1
|
Capobianco A, Landi A, Peluso A. Duplex DNA Retains the Conformational Features of Single Strands: Perspectives from MD Simulations and Quantum Chemical Computations. Int J Mol Sci 2022; 23:ijms232214452. [PMID: 36430930 PMCID: PMC9697240 DOI: 10.3390/ijms232214452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Molecular dynamics simulations and geometry optimizations carried out at the quantum level as well as by quantum mechanical/molecular mechanics methods predict that short, single-stranded DNA oligonucleotides adopt conformations very similar to those observed in crystallographic double-stranded B-DNA, with rise coordinates close to ≈3.3 Å. In agreement with the experimental evidence, the computational results show that DNA single strands rich in adjacent purine nucleobases assume more regular arrangements than poly-thymine. The preliminary results suggest that single-stranded poly-cytosine DNA should also retain a substantial helical order in solution. A comparison of the structures of single and double helices confirms that the B-DNA motif is a favorable arrangement also for single strands. Indeed, the optimal geometry of the complementary single helices is changed to a very small extent in the formation of the duplex.
Collapse
|
2
|
Taghavi A, Riveros I, Wales DJ, Yildirim I. Evaluating Geometric Definitions of Stacking for RNA Dinucleoside Monophosphates Using Molecular Mechanics Calculations. J Chem Theory Comput 2022; 18:3637-3653. [PMID: 35652685 DOI: 10.1021/acs.jctc.2c00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA modulation via small molecules is a novel approach in pharmacotherapies, where the determination of the structural properties of RNA motifs is considered a promising way to develop drugs capable of targeting RNA structures to control diseases. However, due to the complexity and dynamic nature of RNA molecules, the determination of RNA structures using experimental approaches is not always feasible, and computational models employing force fields can provide important insight. The quality of the force field will determine how well the predictions are compared to experimental observables. Stacking in nucleic acids is one such structural property, originating mainly from London dispersion forces, which are quantum mechanical and are included in molecular mechanics force fields through nonbonded interactions. Geometric descriptions are utilized to decide if two residues are stacked and hence to calculate the stacking free energies for RNA dinucleoside monophosphates (DNMPs) through statistical mechanics for comparison with experimental thermodynamics data. Here, we benchmark four different stacking definitions using molecular dynamics (MD) trajectories for 16 RNA DNMPs produced by two different force fields (RNA-IL and ff99OL3) and show that our stacking definition better correlates with the experimental thermodynamics data. While predictions within an accuracy of 0.2 kcal/mol at 300 K were observed in RNA CC, CU, UC, AG, GA, and GG, stacked states of purine-pyrimidine and pyrimidine-purine DNMPs, respectively, were typically underpredicted and overpredicted. Additionally, population distributions of RNA UU DNMPs were poorly predicted by both force fields, implying a requirement for further force field revisions. We further discuss the differences predicted by each RNA force field. Finally, we show that discrete path sampling (DPS) calculations can provide valuable information and complement the MD simulations. We propose the use of experimental thermodynamics data for RNA DNMPs as benchmarks for testing RNA force fields.
Collapse
Affiliation(s)
- Amirhossein Taghavi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States.,Department of Chemistry, Scripps Research Institute Florida, Jupiter, Florida 33458, United States
| | - Ivan Riveros
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - David J Wales
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
3
|
Solayman M, Litfin T, Singh J, Paliwal K, Zhou Y, Zhan J. Probing RNA structures and functions by solvent accessibility: an overview from experimental and computational perspectives. Brief Bioinform 2022; 23:bbac112. [PMID: 35348613 PMCID: PMC9116373 DOI: 10.1093/bib/bbac112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
Characterizing RNA structures and functions have mostly been focused on 2D, secondary and 3D, tertiary structures. Recent advances in experimental and computational techniques for probing or predicting RNA solvent accessibility make this 1D representation of tertiary structures an increasingly attractive feature to explore. Here, we provide a survey of these recent developments, which indicate the emergence of solvent accessibility as a simple 1D property, adding to secondary and tertiary structures for investigating complex structure-function relations of RNAs.
Collapse
Affiliation(s)
- Md Solayman
- Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Thomas Litfin
- Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jaswinder Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jian Zhan
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
4
|
Rieger M, Zacharias M. Nearest-Neighbor dsDNA Stability Analysis Using Alchemical Free-Energy Simulations. J Phys Chem B 2022; 126:3640-3647. [PMID: 35549273 DOI: 10.1021/acs.jpcb.2c01138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermodynamic stability of double-stranded (ds)DNA depends on its sequence. It is influenced by the base pairing and stacking with neighboring bases along DNA molecules. Semiempirical schemes are available that allow us to predict the thermodynamic stability of DNA sequences based on empirically derived nearest-neighbor contributions of base pairs formed in the context of all possible nearest-neighbor base pairs. Current molecular dynamics (MD) simulations allow one to simulate the dynamics of DNA molecules in good agreement with experimentally obtained structures and available data on conformational flexibility. However, the suitability of current force field methods to reproduce dsDNA stability and its sequence dependence has been much less well tested. We have employed alchemical free-energy simulations of whole base pair transversions in dsDNA and in unbound single-stranded partner molecules. Such transversions change the sequence context but not the nucleotide content or base pairing in dsDNA and allow a direct comparison with the empirical nearest-neighbor dsDNA stability model. For the alchemical free-energy changes in the unbound single-stranded (ss)DNA partner molecules, we tested different setups assuming either complete unstacking or unrestrained simulations with partial stacking in the unbound ssDNA. The free-energy simulations predicted nearest-neighbor effects of similar magnitude, as observed experimentally but showed overall limited correlation with experimental data. An inaccurate description of stacking interactions and other possible reasons such as the neglect of electronic polarization effects are discussed. The results indicate the need to improve the realistic description of stacking interactions in current molecular mechanic force fields.
Collapse
Affiliation(s)
- Manuel Rieger
- Physics Department and Center of Protein Assemblies, Technical University of Munich, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
5
|
Zacharias M. Base-Pairing and Base-Stacking Contributions to Double-Stranded DNA Formation. J Phys Chem B 2020; 124:10345-10352. [PMID: 33156627 DOI: 10.1021/acs.jpcb.0c07670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Double-stranded (ds)DNA formation and dissociation are of fundamental biological importance. The negative DNA charge influences the dsDNA stability. However, the base pairing and the stacking between neighboring bases are responsible for the sequence-dependent stability of dsDNA. The stability of a dsDNA molecule can be estimated from empirical nearest-neighbor models based on contributions assigned to base-pair steps along the DNA and additional parameters because of DNA termini. In efforts to separate contributions, it has been concluded that base stacking dominates dsDNA stability, whereas base pairing contributes negligibly. Using a different model for dsDNA formation, we reanalyze dsDNA stability contributions and conclude that base stacking contributes already at the level of separate ssDNAs but that pairing contributions drive the dsDNA formation. The theoretical model also predicts that stability contributions of base-pair steps that contain only guanine/cytosine, mixed steps, and steps with only adenine/thymine follow the order 6:5:4, respectively, as expected based on the formed hydrogen bonds. The model is fully consistent with the available stacking data and the nearest-neighbor dsDNA parameters. It allows assigning a narrowly distributed value for the effective free energy contribution per formed hydrogen bond during dsDNA formation of -0.72 kcal·mol-1 based entirely on the experimental data.
Collapse
Affiliation(s)
- Martin Zacharias
- Physics Department T38, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
6
|
Vorobjev P, Epanchintseva A, Lomzov A, Tupikin A, Kabilov M, Pyshnaya I, Pyshnyi D. DNA Binding to Gold Nanoparticles through the Prism of Molecular Selection: Sequence-Affinity Relation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7916-7928. [PMID: 31117729 DOI: 10.1021/acs.langmuir.9b00661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Native DNA strongly adsorbs to citrate-coated gold nanoparticles (AuNPs). The resulting composites (DNA/AuNPs) are valuable materials in many fields, especially in biomedicine. For this reason, the process of adsorption is a focus for intensive research. In this work, DNA adsorption to gold nanoparticles was studied using a molecular selection procedure followed by high-throughput DNA sequencing. The chemically synthesized DNA library containing a central N26 randomized fragment was sieved through four cycles of adsorption to AuNPs in a tree-like selection-amplification scheme (SELEX (Selective Evolution of Ligands by EXponential enrichment)). The frequencies of occurrence of specific oligomeric DNA motifs, k-mers ( k = 1-6), in the initial and selected pools were calculated. Distribution of secondary structures in the pools was analyzed. A large set of diverse A, T, and G enriched k-mers undergo a pronounced positive selection, and these sequences demonstrate faster and strong binding to the AuNPs. For facile binding, such structural motifs should be located in the loop regions of weak intramolecular complexes-hairpins with imperfect stem, or other portion of the structure, which is unpaired under selection conditions. Our data also show that, under the conditions employed in this study, cytosine is significantly depleted during the selection process, although guanine remains unchanged. These regularities were confirmed in a series of binding experiments with a set of synthetic DNA oligonucleotides. The detailed analysis of DNA binding to AuNPs shows that the sequence specificity of this interaction is low due to its nature, although the presence and the number of specific structural motifs in DNA affect both the rate of formation and the strength of the formed noncovalent associates with AuNPs.
Collapse
Affiliation(s)
- Pavel Vorobjev
- Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , 8 Lavrentiev Avenue , Novosibirsk 630090 , Russia
- Novosibirsk State University , 2, Pirogova Street , Novosibirsk 630090 , Russia
| | - Anna Epanchintseva
- Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , 8 Lavrentiev Avenue , Novosibirsk 630090 , Russia
| | - Alexander Lomzov
- Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , 8 Lavrentiev Avenue , Novosibirsk 630090 , Russia
- Novosibirsk State University , 2, Pirogova Street , Novosibirsk 630090 , Russia
| | - Aleksey Tupikin
- Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , 8 Lavrentiev Avenue , Novosibirsk 630090 , Russia
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , 8 Lavrentiev Avenue , Novosibirsk 630090 , Russia
| | - Inna Pyshnaya
- Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , 8 Lavrentiev Avenue , Novosibirsk 630090 , Russia
| | - Dmitrii Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , 8 Lavrentiev Avenue , Novosibirsk 630090 , Russia
- Novosibirsk State University , 2, Pirogova Street , Novosibirsk 630090 , Russia
| |
Collapse
|
7
|
Capobianco A, Velardo A, Peluso A. Single-Stranded DNA Oligonucleotides Retain Rise Coordinates Characteristic of Double Helices. J Phys Chem B 2018; 122:7978-7989. [PMID: 30070843 DOI: 10.1021/acs.jpcb.8b04542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structures of single-stranded DNA oligonucleotides from dimeric to hexameric sequences have been thoroughly investigated. Computations performed at the density functional level of theory including dispersion forces and solvation show that single-stranded helices adopt conformations very close to crystallographic B-DNA, with rise coordinates amounting up to 3.3 Å. Previous results, suggesting that single strands should be shorter than double helices, largely originated from the incompleteness of the adopted basis set. Although sensible deviations with respect to standard B-DNA are predicted, computations indicate that sequences rich in stacked adenines are the most ordered ones, favoring the B-DNA pattern and inducing regular arrangements also on flanking nucleobases. Several structural properties of double helices rich in adenine are indeed already reflected by the corresponding single strands.
Collapse
Affiliation(s)
- Amedeo Capobianco
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II , I-84084 Fisciano (SA) , Italy
| | - Amalia Velardo
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II , I-84084 Fisciano (SA) , Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II , I-84084 Fisciano (SA) , Italy
| |
Collapse
|
8
|
Nguyen QL, Spata VA, Matsika S. Photophysical properties of pyrrolocytosine, a cytosine fluorescent base analogue. Phys Chem Chem Phys 2018; 18:20189-98. [PMID: 27251599 DOI: 10.1039/c6cp01559j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The photophysical behavior of pyrrolocytosine (PC), a fluorescent base analogue of cytosine, has been investigated using theoretical approaches. The similarities between the PC and cytosine structures allow PC to maintain the pseudo-Watson-Crick base-pairing arrangement with guanine. Cytosine, similar to the other natural nucleobases, is practically non-fluorescent, because of ultrafast radiationless decay occurring through conical intersections. PC displays a much higher fluorescence quantum yield than cytosine, making it an effective fluorescent marker to study the structure, function, and dynamics of DNA/RNA complexes. Similar to 2-aminopurine, a constitutional isomer of adenine that base-pairs with thymine, PC's fluorescence is quenched when it is incorporated into a dinucleotide or a trinucleotide. In this work we examine the photophysical properties of isolated PC, microhydrated PC, as well as, complexes where PC is either base-stacked or hydrogen-bonded with guanine. Our results indicate that hydration affects the radiationless decay pathways in PC by destabilizing conical intersections. The calculations of dimers and trimers show that the radiative decay is affected by π stacking, while the presence of charge transfer states between PC and guanine may contribute to radiationless decay.
Collapse
|
9
|
Smith DA, Holroyd LF, van Mourik T, Jones AC. A DFT study of 2-aminopurine-containing dinucleotides: prediction of stacked conformations with B-DNA structure. Phys Chem Chem Phys 2017; 18:14691-700. [PMID: 27186599 DOI: 10.1039/c5cp07816d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The fluorescence properties of dinucleotides incorporating 2-aminopurine (2AP) suggest that the simplest oligonucleotides adopt conformations similar to those found in duplex DNA. However, there is a lack of structural data for these systems. We report a density functional theory (DFT) study of the structures of 2AP-containing dinucleotides (deoxydinucleoside monophosphates), including full geometry optimisation of the sugar-phosphate backbone. Our DFT calculations employ the M06-2X functional for reliable treatment of dispersion interactions and include implicit aqueous solvation. Dinucleotides with 2AP in the 5'-position and each of the natural bases in the 3'-position are examined, together with the analogous 5'-adenine-containing systems. Computed structures are compared in detail with typical B-DNA base-step parameters, backbone torsional angles and sugar pucker, derived from crystallographic data. We find that 2AP-containing dinucleotides adopt structures that closely conform to B-DNA in all characteristic parameters. The structures of 2AP-containing dinucleotides closely resemble those of their adenine-containing counterparts, demonstrating the fidelity of 2AP as a mimic of the natural base. As a first step towards exploring the conformational heterogeneity of dinucleotides, we also characterise an imperfectly stacked conformation and one in which the bases are completely unstacked.
Collapse
Affiliation(s)
- Darren A Smith
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Leo F Holroyd
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Tanja van Mourik
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Anita C Jones
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
10
|
Sedova A, Banavali NK. Geometric Patterns for Neighboring Bases Near the Stacked State in Nucleic Acid Strands. Biochemistry 2017; 56:1426-1443. [PMID: 28187685 DOI: 10.1021/acs.biochem.6b01101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural variation in base stacking has been analyzed frequently in isolated double helical contexts for nucleic acids, but not as often in nonhelical geometries or in complex biomolecular environments. In this study, conformations of two neighboring bases near their stacked state in any environment are comprehensively characterized for single-strand dinucleotide (SSD) nucleic acid crystal structure conformations. An ensemble clustering method is used to identify a reduced set of representative stacking geometries based on pairwise distances between select atoms in consecutive bases, with multiple separable conformational clusters obtained for categories divided by nucleic acid type (DNA/RNA), SSD sequence, stacking face orientation, and the presence or absence of a protein environment. For both DNA and RNA, SSD conformations are observed that are either close to the A-form, or close to the B-form, or intermediate between the two forms, or further away from either form, illustrating the local structural heterogeneity near the stacked state. Among this large variety of distinct conformations, several common stacking patterns are observed between DNA and RNA, and between nucleic acids in isolation or in complex with proteins, suggesting that these might be stable stacking orientations. Noncanonical face/face orientations of the two bases are also observed for neighboring bases in the same strand, but their frequency is much lower, with multiple SSD sequences across categories showing no occurrences of such unusual stacked conformations. The resulting reduced set of stacking geometries is directly useful for stacking-energy comparisons between empirical force fields, prediction of plausible localized variations in single-strand structures near their canonical states, and identification of analogous stacking patterns in newly solved nucleic acid containing structures.
Collapse
Affiliation(s)
- Ada Sedova
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany , Albany, New York 12222, United States
| | - Nilesh K Banavali
- Laboratory of Computational and Structural Biology, Division of Genetics, Wadsworth Center, New York State Department of Health, CMS 2008, Biggs Laboratory, Empire State Plaza, P.O. Box 509, Albany, New York 12201-0509, United States.,Department of Biomedical Sciences, School of Public Health, State University of New York at Albany , Albany, New York 12222, United States
| |
Collapse
|
11
|
Jakhlal J, Coantic-Castex S, Denhez C, Petermann C, Martinez A, Harakat D, Guillaume D, Clivio P. 5'- vs. 3'-end sugar conformational control in shaping up dinucleotides. Chem Commun (Camb) 2016; 51:12381-3. [PMID: 26140549 DOI: 10.1039/c5cc04212g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 5'-end N-sugar puckering is currently believed to govern the intramolecular dinucleotide stacking. We demonstrate that if this 5'-conformation is indeed important in shaping up dinucleotide structures, the 3'-end sugar conformation can either potentiate or cancel the stacking capacity induced by the 5'-end N-sugar conformation.
Collapse
Affiliation(s)
- J Jakhlal
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR de Pharmacie, 51 rue Cognacq-Jay, F-51096 Reims Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Base stacking is a key determinant of nucleic acid structures, but the precise origin of the thermodynamic driving force behind the stacking of nucleobases remains open. The rather mild stacking free energy measured experimentally, roughly a kcal/mol depending on the identity of the bases, is physiologically significant because while base stacking confers stability to the genome in its double helix form, the duplex also has to be unwound in order to be replicated or transcribed. A stacking free energy that is either too high or too low will over- or understabilize the genome, impacting the storage of genetic information and also its retrieval. While the molecular origin of stacking driving force has been attributed to many different sources including dispersion, electrostatics, and solvent hydrogen bonding, here we show via a systematic decomposition of the stacking free energy using large-scale computer simulations that the dominant driving force stabilizing base stacking is nonhydrophobic solvent entropy. Counteracting this is the conformational entropic penalty on the sugar-phosphate backbone against stacking, while solvent hydrogen-bonding, charge-charge interactions, and dispersive forces produce only secondary perturbations. Solvent entropic forces and DNA backbone conformational strains therefore work against each other, leading to a very mild composite stacking free energy in agreement with experiments.
Collapse
Affiliation(s)
- Chi H Mak
- Department of Chemistry and Center of Applied Mathematical Sciences, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
13
|
Mentes A, Florescu AM, Brunk E, Wereszczynski J, Joyeux M, Andricioaei I. Free-energy landscape and characteristic forces for the initiation of DNA unzipping. Biophys J 2016; 108:1727-1738. [PMID: 25863064 DOI: 10.1016/j.bpj.2015.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/05/2015] [Accepted: 01/08/2015] [Indexed: 01/07/2023] Open
Abstract
DNA unzipping, the separation of its double helix into single strands, is crucial in modulating a host of genetic processes. Although the large-scale separation of double-stranded DNA has been studied with a variety of theoretical and experimental techniques, the minute details of the very first steps of unzipping are still unclear. Here, we use atomistic molecular-dynamics simulations, coarse-grained simulations, and a statistical-mechanical model to study the initiation of DNA unzipping by an external force. Calculation of the potential of mean force profiles for the initial separation of the first few terminal basepairs in a DNA oligomer revealed that forces ranging between 130 and 230 pN are needed to disrupt the first basepair, and these values are an order of magnitude larger than those needed to disrupt basepairs in partially unzipped DNA. The force peak has an echo of ∼50 pN at the distance that unzips the second basepair. We show that the high peak needed to initiate unzipping derives from a free-energy basin that is distinct from the basins of subsequent basepairs because of entropic contributions, and we highlight the microscopic origin of the peak. To our knowledge, our results suggest a new window of exploration for single-molecule experiments.
Collapse
Affiliation(s)
- Ahmet Mentes
- Department of Chemistry, University of California, Irvine, Irvine, California
| | - Ana Maria Florescu
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Interdisciplinary Research Institute, Université des Sciences et des Technologies de Lille, CNRS USR 3078, Villeneuve d'Ascq, France
| | - Elizabeth Brunk
- Fuels Synthesis Division, Joint BioEnergy Institute, Emeryville, California; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California; Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Jeff Wereszczynski
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - Marc Joyeux
- Laboratoire Interdisciplinaire de Physique (CNRS UMR5588), Université Joseph Fourier Grenoble 1, St. Martin d'Heres, France
| | - Ioan Andricioaei
- Department of Chemistry, University of California, Irvine, Irvine, California.
| |
Collapse
|
14
|
Schrodt MV, Andrews CT, Elcock AH. Large-Scale Analysis of 48 DNA and 48 RNA Tetranucleotides Studied by 1 μs Explicit-Solvent Molecular Dynamics Simulations. J Chem Theory Comput 2015; 11:5906-17. [PMID: 26580891 PMCID: PMC4806854 DOI: 10.1021/acs.jctc.5b00899] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An understanding of how the conformational behavior of single-stranded DNAs and RNAs depend on sequence is likely to be important for attempts to rationalize the thermodynamics of nucleic acid folding. In an attempt to further our understanding of such sequence dependences, we report here the results of 192 (1 μs) explicit-solvent molecular dynamics (MD) simulations of 48 DNA and 48 RNA tetranucleotide sequences performed using recently reported modifications to the AMBER force field. Each tetranucleotide was simulated starting from two different conformations, a fully natively stacked and a completely unstacked conformation, and populations of the various possible base stacking arrangements were analyzed. The simulations indicate that, for both DNA and RNA, the populations of fully natively stacked conformations increase linearly with increasing numbers of purines in the sequence, while the conformational entropies, computed by two complementary methods, decrease. Despite the comparatively short simulation times, the computed free energies of stacking of the 16 possible combinations of bases in the middle of the sequences are found to be in good correspondence with values reported recently from simulations of dinucleoside monophosphates using the same force field. Finally, consistent with recent reports from other groups, non-native stacking interactions, i.e., between bases that are not adjacent in sequence, are shown to be a recurring feature of the simulations; in particular, stacking interactions of bases in a i:i+2 relationship are shown to occur significantly more frequently when the intervening base is a pyrimidine. Given that the high prevalence of non-native stacking interactions is thought to be unrealistic, it appears that further parametrization work will be required before accurate conformational descriptions of single-stranded nucleic acids can be obtained with current force fields.
Collapse
Affiliation(s)
| | - Casey T. Andrews
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Adrian H. Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
15
|
Elder RM, Pfaendtner J, Jayaraman A. Effect of Hydrophobic and Hydrophilic Surfaces on the Stability of Double-Stranded DNA. Biomacromolecules 2015; 16:1862-9. [DOI: 10.1021/acs.biomac.5b00469] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Robert M. Elder
- U.S. Army Research
Laboratory, Aberdeen Proving
Ground, MD 21005, United States
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Jim Pfaendtner
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Departments
of Chemical and Biomolecular Engineering and Materials Science and
Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
16
|
Brown RF, Andrews CT, Elcock AH. Stacking Free Energies of All DNA and RNA Nucleoside Pairs and Dinucleoside-Monophosphates Computed Using Recently Revised AMBER Parameters and Compared with Experiment. J Chem Theory Comput 2015; 11:2315-28. [PMID: 26574427 PMCID: PMC4651843 DOI: 10.1021/ct501170h] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report the results of a series of 1-μs-long explicit-solvent molecular dynamics (MD) simulations performed to compare the free energies of stacking (ΔGstack) of all possible combinations of DNA and RNA nucleoside (NS) pairs and dinucleoside-monophosphates (DNMPs). For both NS pairs and DNMPs, we show that the computed stacking free energies are in reasonable qualitative agreement with experimental measurements and appear to provide the closest correspondence with experimental data yet found among computational studies; in all cases, however, the computed stacking free energies are too favorable relative to experimental data. Comparisons of NS-pair systems indicate that stacking interactions are very similar in RNA and DNA systems except when a thymine or uracil base is involved: the presence of a thymine base favors stacking by ∼0.3 kcal/mol relative to a uracil base. One exception is found in the self-stacking of cytidines, which are found to be significantly more favorable for the DNA form; an analysis of the rotational orientations sampled during stacking events suggests that this is likely to be due to more favorable sugar-sugar interactions in stacked complexes of deoxycytidines. Comparisons of the DNMP systems indicate that stacking interactions are more favorable in RNA than in DNA except, again, when thymine or uracil bases are involved. Finally, additional simulations performed using a previous generation of the AMBER force field-in which the description of glycosidic bond rotations was less than optimal-produce computed stacking free energies that are in poorer agreement with experimental data. Overall, the simulations provide a comprehensive view of stacking thermodynamics in NS pairs and in DNMPs as predicted by a state-of-the-art MD force field.
Collapse
Affiliation(s)
- Reid F. Brown
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Casey T. Andrews
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Adrian H. Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
17
|
Lin SH, Fujitsuka M, Ishikawa M, Majima T. Driving force dependence of charge separation and recombination processes in dyads of nucleotides and strongly electron-donating oligothiophenes. J Phys Chem B 2014; 118:12186-91. [PMID: 25265410 DOI: 10.1021/jp509691f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Charge transfer in DNA has attracted great attention of scientists because of its importance in biological processes. However, our knowledge on excess-electron transfer in DNA still remains limited in comparison to numerous studies of hole transfer in DNA. To clarify the dynamics of excess-electron transfer in DNA by photochemical techniques, new electron-donating photosensitizers should be developed. Herein, a terthiophene and two 3,4-ethylenedioxythiophene oligomers were used as photosensitizers in dyads including natural nucleobases as electron acceptors. The charge separation and recombination processes in the dyads were investigated by femtosecond laser flash photolysis, and the driving force dependence of these rate constants was discussed on the basis of the Marcus theory. From this study, the conformation effect on charge recombination process was found. We expect that 3,4-ethylenedioxythiophene oligomers are useful in investigation of excess-electron-transfer dynamics in DNA.
Collapse
Affiliation(s)
- Shih-Hsun Lin
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University , Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | | | | | | |
Collapse
|
18
|
Garrec J, Dumont E. Are dinucleoside monophosphates relevant models for the study of DNA intrastrand cross-link lesions? The example of g[8-5m]T. Chem Res Toxicol 2014; 27:1133-41. [PMID: 24911289 DOI: 10.1021/tx4004616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidatively generated tandem lesions such as G[8-5m]T pose a potent threat to genome integrity. Direct experimental studies of the kinetics and thermodynamics of a specific lesion within DNA are very challenging, mostly due to the variety of products that can be formed in oxidative conditions. Dinucleoside monophosphates (DM) involving only the reactive nucleobases in water represent appealing alternative models on which most physical chemistry and structural techniques can be applied. However, it is not yet clear how relevant these models are. Here, we present QM/MM MD simulations of the cyclization step involved in the formation of G[8-5m]T from the guanine-thymine (GpT) DM in water, with the aim of comparing our results to our previous investigation of the same reaction in DNA ( Garrec , J. , Patel , C. , Rothlisberger , U. , and Dumont , E. ( 2012 ) J. Am. Chem. Soc. 134 , 2111 - 2119 ). We show that, despite the different levels of preorganization of the two systems, the corresponding reactions share many energetic and structural characteristics. The main difference lies in the angle between the G and T bases, which is slightly higher in the transition state (TS) and product of the reaction in water than in the reaction in DNA. This effect is due to the Watson-Crick H-bonds, which are absent in the {GpT+water} system and restrain the relative positioning of the reactive nucleobases in DNA. However, since the lesion is accommodated easily in the DNA macromolecule, the induced energetic penalty is relatively small. The high similarity between the two reactions strongly supports the use of GpT in water as a model of the corresponding reaction in DNA.
Collapse
Affiliation(s)
- Julian Garrec
- CNRS, Théorie-Modélisation-Simulation, SRSMC, Vandoeuvre-lès-Nancy F-54506, France
| | | |
Collapse
|
19
|
Chen J, Kohler B. Base stacking in adenosine dimers revealed by femtosecond transient absorption spectroscopy. J Am Chem Soc 2014; 136:6362-72. [PMID: 24735123 DOI: 10.1021/ja501342b] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Excitons formed in DNA by UV absorption decay via poorly understood pathways that can culminate in mutagenic photoproducts. In order to gain insight into how base stacking influences UV excited states in DNA, five dinucleosides composed of adenosine or 2'-deoxyadenosine units joined by flexible linkers were studied by femtosecond transient absorption spectroscopy. In aqueous solution, transient absorption signals recorded at pump and probe wavelengths of 267 and 250 nm, respectively, show that UV absorption produces excimer states in all dimers that decay orders of magnitude more slowly than excitations in a single adenine nucleotide. Adding methanol as a cosolvent disrupts π-π stacking of the adenine moieties and causes the excimer states in all five dinucleosides to vanish for a methanol concentration of 80% by volume. These observations confirm that base stacking is an essential requirement for the slow decay channel seen in these and other DNA model compounds. This channel appears to be insensitive to the precise stacking conformation at the instant of photon absorption as long as the bases are cofacially stacked. Notably, circular dichroism (CD) spectra of several of the dinucleosides are weak and monomer-like and lack the exciton coupling that has been emphasized in the past as an indicator of base-stacked structure. For these dimers, the coupled transition dipole moments of the two adenines are proposed to adopt left- and right-handed arrangements upon stacking with roughly equal probability. Although the mechanism behind slow nonradiative decay in DNA is still uncertain, these results show that the signature of these states in transient absorption experiments can be a more reliable diagnostic of base stacking than the occurrence of exciton-coupled CD signals. These observations also draw attention to the important role the backbone plays in producing structures with axial (helical) chirality.
Collapse
Affiliation(s)
- Jinquan Chen
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717-3400, United States
| | | |
Collapse
|
20
|
High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations. Proc Natl Acad Sci U S A 2013; 110:16820-5. [PMID: 24043821 DOI: 10.1073/pnas.1309392110] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the de novo folding of three hyperstable RNA tetraloops to 1-3 Å rmsd from their experimentally determined structures using molecular dynamics simulations initialized in the unfolded state. RNA tetraloops with loop sequences UUCG, GCAA, or CUUG are hyperstable because of the formation of noncanonical loop-stabilizing interactions, and they are all faithfully reproduced to angstrom-level accuracy in replica exchange molecular dynamics simulations, including explicit solvent and ion molecules. This accuracy is accomplished using unique RNA parameters, in which biases that favor rigid, highly stacked conformations are corrected to accurately capture the inherent flexibility of ssRNA loops, accurate base stacking energetics, and purine syn-anti interconversions. In a departure from traditional quantum chemistrycentric approaches to force field optimization, our parameters are calibrated directly from thermodynamic and kinetic measurements of intra- and internucleotide structural transitions. The ability to recapitulate the signature noncanonical interactions of the three most abundant hyperstable stem loop motifs represents a significant milestone to the accurate prediction of RNA tertiary structure using unbiased all-atom molecular dynamics simulations.
Collapse
|
21
|
Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E. Genetics first or metabolism first? The formamide clue. Chem Soc Rev 2012; 41:5526-65. [PMID: 22684046 DOI: 10.1039/c2cs35066a] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Life is made of the intimate interaction of metabolism and genetics, both built around the chemistry of the most common elements of the Universe (hydrogen, oxygen, nitrogen, and carbon). The transmissible interaction of metabolic and genetic cycles results in the hypercycles of organization and de-organization of chemical information, of living and non-living. The origin-of-life quest has long been split into several attitudes exemplified by the aphorisms "genetics-first" or "metabolism-first". Recently, the opposition between these approaches has been solved by more unitary theoretical and experimental frames taking into account energetic, evolutionary, proto-metabolic and environmental aspects. Nevertheless, a unitary and simple chemical frame is still needed that could afford both the precursors of the synthetic pathways eventually leading to RNA and to the key components of the central metabolic cycles, possibly connected with the synthesis of fatty acids. In order to approach the problem of the origin of life it is therefore reasonable to start from the assumption that both metabolism and genetics had a common origin, shared a common chemical frame, and were embedded under physical-chemical conditions favourable for the onset of both. The singleness of such a prebiotically productive chemical process would partake of Darwinian advantages over more complex fragmentary chemical systems. The prebiotic chemistry of formamide affords in a single and simple physical-chemical frame nucleic bases, acyclonucleosides, nucleotides, biogenic carboxylic acids, sugars, amino sugars, amino acids and condensing agents. Thus, we suggest the possibility that formamide could have jointly provided the main components for the onset of both (pre)genetic and (pre)metabolic processes. As a note of caution, we discuss the fact that these observations only indicate possible solutions at the level of organic substrates, not at the systemic chemical level.
Collapse
Affiliation(s)
- Raffaele Saladino
- Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy.
| | | | | | | | | |
Collapse
|
22
|
Jafilan S, Klein L, Hyun C, Florián J. Intramolecular base stacking of dinucleoside monophosphate anions in aqueous solution. J Phys Chem B 2012; 116:3613-8. [PMID: 22369267 DOI: 10.1021/jp209986y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Time-dependent motions of 32 deoxyribodinucleoside and ribodinucleoside monophosphate anions in aqueous solution at 310 K were monitored during 40 ns using classical molecular dynamics (MD). In all studied molecules, spontaneous stacking/unstacking transitions occurred on a time-scale of 10 ns. To facilitate the structural analysis of the sampled configurations we defined a reaction coordinate for the nucleobase stacking that considers both the angle between the planes of the two nucleobases and the distance between their mass-centers. Additionally, we proposed a physically meaningful transient point on this coordinate that separates the stacked and unstacked states. We applied this definition to calculate free energies for stacking of all pairwise combinations of adenine, thymine (uracil), cytosine and guanine moieties embedded in studied dinucleosides monophosphate anions. The stacking equilibrium constants decreased in the order 5'-AG-3' > GA ~ GG ~ AA > GT ~ TG ~ AT ~ GC ~ AC > CG ~ TA > CA ~ TC ~ TT ~ CT ~ CC. The stacked conformations of AG occurred 10 times more frequently than its unstacked conformations. On the other hand, the last five base combinations showed a greater preference for the unstacked than the stacked state. The presence of an additional 2'-OH group in the RNA-based dinucleoside monophosphates increased the fraction of stacked complexes but decreased the compactness of the stacked state. The calculated MD trajectories were also used to reveal prevailing mutual orientation of the nucleobase dipoles in the stacked state.
Collapse
Affiliation(s)
- Salem Jafilan
- Department of Chemistry, Loyola University Chicago, Chicago, Illinois 60626, USA
| | | | | | | |
Collapse
|
23
|
Saladino R, Crestini C, Pino S, Costanzo G, Di Mauro E. Formamide and the origin of life. Phys Life Rev 2012; 9:84-104. [DOI: 10.1016/j.plrev.2011.12.002] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/06/2011] [Indexed: 11/16/2022]
|
24
|
Keane PM, Wojdyla M, Doorley GW, Kelly JM, Clark IP, Parker AW, Greetham GM, Towrie M, Magno LM, Quinn SJ. Ultrafast IR spectroscopy of polymeric cytosine nucleic acids reveal the long-lived species is due to a localised state. Phys Chem Chem Phys 2012; 14:6307-11. [PMID: 22358255 DOI: 10.1039/c2cp23774a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The decay pathways of UV-excited cytosine polymers are investigated using picosecond time-resolved infrared spectroscopy. Similar yields of a non-emissive (1)nπ* state are found in the single-stranded dC(30) polymer as in the dCMP monomer, but with a longer lifetime in the polymer (80 ps vs. 39 ps). A longer lifetime is also found in the d(CpC) dinucleotide. No evidence of excimer states is observed, suggesting that localised (1)nπ* excited states are the most significant intermediates present on the picosecond timescale.
Collapse
Affiliation(s)
- Páraic M Keane
- School of Chemistry and Centre for Synthesis and Chemical Biology, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
MURATA KATSUMI, SUGITA YUJI, OKAMOTO YUKO. MOLECULAR DYNAMICS SIMULATIONS OF DNA DIMERS BASED ON REPLICA-EXCHANGE UMBRELLA SAMPLING I: TEST OF SAMPLING EFFICIENCY. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633605001611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to elucidate the stacking-unstacking process of DNA dimers, we have performed molecular dynamics simulations based on replica-exchange umbrella sampling (REUS), which is one of powerful conformational sampling techniques. We studied four DNA dimers composed of the adenine and thymine bases in both the 5′ and the 3′ positions (dApdA, dApdT, dTpdA, and dTpdT). We examined the time series of the distance between the glycosidic nitrogen atoms, root-mean-square deviations from A-DNA and B-DNA, various backbone and glycosidic torsion angles, and the pseudorotation phase angles as functions of the simulation time step. All these time series imply that the present simulation has indeed sampled a very wide conformational space. The results for the backbone and glycosidic torsion angles and pseudorotation phase angles imply that B-DNA structures are the dominant motif of the stacked dimers, while a small population of A-DNA also exists in the stacked states.
Collapse
Affiliation(s)
- KATSUMI MURATA
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| | - YUJI SUGITA
- Department of Structural Biology, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - YUKO OKAMOTO
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
- Department of Theoretical Studies, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
26
|
MURATA KATSUMI, SUGITA YUJI, OKAMOTO YUKO. MOLECULAR DYNAMICS SIMULATIONS OF DNA DIMERS BASED ON REPLICA-EXCHANGE UMBRELLA SAMPLING II: FREE ENERGY ANALYSIS. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s021963360500160x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The free energy change of the stacking process of DNA dimers has been investigated by potential of mean force (PMF) calculations. Two reaction coordinates were considered. One is the distance R between the glycosidic nitrogen atoms of the bases. The other is the pseudo dihedral angle X (N–Cl′–Cl′–N) . All 16 possible DNA dimers composed of the adenine, cytosine, guanine, or thymine bases in 5′ and 3′ positions were considered. From the free energy profiles, we observed good stacking for all DNA dimers and sequence-dependent stacking stability. This sequence dependence of the stacking free energy is in good agreement with the experimental results. We also observed that the PMF is the lowest at R = 4.0~4.4 Å and X = 20~40° for all the DNA dimers except for the dGpdA dimer. These values are close to those of the canonical B-DNA (4.4 Å and 29°).
Collapse
Affiliation(s)
- KATSUMI MURATA
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| | - YUJI SUGITA
- Department of Structural Biology, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - YUKO OKAMOTO
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
- Department of Theoretical Studies, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
27
|
|
28
|
Stern N, Major DT, Gottlieb HE, Weizman D, Fischer B. What is the conformation of physiologically-active dinucleoside polyphosphates in solution? Conformational analysis of free dinucleoside polyphosphates by NMR and molecular dynamics simulations. Org Biomol Chem 2010; 8:4637-52. [PMID: 20714505 DOI: 10.1039/c005122e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dinucleoside polyphosphates, or dinucleotides (Np(n)N'; N, N' = A, U, G, C; n = 2-7), are naturally occurring ubiquitous physiologically active compounds. Despite the interest in dinucleotides, and the relevance of their conformation to their biological function, the conformation of dinucleotides has been insufficiently studied. Therefore, here we performed conformational analysis of a series of Np(n)N' Na(+) salts (N = A, G, U, C; N' = A, G, U, C; n = 2-5) by various NMR techniques. All studied dinucleotides, except for Up(4/5)U, formed intramolecular base stacking interactions in aqueous solutions as indicated by NMR. The conformation around the glycosidic angle in Np(n)N's was found to be anti/high anti and the preferred conformation around the C4'-C5', C5'-O5' bonds was found to be gauche-gauche (gg). The ribose moiety in Np(n)N's showed a small preference for the S conformation, but when attached to cytosine the ribose ring preferred the N conformation. However, no predominant conformation was observed for the ribose moiety in any of the dinucleotides. Molecular dynamics simulations of Ap(2)A and Ap(4)A Na(+) salts supported the experimental results. In addition, three modes of base-stacking were found for Ap(2/4)A: α-α, β-β and α-β, which exist in equilibrium, while none is dominant. We conclude that natural, free Np(n)N's (n = 2-5) at physiological pH exist mostly in a folded (stacked), rather than extended conformation, in several interconverting stacking modes. Intramolecular base stacking of Np(n)N's does not alter the conformation of each of the nucleotide moieties, which remains the same as that of the mononucleotides in solution.
Collapse
Affiliation(s)
- Noa Stern
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar Ilan University, Ramat-Gan, 52900, Israel
| | | | | | | | | |
Collapse
|
29
|
Singh N, Briggs JM. Molecular dynamics simulations of Factor Xa: insight into conformational transition of its binding subsites. Biopolymers 2008; 89:1104-13. [PMID: 18680100 DOI: 10.1002/bip.21062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein flexibility and conformational diversity is well known to be a key characteristic of the function of many proteins. Human blood coagulation proteins have multiple substrates, and various protein-protein interactions are required for the smooth functioning of the coagulation cascade to maintain blood hemostasis. To address how a protein may cope with multiple interactions with its structurally diverse substrates and the accompanied structural changes that may drive these changes, we studied human Factor X. We employed 20 ns of molecular dynamics (MD) and steered molecular dynamics (SMD) simulations on two different conformational forms of Factor X, open and closed, and observed an interchangeable conformational transition from one to another. This work also demonstrates the roles of various aromatic residues involved in aromatic-aromatic interactions, which make this dynamic transition possible.
Collapse
Affiliation(s)
- Narender Singh
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | |
Collapse
|
30
|
Hardman SJO, Botchway SW, Thompson KC. Evidence for a nonbase stacking effect for the environment-sensitive fluorescent base pyrrolocytosine--comparison with 2-aminopurine. Photochem Photobiol 2008; 84:1473-9. [PMID: 18513237 DOI: 10.1111/j.1751-1097.2008.00368.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyrrolocytosine (PC), is a highly fluorescent analog of the natural nucleobase cytosine. The fluorescence of PC is quenched upon helix formation but the origin of the quenching is not known. We investigated the effects of base stacking in the aqueous phase by following the fluorescence of dinucleotides and trinucleotides containing PC. The quantum yields and lifetimes (ns) (in parenthesis) obtained at 25 degrees C were: PC-T, 0.026 (2.0), PC-C, 0.033 (2.5), PC-A, 0.032 (2.7), PC-G, 0.021 (2.0), T-PC-T, 0.044 (3.0) and G-PC-G, 0.036 (0.65 and 2.6), compared with 0.038 (2.9) for PC and 0.028 (2.1) for the nucleoside triphosphate. The results show that base stacking does not, except in the case of guanine, quench the fluorescence of PC; indeed the increased solvent shielding can enhance the emitted fluorescence. In the case of G-PC-G the guanines do shield the fluorescent base from the solvent but a particular environment of PC between two guanines also appears to allow a rapid nonradiative pathway, suggested to be electron transfer to the excited PC, to depopulate the excited state leading to the shorter fluorescence lifetime.
Collapse
Affiliation(s)
- Samantha J O Hardman
- School of Biological and Chemical Sciences, Birkbeck University of London, London, UK
| | | | | |
Collapse
|
31
|
Santini GPH, Pakleza C, Auffinger P, Moriou C, Favre A, Clivio P, Cognet JAH. Dinucleotide TpT and its 2'-O-Me analogue possess different backbone conformations and flexibilities but similar stacked geometries. J Phys Chem B 2007; 111:9400-9. [PMID: 17625827 DOI: 10.1021/jp0728656] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UV irradiation at 254 nm of 2'-O,5-dimethyluridylyl(3'-5')-2'-O,5-dimethyluridine (1a) and of natural thymidylyl(3'-5')thymidine (1b) generates the same photoproducts (CPD and (6-4)PP; responsible for cell death and skin cancer). The ratios of quantum yields of photoproducts obtained from 1a (determined herein) to that from 1b are in a proportion close to the approximately threefold increase of stacked dinucleotides for 1a compared with those of 1b (from previous circular dichroism results). 1a and 1b however are endowed with different predominant sugar conformations, C3'-endo (1a) and C2'-endo (1b). The present investigation of the stacked conformation of these molecules, by unrestrained state-of-the-art molecular simulation in explicit solvent and salt, resolves this apparent paradox and suggests the following main conclusions. Stacked dinucleotides 1a and 1b adopt the main characteristic features of a single-stranded A and B form, respectively, where the relative positions of the backbone and the bases are very different. Unexpectedly, the geometry of the stacking of two thymine bases, within each dinucleotide, is very similar and is in excellent agreement with photochemical and circular dichroism results. Analyses of molecular dynamics trajectories with conformational adiabatic mapping show that 1a and 1b explore two different regions of conformational space and possess very different flexibilities. Therefore, even though their base stacking is very similar, these molecules possess different geometrical, mechanical, and dynamical properties that may account for the discrepancy observed between increased stacking and increased photoproduct formations. The computed average stacked conformations of 1a and 1b are well-defined and could serve as starting models to investigate photochemical reactions with quantum dynamics simulations.
Collapse
Affiliation(s)
- Guillaume P H Santini
- Laboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, UMR 7033 CNRS, Université Pierre et Marie Curie, Genopole Campus 1, RN7, Evry 91030, France
| | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Pyshnyi DV, Goldberg EL, Ivanova EM. Efficiency of coaxial stacking depends on the DNA duplex structure. J Biomol Struct Dyn 2004; 21:459-68. [PMID: 14616040 DOI: 10.1080/07391102.2003.10506940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Thermodynamic parameters of coaxial stacking at complementary helix-helix interfaces GX*pYG/CZVC (X,Y=A,C,T,G;*-nick) created by contiguous oligonucleotide hybridization were determined. The data obtained were compared to the thermodynamic parameters of coaxial stacking at the interfaces CX*pYC/GZVG. Multiple linear regression analysis has revealed that the free-energy increments of interaction for the contacts GX*pYG/CZVC and CX*pYC/GZVG can be described by a set of uniform Delta G degrees(X*pY/ZV) values. The difference in the observed free-energy of the coaxial stacking between the two sets is defined by the contribution from the factors reflecting structural differences between compared DNA duplexes.
Collapse
Affiliation(s)
- Dmitrii V Pyshnyi
- Institute of Biological Chemistry and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Prospect Akad, Lavrentyeva 8.
| | | | | |
Collapse
|
34
|
Norberg J, Nilsson L. Comment on `Free energy calculations for DNA base stacking by replica-exchange umbrella sampling' by Katsumi Murata, Yuji Sugita, Yuko Okamoto. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Murata K, Sugita Y, Okamoto Y. Free energy calculations for DNA base stacking by replica-exchange umbrella sampling. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2003.10.159] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Ostrowski T, Maurizot JC, Adeline MT, Fourrey JL, Clivio P. Sugar conformational effects on the photochemistry of thymidylyl(3'-5')thymidine. J Org Chem 2003; 68:6502-10. [PMID: 12919010 DOI: 10.1021/jo030086p] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and conformational analysis of 2'-O,5-dimethyluridylyl(3'-5')-2'-O,5-dimethyluridine (1a), the analogue of thymidylyl(3'-5')thymidine (TpT; 1b) in which a methoxy group replaces each 2'-alpha-hydrogen atom, are described. In comparison with TpT, such modification increases the population of the C3'-endo conformer of the sugar ring puckering at the 5'- and 3'-ends from 30 to 75% and from 37 to 66%, respectively. Photolyses of 1a and TpT at 254 nm are qualitatively comparable (the cis-syn cyclobutane pyrimidine dimer and the (6-4) photoproduct are formed), although it is significantly faster in the case of 1a. These results are explained by the increased propensity of the modified dinucleotide to adopt a base-stacked conformation geometry reminiscent of that for TpT.
Collapse
Affiliation(s)
- Tomasz Ostrowski
- Institut de Chimie des Substances Naturelles, CNRS, 1 Avenue de la Terrasse, 91190 Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
37
|
Abstract
In this Account, we focus on molecular dynamics (MD) simulations involving fully solvated nucleic acids. Historically, MD simulations were first applied to proteins and several years later to nucleic acids. The first MD simulations of DNA were carried out in vacuo, but nowadays fully solvated systems are common practice. Recently, technical improvements have made it possible to conduct accurate MD simulations of highly charged nucleic acids. The state-of-the-art of MD simulations and a number of applications on various nucleic acid systems are discussed.
Collapse
Affiliation(s)
- Jan Norberg
- Center for Structural Biochemistry, Department of Biosciences at Novum Karolinska Institutet, S-141 57 Huddinge, Sweden.
| | | |
Collapse
|
38
|
Banavali NK, MacKerell AD. Free energy and structural pathways of base flipping in a DNA GCGC containing sequence. J Mol Biol 2002; 319:141-60. [PMID: 12051942 DOI: 10.1016/s0022-2836(02)00194-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Structural distortions of DNA are essential for its biological function due to the genetic information of DNA not being physically accessible in the duplex state. Base flipping is one of the simplest structural distortions of DNA and may represent an initial event in strand separation required to access the genetic code. Flipping is also utilized by DNA-modifying and repair enzymes to access specific bases. It is typically thought that base flipping (or base-pair opening) occurs via the major groove whereas minor groove flipping is only possible when mediated by DNA-binding proteins. Here, umbrella sampling with a novel center-of-mass pseudodihedral reaction coordinate was used to calculate the individual potentials of mean force (PMF) for flipping of the Watson-Crick (WC) paired C and G bases in the CCATGCGCTGAC DNA dodecamer. The novel reaction coordinate allowed explicit investigation of the complete flipping process via both the minor and major groove pathways. The minor and major groove barriers to flipping are similar for C base flipping while the major groove barrier is slightly lower for G base flipping. Minor groove flipping requires distortion of the WC partner while the flipping base pulls away from its partner during major groove flipping. The flipped states are represented by relatively flat free energy surfaces, with a small, local minimum observed for the flipped G base. Conserved patterns of phosphodiester backbone dihedral distortions during flipping indicate their essential role in the flipping process. During flipping, the target base tracks along the respective grooves, leading to hydrogen-bonding interactions with neighboring base-pairs. Such hydrogen-bonding interactions with the neighboring sequence suggest a novel mechanism of sequence dependence in DNA dynamics.
Collapse
Affiliation(s)
- Nilesh K Banavali
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 North Pine Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
39
|
Martínez JM, Elmroth SK, Kloo L. Influence of sodium ions on the dynamics and structure of single-stranded DNA oligomers: a molecular dynamics study. J Am Chem Soc 2001; 123:12279-89. [PMID: 11734028 DOI: 10.1021/ja0108786] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of sodium counterion presence and chain length on the structure and dynamics of single DNA strands of polythymidylate were studied by means of molecular dynamics simulations. The importance of the base-base stacking phenomenon increases with the chain length and partially reduces the flexibility of the strand. Sodium ions directly interact with the phosphate groups and keto oxygens of the thymine bases, complexes showing lifetimes below 400 ps. Simultaneous phosphate and keto complexes were observed for one of the sodium ions with lifetimes around 1 ns. The implications of such complexes in the folding process experienced by the strand are considered. Structurally, cation inner- and outer-sphere complexes were observed in the coordination of phosphate groups. For the inner-sphere complexes, the structural information retrieved from the simulations is in very good agreement with experimental data. The diffusion properties of the sodium ions also reflect both types of coordination modes.
Collapse
Affiliation(s)
- J M Martínez
- Department of Inorganic Chemistry, Royal Institute of Technology, Stockholm S-10044, Sweden
| | | | | |
Collapse
|
40
|
Feig M, Zacharias M, Pettitt BM. Conformations of an adenine bulge in a DNA octamer and its influence on DNA structure from molecular dynamics simulations. Biophys J 2001; 81:352-70. [PMID: 11423420 PMCID: PMC1301517 DOI: 10.1016/s0006-3495(01)75705-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Molecular dynamics simulations have been applied to the DNA octamer d(GCGCA-GAAC). d(GTTCGCGC), which has an adenine bulge at the center to determine the pathway for interconversion between the stacked and extended forms. These forms are known to be important in the molecular recognition of bulges. From a total of ~35 ns of simulation time with the most recent CHARMM27 force field a variety of distinct conformations and subconformations are found. Stacked and fully looped-out forms are in excellent agreement with experimental data from NMR and x-ray crystallography. Furthermore, in a number of conformations the bulge base associates with the minor groove to varying degrees. Transitions between many of the conformations are observed in the simulations and used to propose a complete transition pathway between the stacked and fully extended conformations. The effect on the surrounding DNA sequence is investigated and biological implications of the accessible conformational space and the suggested transition pathway are discussed, in particular for the interaction of the MS2 replicase operator RNA with its coat protein.
Collapse
Affiliation(s)
- M Feig
- Department of Chemistry and Institute for Molecular Design, University of Houston, Houston, Texas 77204-5641, USA
| | | | | |
Collapse
|
41
|
Norberg J, Vihinen M. Molecular dynamics simulation of the effects of cytosine methylation on structure of oligonucleotides. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0166-1280(01)00435-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Abstract
We review molecular dynamics simulations of nucleic acids, including those completed from 1995 to 2000, with a focus on the applications and results rather than the methods. After the introduction, which discusses recent advances in the simulation of nucleic acids in solution, we describe force fields for nucleic acids and then provide a detailed summary of the published literature. We emphasize simulations of small nucleic acids ( approximately 6 to 24 mer) in explicit solvent with counterions, using reliable force fields and modern simulation protocols that properly represent the long-range electrostatic interactions. We also provide some limited discussion of simulation in the absence of explicit solvent. Absent from this discussion are results from simulations of protein-nucleic acid complexes and modified DNA analogs. Highlights from the molecular dynamics simulation are the spontaneous observation of A B transitions in duplex DNA in response to the environment, specific ion binding and hydration, and reliable representation of protein-nucleic acid interactions. We close by examining major issues and the future promise for these methods.
Collapse
Affiliation(s)
- T E Cheatham
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112-5820, USA.
| | | |
Collapse
|
43
|
Abstract
Long-range interactions are known to play an important role in highly polar biomolecules like DNA. In molecular dynamics simulations of nucleic acids and proteins, an accurate treatment of the long-range interactions are crucial for achieving stable nanosecond trajectories. In this report, we evaluate the structural and dynamic effects on a highly charged oligonucleotide in aqueous solution from different long-range truncation methods. Two group-based truncation methods, one with a switching function and one with a force-switching function were found to fail to give accurate stable trajectories close to the crystal structure. For these group-based truncation methods, large root mean square (rms) deviations from the initial structure were obtained and severe distortions of the oligonucleotide were observed. Another group-based truncation scheme, which used an abrupt truncation at 8. 0 A or at 12.0 A was also investigated. For the short cutoff distance, the conformations deviated far away from the initial structure and were significantly distorted. However, for the longer cutoff, where all necessary electrostatic interactions were included, the trajectory was quite stable. For the particle mesh Ewald (PME) truncation method, a stable DNA simulation with a heavy atom rms deviation of 1.5 A was obtained. The atom-based truncation methods also resulted in stable trajectories, according to the rms deviation from the initial B-DNA structure, of between 1.5 and 1.7 A for the heavy atoms. In these stable simulations, the heavy atom rms deviations were approximately 0.6-1.0 A lower for the bases than for the backbone. An increase of the cutoff radius from 8 to 12 A decreased the rms deviation by approximately 0.2 A for the atom-based truncation method with a force-shifting function, but increased the computational time by a factor of 2. Increasing the cutoff from 12 to 18 A for the atom-based truncation method with a force-shifting function requires 2-3 times more computational time, but did not significantly change the rms deviation. Similar rms deviations from the initial structure were found for the atom-based method with a force-shifting function and for the PME method. The computational cost was longer for the PME method with a cutoff of 12. 0 A for the direct space nonbonded calculations than for the atom-based truncation method with a force-shifting function and a cutoff of 12.0 A. If a nonperiodic boundary, e.g., a spherical boundary, was used, a considerable speedup could be achieved. From the rms fluctuations, the terminal nucleotides and especially the cytidines were found to be more flexible than the nonterminal nucleotides. The B-DNA form of the oligonucleotide was maintained throughout the simulations and is judged to depend on the parameters of the energy function and not on the truncation method used to handle the long-range electrostatic interactions. To perform accurate and stable simulations of highly charged biological macromolecules, we recommend that the atom-based force-shift method or the PME method should be used for the long-range electrostatics interactions.
Collapse
Affiliation(s)
- J Norberg
- Center for Structural Biochemistry, Department of Bioscience at Novum, Karolinska Institutet, S-141 57 Huddinge, Sweden.
| | | |
Collapse
|
44
|
Nilsson P, O'meara D, Edebratt F, Persson B, Uhlén M, Lundeberg J, Nygren P. Quantitative investigation of the modular primer effect for DNA and peptide nucleic acid hexamers. Anal Biochem 1999; 269:155-61. [PMID: 10094787 DOI: 10.1006/abio.1999.4000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect on oligonucleotide-template duplex stability upon cohybridization of adjacently annealing oligonucleotides, the modular primer effect, was studied with biosensor technology. DNA and peptide nucleic acid (PNA) hexamer modules and sensor chip-immobilized template DNA strands were designed for analysis of nick, overlap, and gap modular hybridization situations. The fast hybridization kinetics for such hexamer modules allowed for the determination of apparent duplex affinities from equilibrium responses. The results showed that the hybridizational stability of modular hexamer pairs is strongly dependent on the positioning, concentration, and inherent affinity of the adjacently annealing hexamer module. Up to 80-fold increases in apparent affinities could be observed for adjacent modular oligonucleotide pairs compared to affinities determined for single hexamer oligonucleotide hybridizations. Interestingly, also for coinjections of different module combinations where DNA hexamer modules were replaced by their PNA counterparts, a modular primer effect was observed. The introduction of a single base gap between two hexamer modules significantly reduced the stabilization effect, whereas a gap of two bases resulted in a complete loss of the effect. The results suggest that the described biosensor-based methodology should be useful for the selection of appropriate modules and working concentrations for use in different modular hybridization applications.
Collapse
Affiliation(s)
- P Nilsson
- Department of Biotechnology, KTH-Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Pardo L, Pastor N, Weinstein H. Selective binding of the TATA box-binding protein to the TATA box-containing promoter: analysis of structural and energetic factors. Biophys J 1998; 75:2411-21. [PMID: 9788936 PMCID: PMC1299915 DOI: 10.1016/s0006-3495(98)77685-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report the results of an energy-based exploration of the components of selective recognition of the TATA box-binding protein (TBP) to a TATA box sequence that includes 1) the interaction between the hydrophobic Leu, Pro, and Phe residues of TBP with the TA, AT, AA, TT, and CG steps, by ab initio quantum mechanical calculations; and 2) the free energy penalty, calculated from molecular dynamics/potential of mean force simulations, for the conformational transition from A-DNA and B-DNA into the TA-DNA form of DNA observed in a complex with TBP. The GTAT, GATT, GAAT, and GTTT tetramers were explored. The results show that 1) the discrimination of TA, AT, AA, TT, or CG steps by TBP cannot rest on their interaction with the inserting Phe side chains; 2) the steric clash between the bulky and hydrophobic Pro and Leu residues and the protruding -NH2 group of guanine is responsible for the observed selectivity against any Gua-containing basepair; 3) the Pro and Leu residues cannot selectively discriminate among TA, AT, AA, or TT steps; and 4) the calculated energy required to achieve the TA-DNA conformation of DNA that is observed in the complex with TBP appears to be a key determinant for the observed selectivity against the AT, AA, and TT steps. The simulations also indicate that only the TA step can form a very efficient interbase hydrogen bond network in the TA-DNA conformation. Such an energetically stabilizing network is not achievable in the AA and TT steps. While it is viable in the AT step, structural constraints render the hydrogen bonding network energetically ineffective there.
Collapse
Affiliation(s)
- L Pardo
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
47
|
Abstract
In this paper we present a detailed analysis of the base-stacking phenomenon in different solvents, using nanosecond molecular dynamics simulations. The investigation focuses on deoxyribo- and ribodinucleoside monophosphates in aqueous and organic solutions. Organic solvents with a low dielectric constant, such as chloroform, and solvents with intermediate dielectric constants, such as dimethyl sulfoxide and methanol, were analyzed. This was also done for water, which is highly polar and has a high dielectric constant. Structural parameters such as the sugar puckering and the base-versus-base orientations, as well as the energetics of the solute-solvent interactions, were examined in the different solvents. The obtained data demonstrate that base stacking is favored in the high dielectric aqueous solution, followed by methanol and dimethyl sulfoxide with intermediate dielectric constants, and chloroform, with a low dielectric constant.
Collapse
Affiliation(s)
- J Norberg
- Department of Bioscience at NOVUM, Karolinska Institute, Huddinge, Sweden
| | | |
Collapse
|
48
|
Baginski M, Fogolari F, Briggs JM. Electrostatic and non-electrostatic contributions to the binding free energies of anthracycline antibiotics to DNA. J Mol Biol 1997; 274:253-67. [PMID: 9398531 DOI: 10.1006/jmbi.1997.1399] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The knowledge about molecular factors driving simple ligand-DNA interactions is still limited. The aim of the present study was to investigate the electrostatic and non-electrostatic contributions to the binding free energies of anthracycline compounds with DNA. Theoretical calculations based on continuum methods (Poisson-Boltzmann and solvent accessible surface area) were performed to estimate the binding free energies of five selected anthracycline ligands (daunomycin, adriamycin, 9-deoxyadriamycin, hydroxyrubicin, and adriamycinone) to DNA. The free energy calculations also took into account the conformational change that DNA undergoes upon ligand binding. This conformational change appeared to be very important for estimating absolute free energies of binding. Our studies revealed that the absolute values of all computed contributions to the binding free energy were quite large compared to the total free energy of binding. However, the sum of these large positive and negative values produced a small negative value of the free energy around -10 kcal/mol. This value is in good agreement with experimental data. Experimental values for relative binding free energies were also reproduced for charged ligands by our calculations. Together, it was found that the driving force for ligand-DNA complex formation is the non-polar interaction between the ligand and DNA even if the ligand is positively charged.
Collapse
Affiliation(s)
- M Baginski
- Department of Pharmacology, University of California, San Diego, CA 92093-0365, USA
| | | | | |
Collapse
|
49
|
Alhambra C, Luque FJ, Gago F, Orozco M. Ab Initio Study of Stacking Interactions in A- and B-DNA. J Phys Chem B 1997. [DOI: 10.1021/jp962626a] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cristóbal Alhambra
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain, Departament de Farmàcia, Unitat Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avgda Diagonal s/n, Barcelona 08028, Spain, Departamento de Fisiología y Farmacología, Universidad de Alcalá de Henares, 28871 Madrid, Spain
| | - Francisco J. Luque
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain, Departament de Farmàcia, Unitat Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avgda Diagonal s/n, Barcelona 08028, Spain, Departamento de Fisiología y Farmacología, Universidad de Alcalá de Henares, 28871 Madrid, Spain
| | - Federico Gago
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain, Departament de Farmàcia, Unitat Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avgda Diagonal s/n, Barcelona 08028, Spain, Departamento de Fisiología y Farmacología, Universidad de Alcalá de Henares, 28871 Madrid, Spain
| | - Modesto Orozco
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain, Departament de Farmàcia, Unitat Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avgda Diagonal s/n, Barcelona 08028, Spain, Departamento de Fisiología y Farmacología, Universidad de Alcalá de Henares, 28871 Madrid, Spain
| |
Collapse
|
50
|
Affiliation(s)
- J Norberg
- Department of Bioscience at Novum, Karolinska Institutet, Huddinge, Sweden.
| | | |
Collapse
|