1
|
Li H, Govorunova EG, Sineshchekov OA, Spudich JL. Role of a helix B lysine residue in the photoactive site in channelrhodopsins. Biophys J 2014; 106:1607-17. [PMID: 24739160 DOI: 10.1016/j.bpj.2014.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/20/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022] Open
Abstract
In most studied microbial rhodopsins two conserved carboxylic acid residues (the homologs of Asp-85 and Asp-212 in bacteriorhodopsin) and an arginine residue (the homolog of Arg-82) form a complex counterion to the protonated retinylidene Schiff base, and neutralization of the negatively charged carboxylates causes red shifts of the absorption maximum. In contrast, the corresponding neutralizing mutations in some relatively low-efficiency channelrhodopsins (ChRs) result in blue shifts. These ChRs do not contain a lysine residue in the second helix, conserved in higher efficiency ChRs (Lys-132 in the crystallized ChR chimera). By action spectroscopy of photoinduced channel currents in HEK293 cells and absorption spectroscopy of detergent-purified pigments, we found that in tested ChRs the Lys-132 homolog controls the direction of spectral shifts in the mutants of the photoactive site carboxylic acid residues. Analysis of double mutants shows that red spectral shifts occur when this Lys is present, whether naturally or by mutagenesis, and blue shifts occur when it is replaced with a neutral residue. A neutralizing mutation of the Lys-132 homolog alone caused a red spectral shift in high-efficiency ChRs, whereas its introduction into low-efficiency ChR1 from Chlamydomonas augustae (CaChR1) caused a blue shift. Taking into account that the effective charge of the carboxylic acid residues is a key factor in microbial rhodopsin spectral tuning, these findings suggest that the Lys-132 homolog modulates their pKa values. On the other hand, mutation of the Arg-82 homolog that fulfills this role in bacteriorhodopsin caused minimal spectral changes in the tested ChRs. Titration revealed that the pKa of the Asp-85 homolog in CaChR1 lies in the alkaline region unlike in most studied microbial rhodopsins, but is substantially decreased by introduction of a Lys-132 homolog or neutralizing mutation of the Asp-212 homolog. In the three ChRs tested the Lys-132 homolog also alters channel current kinetics.
Collapse
Affiliation(s)
- Hai Li
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas
| | - Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas.
| |
Collapse
|
2
|
Tamogami J, Iwano K, Matsuyama A, Kikukawa T, Demura M, Nara T, Kamo N. The effects of chloride ion binding on the photochemical properties of sensory rhodopsin II from Natronomonas pharaonis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:192-201. [DOI: 10.1016/j.jphotobiol.2014.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/04/2014] [Accepted: 10/11/2014] [Indexed: 10/24/2022]
|
3
|
Sudo Y, Homma M. [Photosensing by membrane-embedded receptors and its application for the life scientists]. YAKUGAKU ZASSHI 2012; 132:407-16. [PMID: 22465915 DOI: 10.1248/yakushi.132.407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light is one of the most important energy sources and signals providing critical information to biological systems. The photoreceptor rhodopsin, which possesses retinal chromophore (vitamin A aldehyde) surrounded by seven transmembrane alpha-helices, is widely dispersed in prokaryotes and in eukaryotes. Although rhodopsin molecules work as distinctly different photoreceptors, they can be divided according to their two basic functions such as light-energy conversion and light-signal transduction. Thus rhodopsin molecules have great potential for controlling cellular activity by light. Indeed, a light-energy converter channel rhodopsin is used to control neural activity. From 2001, we have been working on various microbial sensory rhodopsins functioning as light-signal converters. In this review, we will introduce rhodopsin molecules from microbes, and will describe artificial and light-dependent protein expression system in Escherichia coli using Anabeana sensory rhodopsin (ASR). The newly developed tools would be widely useful for life scientists.
Collapse
Affiliation(s)
- Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
| | | |
Collapse
|
4
|
Tateishi Y, Abe T, Tamogami J, Nakao Y, Kikukawa T, Kamo N, Unno M. Spectroscopic Evidence for the Formation of an N Intermediate during the Photocycle of Sensory Rhodopsin II (Phoborhodopsin) from Natronobacterium pharaonis. Biochemistry 2011; 50:2135-43. [DOI: 10.1021/bi1019572] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yusuke Tateishi
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takayuki Abe
- Faculty of Advanced Life Science and Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Jun Tamogami
- Faculty of Advanced Life Science and Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0810, Japan
- College of Pharmaceutical Sciences, Matsuyama University, Bunkyo-cho, Matsuyama 790-8578, Japan
| | - Yutaka Nakao
- Faculty of Advanced Life Science and Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Kikukawa
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Bunkyo-cho, Matsuyama 790-8578, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
- PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
5
|
Jiang X, Engelhard M, Ataka K, Heberle J. Molecular Impact of the Membrane Potential on the Regulatory Mechanism of Proton Transfer in Sensory Rhodopsin II. J Am Chem Soc 2010; 132:10808-15. [DOI: 10.1021/ja102295g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiue Jiang
- Department of Chemistry, Biophysical Chemistry (PC III), Bielefeld University, 33615 Bielefeld, Germany, MaxPlanck Institute of Molecular Physiology, 44221 Dortmund, Germany, Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany, and Japan Science and Technology Agency, 102-0075, Tokyo, Japan
| | - Martin Engelhard
- Department of Chemistry, Biophysical Chemistry (PC III), Bielefeld University, 33615 Bielefeld, Germany, MaxPlanck Institute of Molecular Physiology, 44221 Dortmund, Germany, Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany, and Japan Science and Technology Agency, 102-0075, Tokyo, Japan
| | - Kenichi Ataka
- Department of Chemistry, Biophysical Chemistry (PC III), Bielefeld University, 33615 Bielefeld, Germany, MaxPlanck Institute of Molecular Physiology, 44221 Dortmund, Germany, Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany, and Japan Science and Technology Agency, 102-0075, Tokyo, Japan
| | - Joachim Heberle
- Department of Chemistry, Biophysical Chemistry (PC III), Bielefeld University, 33615 Bielefeld, Germany, MaxPlanck Institute of Molecular Physiology, 44221 Dortmund, Germany, Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany, and Japan Science and Technology Agency, 102-0075, Tokyo, Japan
| |
Collapse
|
6
|
Suzuki D, Furutani Y, Inoue K, Kikukawa T, Sakai M, Fujii M, Kandori H, Homma M, Sudo Y. Effects of chloride ion binding on the photochemical properties of salinibacter sensory rhodopsin I. J Mol Biol 2009; 392:48-62. [PMID: 19560470 DOI: 10.1016/j.jmb.2009.06.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/31/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
Microbial organisms utilize light not only as energy sources but also as signals by which rhodopsins (containing retinal as a chromophore) work as photoreceptors. Sensory rhodopsin I (SRI) is a dual photoreceptor that regulates both negative and positive phototaxis in microbial organisms, such as the archaeon Halobacterium salinarum and the eubacterium Salinibacter ruber. These organisms live in highly halophilic environments, suggesting the possibility of the effects of salts on the function of SRI. However, such effects remain unclear because SRI proteins from H. salinarum (HsSRI) are unstable in dilute salt solutions. Recently, we characterized a new SRI protein (SrSRI) that is stable even in the absence of salts, thus allowing us to investigate the effects of salts on the photochemical properties of SRI. In this study, we report that the absorption maximum of SrSRI is shifted from 542 to 556 nm in a Cl(-)-dependent manner with a K(m) of 307+/-56 mM, showing that Cl(-)-binding sites exist in SRI. The bathochromic shift was caused not only by NaCl but also by other salts (NaI, NaBr, and NaNO(3)), implying that I(-), Br(-), and NO(3)(-) can also bind to SrSRI. In addition, the photochemical properties during the photocycle are also affected by chloride ion binding. Mutagenesis studies strongly suggested that a conserved residue, His131, is involved in the Cl(-)-binding site. In light of these results, we discuss the effects of the Cl(-) binding to SRI and the roles of Cl(-) binding in its function.
Collapse
|
7
|
Sudo Y, Furutani Y, Iwamoto M, Kamo N, Kandori H. Structural changes in the O-decay accelerated mutants of pharaonis phoborhodopsin. Biochemistry 2008; 47:2866-74. [PMID: 18247579 DOI: 10.1021/bi701885k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
pharaonis phoborhodopsin ( ppR, also called pharaonis sensory rhodopsin II, psRII) is a receptor for negative phototaxis in Natronomonas pharaonis. The X-ray crystallographic structure of ppR is very similar to those of the ion-pumping rhodopsins, bacteriorhodopsin (BR) and halorhodopsin (hR). However, the decay processes of the photocycle intermediates such as M and O are much slower than those of BR and hR, which is advantageous for the sensor function of ppR. Iwamoto et al. previously found that, in a quadruple mutant (P182S/P183E/V194T/T204C; denoted as SETC) of ppR, the decay of the O intermediate was accelerated by approximately 100 times ( t 1/2 approximately 6.6 ms vs 690 ms for the wild type of ppR), being almost equal to that of BR (Iwamoto, M., et al. (2005) Biophys. J. 88, 1215-1223). The mutated residues are located on the extracellular surface (Pro182, Pro183, and Val194) and near the Schiff base (Thr204). The present Fourier-transform infrared (FTIR) spectroscopy of SETC revealed that protein structural changes in the K and M states were similar to those of the wild type. In contrast, the ppR O minus ppR infrared difference spectra of SETC are clearly different from those of the wild type in amide-I (1680-1640 cm (-1)) and S-H stretching (2580-2520 cm (-1)) vibrations. The 1673 (+) and 1656 (-) cm (-1) bands newly appear for SETC in the frequency region typical for the amide-I vibration of the alpha II- and alpha I-helices, respectively. The intensities of the 1673 (+) cm (-1) band of various mutants were well correlated with their O-decay half-times. Since the alpha II-helix possesses a considerably distorted structure, the result implies that distortion of the helix is required for fast O-decay. In addition, the characteristic changes in the S-H stretching vibration of Cys204 were different between SETC and T204C, suggesting that structural change near the Schiff base was induced by mutations of the extracellular surface. We conclude that the lifetime of the O intermediate in ppR is regulated by the distorted alpha-helix and strengthened hydrogen bond of Cys204.
Collapse
Affiliation(s)
- Yuki Sudo
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | |
Collapse
|
8
|
Iwamoto M, Sudo Y, Shimono K, Araiso T, Kamo N. Correlation of the O-intermediate rate with the pKa of Asp-75 in the dark, the counterion of the Schiff base of Pharaonis phoborhodopsin (sensory rhodopsin II). Biophys J 2004; 88:1215-23. [PMID: 15533927 PMCID: PMC1305124 DOI: 10.1529/biophysj.104.045583] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pharaonis phoborhodopsin (ppR), also called pharaonis sensory rhodopsin II, NpSRII, is a photoreceptor of negative phototaxis in Natronomonas (Natronobacterium) pharaonis. The photocycle rate of ppR is slow compared to that of bacteriorhodopsin, despite the similarity in their x-ray structures. The decreased rate of the photocycle of ppR is a result of the longer lifetime of later photo-intermediates such as M- (ppR(M)) and O-intermediates (ppR(O)). In this study, mutants were prepared in which mutated residues were located on the extracellular surface (P182, P183, and V194) and near the Schiff base (T204) including single, triple (P182S/P183E/V194T), and quadruple mutants. The decay of ppR(O) of the triple mutant was accelerated approximately 20-times from 690 ms for the wild-type to 36 ms. Additional mutation resulting in a triple mutant at the 204th position such as T204C or T204S further decreased the decay half-time to 6.6 or 8 ms, almost equal to that of bacteriorhodopsin. The decay half-times of the ppR(O) of mutants (11 species) and those of the wild-type were well-correlated with the pK(a) value of Asp-75 in the dark for the respective mutants as spectroscopically estimated, although there are some exceptions. The implications of these observations are discussed in detail.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Laboratory of Biomolecular Systems, Center for Advanced Science and Technology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | | | | | | | | |
Collapse
|