of the Neisseria gonorrhoeae drug efflux conduit MtrE. Sci Rep 2017; 7:17091. [PMID: 29213101 PMCID: PMC5719041 DOI: 10.1038/s41598-017-16995-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022] Open
Abstract
Widespread antibiotic resistance, especially of Gram-negative bacteria, has become a severe concern for human health. Tripartite efflux pumps are one of the major contributors to resistance in Gram-negative pathogens, by efficiently expelling a broad spectrum of antibiotics from the organism. In Neisseria gonorrhoeae, one of the first bacteria for which pan-resistance has been reported, the most expressed efflux complex is MtrCDE. Here we present the electrophysiological characterisation of the outer membrane component MtrE and the membrane fusion protein MtrC, obtained by a combination of planar lipid bilayer recordings and in silico techniques. Our in vitro results show that MtrE can be regulated by periplasmic binding events and that the interaction between MtrE and MtrC is sufficient to stabilize this complex in an open state. In contrast to other efflux conduits, the open complex only displays a slight preference for cations. The maximum conductance we obtain in the in vitro recordings is comparable to that seen in our computational electrophysiology simulations conducted on the MtrE crystal structure, indicating that this state may reflect a physiologically relevant open conformation of MtrE. Our results suggest that the MtrC/E binding interface is an important modulator of MtrE function, which could potentially be targeted by new efflux inhibitors.
Collapse
Affiliation(s)
- Giulia Tamburrino
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4NH, UK
| | - Salomé Llabrés
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4NH, UK
| | - Owen N Vickery
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4NH, UK
| | - Samantha J Pitt
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK.
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
- Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4NH, UK.
| |
Collapse
|
5
|
Krah A, Zachariae U. Insights into the ion-coupling mechanism in the MATE transporter NorM-VC. Phys Biol 2017; 14:045009. [DOI: 10.1088/1478-3975/aa5ee7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Solano CJF, Pothula KR, Prajapati JD, De Biase PM, Noskov SY, Kleinekathöfer U. BROMOCEA Code: An Improved Grand Canonical Monte Carlo/Brownian Dynamics Algorithm Including Explicit Atoms. J Chem Theory Comput 2016; 12:2401-17. [DOI: 10.1021/acs.jctc.5b01196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlos J. F. Solano
- Department
of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Karunakar R. Pothula
- Department
of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Jigneshkumar D. Prajapati
- Department
of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Pablo M. De Biase
- Centre
for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ulrich Kleinekathöfer
- Department
of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
7
|
Kutzner C, Köpfer DA, Machtens JP, de Groot BL, Song C, Zachariae U. Insights into the function of ion channels by computational electrophysiology simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1741-52. [PMID: 26874204 DOI: 10.1016/j.bbamem.2016.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/11/2022]
Abstract
Ion channels are of universal importance for all cell types and play key roles in cellular physiology and pathology. Increased insight into their functional mechanisms is crucial to enable drug design on this important class of membrane proteins, and to enhance our understanding of some of the fundamental features of cells. This review presents the concepts behind the recently developed simulation protocol Computational Electrophysiology (CompEL), which facilitates the atomistic simulation of ion channels in action. In addition, the review provides guidelines for its application in conjunction with the molecular dynamics software package GROMACS. We first lay out the rationale for designing CompEL as a method that models the driving force for ion permeation through channels the way it is established in cells, i.e., by electrochemical ion gradients across the membrane. This is followed by an outline of its implementation and a description of key settings and parameters helpful to users wishing to set up and conduct such simulations. In recent years, key mechanistic and biophysical insights have been obtained by employing the CompEL protocol to address a wide range of questions on ion channels and permeation. We summarize these recent findings on membrane proteins, which span a spectrum from highly ion-selective, narrow channels to wide diffusion pores. Finally we discuss the future potential of CompEL in light of its limitations and strengths. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Carsten Kutzner
- Department of Theoretical and Computational Biophysics, Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - David A Köpfer
- Department of Theoretical and Computational Biophysics, Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jan-Philipp Machtens
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Jülich, Germany
| | - Bert L de Groot
- Department of Theoretical and Computational Biophysics, Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Chen Song
- Department of Biochemistry, University of Oxford, United Kingdom
| | - Ulrich Zachariae
- Physics, School of Science and Engineering, University of Dundee, United Kingdom; Computational Biology, School of Life Sciences, University of Dundee, United Kingdom.
| |
Collapse
|
8
|
Modi N, Bárcena-Uribarri I, Bains M, Benz R, Hancock REW, Kleinekathöfer U. Tuning the affinity of anion binding sites in porin channels with negatively charged residues: molecular details for OprP. ACS Chem Biol 2015; 10:441-51. [PMID: 25333751 DOI: 10.1021/cb500399j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The cell envelope of the Gram negative opportunistic pathogen Pseudomonas aeruginosa is poorly permeable to many classes of hydrophilic molecules including antibiotics due to the presence of the narrow and selective porins. Here we focused on one of the narrow-channel porins, that is, OprP, which is responsible for the high-affinity uptake of phosphate ions. Its two central binding sites for phosphate contain a number of positively charged amino acids together with a single negatively charged residue (D94). The presence of this negatively charged residue in a binding site for negatively charged phosphate ions is highly surprising due to the potentially reduced binding affinity. The goal of this study was to better understand the role of D94 in phosphate binding, selectivity, and transport using a combination of mutagenesis, electrophysiology, and free-energy calculations. The presence of a negatively charged residue in the binding site is critical for this specific porin OprP as emphasized by the evolutionary conservation of such negatively charged residue in the binding site of several anion-selective porins. Mutations of D94 in OprP to any positively charged or neutral residue increased the binding affinity of phosphate for OprP. Detailed analysis indicated that this anionic residue in the phosphate binding site of OprP, despite its negative charge, maintained energetically favorable phosphate binding sites in the central region of the channel and at the same time decreased residence time thus preventing excessively strong binding of phosphate that would oppose phosphate flux through the channel. Intriguingly mutations of D94 to positively charged residues, lysine and arginine, resulted in very different binding affinities and free energy profiles, indicating the importance of side chain conformations of these positively charged residues in phosphate binding to OprP.
Collapse
Affiliation(s)
- Niraj Modi
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Iván Bárcena-Uribarri
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Manjeet Bains
- Centre for Microbial Diseases and Immunity Research,
Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Roland Benz
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research,
Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ulrich Kleinekathöfer
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
9
|
Dreyer J, Strodel P, Ippoliti E, Finnerty J, Eisenberg B, Carloni P. Ion permeation in the NanC porin from Escherichia coli: free energy calculations along pathways identified by coarse-grain simulations. J Phys Chem B 2013; 117:13534-42. [PMID: 24147565 DOI: 10.1021/jp4081838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using the X-ray structure of a recently discovered bacterial protein, the N-acetylneuraminic acid-inducible channel (NanC), we investigate computationally K(+) and Cl(-) ions' permeation. We identify ion permeation pathways that are likely to be populated using coarse-grain Monte Carlo simulations. Next, we use these pathways as reaction coordinates for umbrella sampling-based free energy simulations. We find distinct tubelike pathways connecting specific binding sites for K(+) and, more pronounced, for Cl(-) ions. Both ions permeate the porin preserving almost all of their first hydration shell. The calculated free energy barriers are G(#) ≈ 4 kJ/mol and G(#) ≈ 8 kJ/mol for Cl(-) and K(+), respectively. Within the approximations associated with these values, discussed in detail in this work, we suggest that the porin is slightly selective for Cl(-) versus K(+). Our suggestion is consistent with the experimentally observed weak Cl(-) over K(+) selectivity. A rationale for the latter is suggested by a comparison with previous calculations on strongly anion selective porins.
Collapse
Affiliation(s)
- Jens Dreyer
- Computational Biophysics, German Research School for Simulation Sciences , D-52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Kattner C, Zaucha J, Jaenecke F, Zachariae U, Tanabe M. Identification of a cation transport pathway in Neisseria meningitidis PorB. Proteins 2013; 81:830-40. [PMID: 23255122 DOI: 10.1002/prot.24241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/06/2012] [Accepted: 12/08/2012] [Indexed: 11/10/2022]
Abstract
Neisseria meningitidis is the main causative agent of bacterial meningitis. In its outer membrane, the trimeric Neisserial porin PorB is responsible for the diffusive transport of essential hydrophilic solutes across the bilayer. Previous molecular dynamics simulations based on the recent crystal structure of PorB have suggested the presence of distinct solute translocation pathways through this channel. Although PorB has been electrophysiologically characterized as anion-selective, cation translocation through nucleotide-bound PorB during pathogenesis is thought to be instrumental for host cell death. As a result, we were particularly interested in further characterizing cation transport through the pore. We combined a structural approach with additional computational analysis. Here, we present two crystal structures of PorB at 2.1 and 2.65 Å resolution. The new structures display additional electron densities around the protruding loop 3 (L3) inside the pore. We show that these electron densities can be identified as monovalent cations, in our case Cs(+), which are tightly bound to the inner channel. Molecular dynamics simulations reveal further ion interactions and the free energy landscape for ions inside PorB. Our results suggest that the crystallographically identified locations of Cs(+) form a cation transport pathway inside the pore. This finding suggests how positively charged ions are translocated through PorB when the channel is inserted into mitochondrial membranes during Neisserial infection, a process which is considered to dissipate the mitochondrial transmembrane potential gradient and thereby induce apoptosis.
Collapse
Affiliation(s)
- Christof Kattner
- HALOmem, Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
11
|
Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A. Modeling and simulation of ion channels. Chem Rev 2012; 112:6250-84. [PMID: 23035940 PMCID: PMC3633640 DOI: 10.1021/cr3002609] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Swati Bhattacharya
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Jejoong Yoo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - David Wells
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| |
Collapse
|
12
|
Kutzner C, Grubmüller H, de Groot B, Zachariae U. Computational electrophysiology: the molecular dynamics of ion channel permeation and selectivity in atomistic detail. Biophys J 2011; 101:809-17. [PMID: 21843471 PMCID: PMC3175076 DOI: 10.1016/j.bpj.2011.06.010] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 05/28/2011] [Accepted: 06/07/2011] [Indexed: 12/26/2022] Open
Abstract
Presently, most simulations of ion channel function rely upon nonatomistic Brownian dynamics calculations, indirect interpretation of energy maps, or application of external electric fields. We present a computational method to directly simulate ion flux through membrane channels based on biologically realistic electrochemical gradients. In close analogy to single-channel electrophysiology, physiologically and experimentally relevant timescales are achieved. We apply our method to the bacterial channel PorB from pathogenic Neisseria meningitidis, which, during Neisserial infection, inserts into the mitochondrial membrane of target cells and elicits apoptosis by dissipating the membrane potential. We show that our method accurately predicts ion conductance and selectivity and elucidates ion conduction mechanisms in great detail. Handles for overcoming channel-related antibiotic resistance are identified.
Collapse
Affiliation(s)
- Carsten Kutzner
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bert L. de Groot
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ulrich Zachariae
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Agarwal B. A role for anions in ATP synthesis and its molecular mechanistic interpretation. J Bioenerg Biomembr 2011; 43:299-310. [PMID: 21647635 DOI: 10.1007/s10863-011-9358-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 04/28/2011] [Indexed: 01/26/2023]
Abstract
ATP, the 'universal biological energy currency', is synthesized by utilizing energy either from oxidation of fuels or from light, via the process of oxidative and photo-phosphorylation respectively. The process is mediated by the enzyme F(1)F(0)-ATP synthase, using the free energy of ion gradients in the final energy catalyzing step, i.e., the synthesis of ATP from ADP and inorganic phosphate (P(i)). The details of the molecular mechanism of ATP synthesis are among the most important fundamental issues in biology and hence need to be properly understood. In this work, a role for anions in making ATP has been found. New experimental data has been reported on the inhibition of ATP synthesis at nanomolar concentrations by the potent, specific anion channel blockers 4,4'-diisothiocyanostilbene-2, 2'-disulphonic acid (DIDS) and tributyltin chloride (TBTCl). Based on these inhibition studies, attention has been drawn to anion translocation (in addition to proton translocation) as a requirement for ATP synthesis. The type of inhibition has been quantified and an overall kinetic scheme for mixed inhibition that explains the data has been evolved. The experimental data and the type of inhibition found have been interpreted in the light of the torsional mechanism of energy transduction and ATP synthesis (Nath J Bioenerg Biomembr 42:293-300, 2010a; J Bioenerg Biomembr 42:301-309, 2010b). This detailed and unified mechanism resolves long-standing problems and inconsistencies in the first theories (Slater Nature 172:975-978, 1953; Williams J Theor Biol 1:1-17, 1961; Mitchell Nature 191:144-148, 1961; Mitchell Biol Rev 41:445-502, 1966), makes several novel predictions that are experimentally verifiable (Nath Biophys J 90:8-21, 2006a; Process Biochem 41:2218-2235, 2006b), and provides us with a new and fruitful paradigm in bioenergetics. The interpretation presented here provides intelligent answers to the unexplained existing results in the literature. It is shown that mechanistic interpretation of the experimental data requires substantial addition to available conceptual foundations such that present concepts, theories, and mechanisms must be revised.
Collapse
Affiliation(s)
- Bhawana Agarwal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110 016, India.
| |
Collapse
|
14
|
Abstract
Gram-negative bacteria and mitochondria are both covered by two distinct biological membranes. These membrane systems have been maintained during the course of evolution from an early evolutionary precursor. Both outer membranes accommodate channels of the porin family, which are designed for the uptake and exchange of metabolites, including ions and small molecules, such as nucleosides or sugars. In bacteria, the structure of the outer membrane porin protein family of β-barrels is generally characterized by an even number of β-strands; usually 14, 16 or 18 strands are observed forming the bacterial porin barrel wall. In contrast, the recent structures of the mitochondrial porin, also known as VDAC (voltage-dependent anion channel), show an uneven number of 19 β-strands, but a similar molecular architecture. Despite the lack of a clear evolutionary link between these protein families, their common principles and differences in assembly, architecture and function are summarized in the present review.
Collapse
|
15
|
Abstract
The outer membrane of Gram-negative bacteria serves as a protective barrier against the external environment but is rendered selectively permeable to nutrients and waste by proteins called porins. Other outer membrane proteins (OMPs) provide the membrane with a variety of other functions including active transport, catalysis, pathogenesis and signal transduction. A relatively small number of crystal or NMR structures of these proteins are known, and it is therefore essential that the maximum possible information be extracted. In this respect, computational techniques enable extrapolation from time- and space-averaged static structures to dynamic, physiological events. Electrostatics approaches have been used to investigate the structures of porins. The stochastic simulation of ion trajectories through these channels has been possible with Brownian dynamics, which treats the membrane and solvent approximately, enabling the prediction of conduction properties. Molecular dynamics has also been applied, enabling fully atomistic descriptions of 'virtual outer membranes'. This has provided atomic resolution descriptions of solute permeation through porins. It has also yielded insights into the dynamics of gating in active transporters and ion channels, as well as providing clues to catalytic mechanisms in outer membrane enzymes. Additionally, simulations are beginning to reveal the common features of interactions between membrane proteins and lipids, with biological implications for OMP folding, stability and mechanism. Future prospects include the simulation of longer, larger and more complex outer membrane systems, with more accurate descriptions of inter-atomic forces.
Collapse
Affiliation(s)
- Peter J Bond
- Department of Biochemistry, The University of Oxford, Oxford, UK
| | | |
Collapse
|
16
|
Song Y, Gunner M. Using Multiconformation Continuum Electrostatics to Compare Chloride Binding Motifs in α-Amylase, Human Serum Albumin, and Omp32. J Mol Biol 2009; 387:840-56. [DOI: 10.1016/j.jmb.2009.01.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Gorteau V, Bollot G, Mareda J, Matile S. Rigid-rod anion–π slides for multiion hopping across lipid bilayers. Org Biomol Chem 2007; 5:3000-12. [PMID: 17728867 DOI: 10.1039/b708337h] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Shape-persistent oligo-p-phenylene-N,N-naphthalenediimide (O-NDI) rods are introduced as anion-pi slides for chloride-selective multiion hopping across lipid bilayers. Results from end-group engineering and covalent capture as O-NDI hairpins suggested that self-assembly into transmembrane O-NDI bundles is essential for activity. A halide topology VI (Cl > F > Br approximately I, Cl/Br approximately Cl/I > 7) implied strong anion binding along the anion-pi slides with relatively weak contributions from size exclusion (F >or= OAc). Anomalous mole fraction effects (AMFE) supported the occurrence of multiion hopping along the pi-acidic O-NDI rods. The existence of anion-pi interactions was corroborated by high-level ab initio and DFT calculations. The latter revealed positive NDI quadrupole moments far beyond the hexafluorobenzene standard. Computational studies further suggested that anion binding occurs at the confined, pi-acidic edges of the sticky NDI surface and is influenced by the nature of the phenyl spacer between two NDIs. With regard to methods development, a detailed analysis of the detection of ion selectivity with the HPTS assay including AMFE in vesicles is provided.
Collapse
Affiliation(s)
- Virginie Gorteau
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
18
|
Abstract
Molecular dynamics simulations are carried out to investigate the permeation of ions and water in a membrane consisting of single wall carbon nanotubes possessing no surface charges connecting two reservoirs. Our simulations reveal that there are changes in the first hydration shell of the ions upon confinement in tubes of 0.82 or 0.90 nm effective internal diameter. Although the first minimum in the g(r) is barely changed in the nanotube compared to in the bulk solution, the hydration number of Na(+) ion is reduced by 1.0 (from 4.5 in bulk to 3.5 in the 0.90 nm tube) and the hydration number is reduced further in the 0.82 nm tube. The changes in the hydration shell of Cl(-) ion are negligible, within statistical errors. The water molecules of the first hydration shell of both ions exchange less frequently inside the tube than in the bulk solution. We compare ion trajectories for ions in the same tube under identical reservoir conditions but with different numbers of ions in the tubes. This permits investigation of changes in structure and dynamics which arise from multiple ion occupancy in a carbon nanotube possessing no surface charges. We also investigated the effects of tube flexibility. Ions enter the tubes so as to form a train of ion pairs. We find that the radial distribution profiles of Na(+) ions broaden significantly systematically with increasing number of ion pairs in the tube. The radial distribution profiles of Cl(-) ions change only slightly with increasing number of ions in the tube. Trajectories reveal that Na(+) ions do not pass each other in 0.90 nm tubes, while Cl(-) ions pass each other, as do ions of opposite charge. An ion entering the tube causes the like-charged ions preceding it in the tube to be displaced along the tube axis and positive or negative ions will exit the tube only when one or two other ions of the same charge are present in the tube. Thus, the permeation mechanism involves multiple ions and Coulomb repulsion among the ions plays an essential role.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
19
|
Zachariae U, Klühspies T, De S, Engelhardt H, Zeth K. High resolution crystal structures and molecular dynamics studies reveal substrate binding in the porin Omp32. J Biol Chem 2006; 281:7413-20. [PMID: 16434398 DOI: 10.1074/jbc.m510939200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The porin Omp32 is the major outer membrane protein of the bacterium Delftia acidovorans. The crystal structures of the strongly anion-selective porin alone and in complex with the substrate malate were solved at 1.5 and 1.45 A resolution, respectively, and revealed a malate-binding motif adjacent to the channel constriction zone. Binding is mediated by interaction with a cluster of two arginine residues and two threonines. This binding site is specific for Omp32 and reflects the physiological adaptation of the organism to organic acids. Structural studies are combined with a 7-ns unbiased molecular dynamics simulation of the trimeric channel in a model membrane. Molecular dynamics trajectories show how malate ions are efficiently captured from the surrounding bulk solution by the electrostatic potential of the channel, translocated to the binding site region, and immobilized in the constriction zone. In accordance with these results, conductance measurements with Omp32 inserted in planar lipid membranes revealed binding of malate. The anion-selective channel Omp32 is the first reported example of a porin with a 16-stranded beta-barrel and proven substrate specificity. This finding suggests a new view on the correlation of porin structure with substrate binding in specific channels.
Collapse
Affiliation(s)
- Ulrich Zachariae
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
20
|
Vrouenraets M, Wierenga J, Meijberg W, Miedema H. Chemical modification of the bacterial porin OmpF: gain of selectivity by volume reduction. Biophys J 2005; 90:1202-11. [PMID: 16299071 PMCID: PMC1367271 DOI: 10.1529/biophysj.105.072298] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OmpF is an essentially nonselective porin isolated from the outer membrane of Escherichia coli. Here we report on the manipulation of the ion selectivity of OmpF by chemical modification with MTS reagents (MTSET, MTSEA, and MTSES) and the (rather bulky) tripeptide glutathione, all cysteine specific. When recorded in a gradient of 0.1//1 M CaCl2 or 0.1//1 M NaCl, pH 7.4 solutions, measured reversal potentials of the most cation-selective modified mutants were (virtually) identical to the Nernst potential of Ca2+ or Na+. Compared to this full cation selectivity, the anion-selective modified mutants performed somewhat less but nevertheless showed high anion selectivity. We conclude that a low permanent charge in combination with a narrow pore can render the same selectivity as a highly charged but wider pore. These results favor the view that both the electrostatic potential arising form the fixed charge in the pore and the space available at the selectivity filter contribute to the charge selection (i.e., cation versus anion selectivity) of a biological ion channel.
Collapse
Affiliation(s)
- Maarten Vrouenraets
- Biomade Technology Foundation, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
21
|
Miedema H, Meter-Arkema A, Wierenga J, Tang J, Eisenberg B, Nonner W, Hektor H, Gillespie D, Meijberg W. Permeation properties of an engineered bacterial OmpF porin containing the EEEE-locus of Ca2+ channels. Biophys J 2004; 87:3137-47. [PMID: 15326033 PMCID: PMC1304784 DOI: 10.1529/biophysj.104.041384] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The selectivity filter of the bacterial porin OmpF carries a small net charge close to -1 e and is therefore only slightly cation-selective. Calcium channels, on the other hand, contain four negatively charged glutamates, the EEEE-locus, and are among the most selective cation channels known. We aimed to turn the essentially nonselective OmpF into a Ca2+-selective channel. To that end, two additional glutamates (R42E and R132E) were introduced in the OmpF constriction zone that already contains D113 and E117. Mutant OmpF containing this DEEE-locus has a high Ca2+ over Cl- selectivity and a Na+ current with a strongly increased sensitivity to 1 mM Ca2+. The charge/space competition model, initially applied to the L-type Ca2+ channel, identifies the fixed charge and filter volume as key determinants of ion selectivity, with the precise atomic arrangement having only second-order effects. By implication, the reproduction of fixed charge and filter volume should transform two channels into channels of similar selectivity, even if the two belong to entirely different ion channel families, as is the case for OmpF and the L-type Ca2+ channel. The results presented here fit quite well in the framework of charge/space competition theory.
Collapse
Affiliation(s)
- Henk Miedema
- Biomade Technology Foundation, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Prévost M. Dynamics of water molecules buried in cavities of apolipoprotein E studied by molecular dynamics simulations and continuum electrostatic calculations. Biopolymers 2004; 75:196-207. [PMID: 15356873 DOI: 10.1002/bip.20116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Molecular dynamics (MD) simulations of several nanoseconds each were used to monitor the dynamic behavior of the five crystal water molecules buried in the interior of the N-terminal domain of apolipoprotein E. These crystal water molecules are fairly well conserved in several apolipoprotein E structures, suggesting that they are not an artifact of the crystal and that they may have a structural and/or functional role for the protein. All five buried crystal water molecules leave the protein interior in the course of the longest simulations and exchange with water molecules from the bulk. The free energies of binding evaluated from the electrostatic binding free energy computed using a continuum model and estimates of the binding entropy changes represent shallow minima. The corresponding calculated residence times of the buried water molecules range from tens of picoseconds to hundreds of nanoseconds, which denote rather short times as for buried water molecules. Several water exchanges monitored in the simulations show that water molecules along the exit/entrance pathway use a relay of H bonds primarily formed with charged residues which helps either the exit or the entrance from or into the buried site. The exit/entrance of water molecules from/into the sites is permitted essentially by local motions of, at most, two side chains, indicating that, in these cases, complex correlated atomic motions are not needed to open the buried site toward the surface of the protein. This provides a possible explanation for the short residence times.
Collapse
Affiliation(s)
- Martine Prévost
- Bioinformatique génomique et structurale, Université Libre de Bruxelles, CP 165/64, Av. F. Roosevelt, B-1050 Bruxelles, Belgium.
| |
Collapse
|