1
|
Scibilia S, Lentini G, Fazio E, Franco D, Neri F, Mezzasalma AM, Guglielmino SPP. Self-assembly of silver nanoparticles and bacteriophage. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
2
|
Sereda V, Sawaya MR, Lednev IK. Structural Organization of Insulin Fibrils Based on Polarized Raman Spectroscopy: Evaluation of Existing Models. J Am Chem Soc 2015; 137:11312-20. [DOI: 10.1021/jacs.5b07535] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Valentin Sereda
- Department
of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Michael R. Sawaya
- UCLA−DOE Institute, 611 Charles
E. Young Drive, Los Angeles, California 90095-1570, United States
| | - Igor K. Lednev
- Department
of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
3
|
Abramov G, Morag O, Goldbourt A. Magic-angle spinning NMR of intact bacteriophages: insights into the capsid, DNA and their interface. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:80-90. [PMID: 25797007 DOI: 10.1016/j.jmr.2015.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/05/2015] [Accepted: 01/18/2015] [Indexed: 06/04/2023]
Abstract
Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.
Collapse
Affiliation(s)
- Gili Abramov
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Omry Morag
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Amir Goldbourt
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel.
| |
Collapse
|
4
|
Morag O, Sgourakis NG, Baker D, Goldbourt A. The NMR-Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope. Proc Natl Acad Sci U S A 2015; 112:971-6. [PMID: 25587134 PMCID: PMC4313819 DOI: 10.1073/pnas.1415393112] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Filamentous phage are elongated semiflexible ssDNA viruses that infect bacteria. The M13 phage, belonging to the family inoviridae, has a length of ∼1 μm and a diameter of ∼7 nm. Here we present a structural model for the capsid of intact M13 bacteriophage using Rosetta model building guided by structure restraints obtained from magic-angle spinning solid-state NMR experimental data. The C5 subunit symmetry observed in fiber diffraction studies was enforced during model building. The structure consists of stacked pentamers with largely alpha helical subunits containing an N-terminal type II β-turn; there is a rise of 16.6-16.7 Å and a tilt of 36.1-36.6° between consecutive pentamers. The packing of the subunits is stabilized by a repeating hydrophobic stacking pocket; each subunit participates in four pockets by contributing different hydrophobic residues, which are spread along the subunit sequence. Our study provides, to our knowledge, the first magic-angle spinning NMR structure of an intact filamentous virus capsid and further demonstrates the strength of this technique as a method of choice to study noncrystalline, high-molecular-weight molecular assemblies.
Collapse
Affiliation(s)
- Omry Morag
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel; and
| | | | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Amir Goldbourt
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel; and
| |
Collapse
|
5
|
Sereda V, Lednev IK. Polarized Raman Spectroscopy of Aligned Insulin Fibrils. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2014; 45:665-671. [PMID: 25316956 PMCID: PMC4194063 DOI: 10.1002/jrs.4523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Amyloid fibrils are associated with many neurodegenerative diseases. The application of conventional techniques of structural biology, X-ray crystallography and solution NMR, for fibril characterization is limited because of the non-crystalline and insoluble nature of the fibrils. Here, polarized Raman spectroscopy was used to determine the orientation of selected chemical groups in aligned insulin fibrils, specifically of peptide carbonyls. The methodology is solely based on the measurement of the change in Raman scattered intensity as a function of the angle between the incident laser polarization and the aligned fibrils. The order parameters 〈 P2 〉 and 〈 P4 〉 of the orientation distribution function were obtained, and the most probable distribution of C=O group orientation was calculated. The results indicate that the peptides' carbonyl groups are oriented at an angle of 13±5° from the fibril axis, which is in consistent with previously reported qualitative descriptions of an almost parallel orientation of the C=O groups relative to the main fibril axis.
Collapse
Affiliation(s)
- Valentin Sereda
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Igor K. Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
6
|
Nemecek D, Stepanek J, Thomas GJ. Raman Spectroscopy of Proteins and Nucleoproteins. ACTA ACUST UNITED AC 2013; Chapter 17:Unit17.8. [DOI: 10.1002/0471140864.ps1708s71] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Daniel Nemecek
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health Bethesda Maryland
- Central European Institute of Technology, Masaryk University Brno Czech Republic
| | - Josef Stepanek
- Charles University in Prague, Faculty of Mathematics and Physics, Institute of Physics Prague Czech Republic
| | - George J. Thomas
- School of Biological Sciences, University of Missouri‐Kansas City Kansas City Missouri
| |
Collapse
|
7
|
Abramov G, Morag O, Goldbourt A. Magic-Angle Spinning NMR of a Class I Filamentous Bacteriophage Virus. J Phys Chem B 2011; 115:9671-80. [DOI: 10.1021/jp2040955] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gili Abramov
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Omry Morag
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Amir Goldbourt
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| |
Collapse
|
8
|
Podstawka-Proniewicz E, Kudelski A, Kim Y, Proniewicz LM. Structure of monolayers formed from neurotensin and its single-site mutants: vibrational spectroscopic studies. J Phys Chem B 2011; 115:6709-21. [PMID: 21542591 DOI: 10.1021/jp200805f] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human, pig, and frog neurotensins and four single-site mutants of human neurotensin (NT), having the following modifications, [Gln(4)]NT, [Trp(11)]NT, [D-Trp(11)]NT, and [D-Tyr(11)]NT, were immobilized onto an electrochemically roughened silver electrode surface in an aqueous solution. The orientation of adsorbed molecules was determined from surface-enhanced Raman scattering (SERS) measurements. A comparison was made between these structures to determine how the change upon the mutation of the neurotensin structure influences its adsorption properties. The SERS patterns were correlated with the contribution of the structural components of the aforementioned peptides to the ability to interact with the NTR1 G-protein receptor. Briefly, the SERS spectra revealed that the substitution of native amino acids in investigated peptides influenced slightly their adsorption state on an electrochemically roughened silver surface. Thus, human, pig, and frog neurotensins and [Gln(4)]NT and [D-Tyr(11)]NT tended to adsorb to the surface via the tyrosine ring, the oxygen atom of the deprotonated phenol group of Tyr(11), and the -CH(2)- unit(s), most probably of Tyr(11), Arg(9), and/or Leu(13). The observed changes in the enhancement of the deprotonated Tyr residue SERS signals indicated a further parallel orientation of a phenol-O bond with regard to the silver surface normal for pig NT, [Gln(4)]NT, and [D-Tyr(11)]NT, whereas the orientation was slightly tilted for human and frog NT. In the case of [Trp(11)]NT and [D-Trp(11)]NT, the formation of a peptide/Ag complex was confirmed by strong SERS bands involving the phenyl co-ring of Trp(11)/d-Trp(11) and -CH(2)- vibrations and the tilted and flat orientations of the two compounds with respect to the surface substrate. The spectral features were accompanied by a SERS signal caused by vibrations of the carboxyl group of C-terminal Leu(13) and the guanidine group of Arg(9). Reported changes in SERS spectra of L and D isomers were fully supported by generalized two-dimensional correlation analysis. Additionally, a combination of mutation-labeling and vibrational spectroscopy (Fourier-transform Raman and absorption infrared) was used to investigate the possible peptide conformations and environments of the tyrosine residues.
Collapse
|
9
|
Pieridou G, Avgousti-Menelaou C, Tamamis P, Archontis G, Hayes SC. UV resonance Raman study of TTR(105-115) structural evolution as a function of temperature. J Phys Chem B 2011; 115:4088-98. [PMID: 21428385 DOI: 10.1021/jp107519b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UV resonance Raman spectroscopy was used to probe the temperature dependence of the conformation of TTR(105-115) in solution. Resonance Raman spectra with excitation at 239.5 nm, show an increase in the absolute resonance Raman cross section of Tyr with an increase in temperature. This trend is associated with an increase in the hydrophobicity of the Tyr local environment, suggesting a conformational change at 28 °C. Excitation at ~200 nm is known to enhance scattering due to amide vibrations and provides insights as to the secondary structure of a peptide or protein. UVRR spectra at this excitation suggest that in solution the peptide assumes a disordered conformation with frequent formation of β-turns. Explicit-solvent replica-exchange MD simulations of the isolated peptide in the region 15 to 37 °C suggest that the dominant conformation assumed by the peptide corresponds to a coil with β-turns in the central and C-terminal region. In line with the experiments, an increase in temperature induces structural order in the peptide, reflected by an increase in the probability for the formation of β-turns and hydrophobic side-chain contacts, mainly in the 8-11 moiety, and to a lesser extent in the 4-7 moiety.
Collapse
Affiliation(s)
- G Pieridou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | | | | | | | | |
Collapse
|
10
|
Benevides JM, Overman SA, Thomas GJ. Raman Spectroscopy of Proteins. ACTA ACUST UNITED AC 2004; Chapter 17:17.8.1-17.8.35. [DOI: 10.1002/0471140864.ps1708s33] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- James M. Benevides
- University of Missouri‐Kansas City School of Biological Sciences Kansas City Missouri
| | - Stacy A. Overman
- University of Missouri‐Kansas City School of Biological Sciences Kansas City Missouri
| | - George J. Thomas
- University of Missouri‐Kansas City School of Biological Sciences Kansas City Missouri
| |
Collapse
|
11
|
Overman SA, Kristensen DM, Bondre P, Hewitt B, Thomas GJ. Effects of Virion and Salt Concentrations on the Raman Signatures of Filamentous Phages fd, Pf1, Pf3, and PH75. Biochemistry 2004; 43:13129-36. [PMID: 15476406 DOI: 10.1021/bi0485023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Filamentous phages consist of a single-stranded DNA genome encapsidated by several thousand copies of a small alpha-helical coat protein subunit plus several copies of four minor proteins at the filament ends. The filamentous phages are important as cloning vectors, vehicles for peptide display, and substrates for macromolecular alignment. Effective use of a filamentous phage in such applications requires an understanding of experimental factors that may influence the propensity of viral filaments to laterally aggregate in solution. Because the Raman spectrum of a filamentous phage is strongly dependent on the relative orientation of the virion with respect to the polarization direction of the electromagnetic radiation employed to excite the spectrum, we have applied Raman spectroscopy to investigate lateral aggregation of phages fd, Pf1, Pf3, and PH75 in solution. The results show that lateral aggregation of the virions and anisotropic orientation of the aggregates are both disfavored by high concentrations of salt (>200 mM NaCl) in solutions containing a relatively low virion concentration (<10 mg/mL). Conversely, the formation of lateral aggregates and their anisotropic orientation are strongly favored by a low salt concentration (<0.1 mM NaCl), irrespective of the virion concentration over a wide range. The use of Raman polarization effects to distinguish isotropic and anisotropic solutions of filamentous phages is consistent with previously reported Raman analyses of virion structures in both solutions and fibers. The Raman data are supported by electron micrographs of negatively stained specimens of phage fd, which permit an independent assessment of salt effects on lateral aggregation. The present results also identify new Raman bands that serve as potential markers of subunit side-chain orientations in filamentous virus assemblies.
Collapse
Affiliation(s)
- Stacy A Overman
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
The Raman spectrum of a protein contains a wealth of information on the structure and interaction of the protein. To extract the structural information from the Raman spectrum, it is necessary to identify and interpret the marker bands that reflect the structure and interaction in the protein. Recently, new Raman structural markers have been proposed for the tryptophan and histidine side chains by examining the spectra-structure correlations of model compounds. Raman structural markers are now available for the conformation, hydrogen bonding, hydrophobic interaction, and cation-pi interaction of the indole ring of Trp. For His, protonation, tautomerism, and metal coordination of the imidazole ring can be studied by using Raman markers. The high-resolution X-ray crystal structures of proteins provide the basis for testing and modifying the Raman structural markers of Trp and His. The structures derived from Raman spectra are generally consistent with the X-ray crystal structures, giving support for the applicability of most Raman structural makers. Possible modifications and limitations to some marker bands are also discussed.
Collapse
Affiliation(s)
- Hideo Takeuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan.
| |
Collapse
|
13
|
Tsuboi M, Overman SA, Nakamura K, Rodriguez-Casado A, Thomas GJ. Orientation and interactions of an essential tryptophan (Trp-38) in the capsid subunit of Pf3 filamentous virus. Biophys J 2003; 84:1969-76. [PMID: 12609899 PMCID: PMC1302766 DOI: 10.1016/s0006-3495(03)75005-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The filamentous bacteriophage Pf3 consists of a covalently closed DNA single strand of 5833 nucleotides sheathed by approximately 2500 copies of a 44-residue capsid subunit. The capsid subunit contains a single tryptophan residue (Trp-38), which is located within the basic C-terminal sequence (-RWIKAQFF) and is essential for virion assembly in vivo. Polarized Raman microspectroscopy has been employed to determine the orientation of the Trp-38 side chain in the native virus structure. The polarized Raman measurements show that the plane of the indolyl ring is tilted by 17 degrees from the virion axis and that the indolyl pseudo-twofold axis is inclined at 46 degrees to the virion axis. Using the presently determined orientation of the indolyl ring and side-chain torsion angles, chi(1) (N-C(alpha)-C(beta)-C(gamma)) and chi(2,1) (C(alpha)-C(beta)-C(gamma)-C(delta1)), we propose a detailed molecular model for the local structure of Trp-38 in the Pf3 virion. The present Pf3 model is consistent with previously reported Raman, ultraviolet-resonance Raman and fluorescence results suggesting an unusual environment for Trp-38 in the virion assembly, probably involving an intrasubunit cation-pi interaction between the guanidinium moiety of Arg-37 and the indolyl moiety of Trp-38. Such a C-terminal Trp-38/Arg-37 interaction may be important for the stabilization of a subunit conformation that is required for binding to the single-stranded DNA genome during virion assembly.
Collapse
Affiliation(s)
- Masamichi Tsuboi
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 64110, USA
| | | | | | | | | |
Collapse
|
14
|
Tsuboi M, Kubo Y, Ikeda T, Overman SA, Osman O, Thomas GJ. Protein and DNA residue orientations in the filamentous virus Pf1 determined by polarized Raman and polarized FTIR spectroscopy. Biochemistry 2003; 42:940-50. [PMID: 12549913 DOI: 10.1021/bi020566v] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Pseudomonas bacteriophage Pf1 is a long ( approximately 2000 nm) and thin ( approximately 6.5 nm) filament consisting of a covalently closed, single-stranded DNA genome of 7349 nucleotides coated by 7350 copies of a 46-residue alpha-helical subunit. The coat subunits are arranged as a superhelix of C(1)()S(5.4)() symmetry (class II). Polarized Raman and polarized FTIR spectroscopy of oriented Pf1 fibers show that the packaged single-stranded DNA genome is ordered specifically with respect to the capsid superhelix. Bases are nonrandomly arranged along the capsid interior, deoxynucleosides are uniformly in the C2'-endo/anti conformation, and the average DNA phosphodioxy group (PO(2)(-)) is oriented so that the line connecting the oxygen atoms (O.O) forms an angle of 71 degrees +/- 5 degrees with the virion axis. Raman and infrared amide band polarizations show that the subunit alpha-helix axis is inclined at an average angle of 16 degrees +/- 4 degrees with respect to the virion axis. The alpha-helical symmetry of the capsid subunit is remarkably rigorous, resulting in splitting of Raman-active helix vibrational modes at 351, 445 and 1026 cm(-)(1) into apparent A-type and E(2)()-type symmetry pairs. The subunit tyrosines (Tyr 25 and Tyr 40) are oriented with phenoxyl rings packed relatively close to parallel to the virion axis. The Tyr 25 and Tyr 40 orientations of Pf1 are surprisingly close to those observed for Tyr 21 and Tyr 24 of the Ff virion (C(5)()S(2)() symmetry, class I), suggesting a preferred tyrosyl side chain conformation in packed alpha-helical subunits, irrespective of capsid symmetry. The polarized Raman spectra also provide information on the orientations of subunit alanine, valine, leucine and isoleucine side chains of the Pf1 virion.
Collapse
Affiliation(s)
- Masamichi Tsuboi
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | | | | | | | | | | |
Collapse
|
15
|
Olofsson L, Ankarloo J, Andersson PO, Nicholls IA. Filamentous bacteriophage stability in non-aqueous media. CHEMISTRY & BIOLOGY 2001; 8:661-71. [PMID: 11451667 DOI: 10.1016/s1074-5521(01)00041-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Filamentous bacteriophage are used as general cloning vectors as well as phage display vectors in order to study ligand-receptor interactions. Exposure to biphasic chloroform-water interface leads to specific contraction of phage, to non-infective I- or S-forms. RESULTS Upon exposure, phage were inactivated (non-infective) at methanol, ethanol and 1-propanol concentrations inversely dependent upon alcohol hydrophobicity. Infectivity loss of phage at certain concentrations of 1-propanol or ethanol coincided with changes in the spectral properties of the f1 virion in ultraviolet fluorescence and circular dichroism studies. CONCLUSIONS The alcohols inactivate filamentous phage by a general mechanism--solvation of coat protein--thereby disrupting the capsid in a manner quite different from the previously reported I- and S-forms. The infectivity retention of phagemid pG8H6 in 99% acetonitrile and the relatively high general solvent resistance of the phage strains studied here open up the possibility of employing phage display in non-aqueous media.
Collapse
Affiliation(s)
- L Olofsson
- Bioorganic and Biophysical Chemistry Laboratory, Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-391 82, Kalmar, Sweden
| | | | | | | |
Collapse
|
16
|
Thomas GJ. Raman spectroscopy of protein and nucleic acid assemblies. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 28:1-27. [PMID: 10410793 DOI: 10.1146/annurev.biophys.28.1.1] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Raman spectrum of a protein or nucleic acid consists of numerous discrete bands representing molecular normal modes of vibration and serves as a sensitive and selective fingerprint of three-dimensional structure, intermolecular interactions, and dynamics. Recent improvements in instrumentation, coupled with innovative approaches in experimental design, dramatically increase the power and scope of the method, particularly for investigations of large supramolecular assemblies. Applications are considered that involve the use of (a) time-resolved Raman spectroscopy to elucidate assembly pathways in icosahedral viruses, (b) polarized Raman microspectroscopy to determine detailed structural parameters in filamentous viruses, (c) ultraviolet-resonance Raman spectroscopy to probe selective DNA and protein residues in nucleoprotein complexes, and (d) difference Raman methods to understand mechanisms of protein/DNA recognition in gene regulatory and chromosomal complexes.
Collapse
Affiliation(s)
- G J Thomas
- School of Biological Sciences, University of Missouri-Kansas City 64110, USA.
| |
Collapse
|
17
|
Tsuboi M, Ushizawa K, Nakamura K, Benevides JM, Overman SA, Thomas GJ. Orientations of Tyr 21 and Tyr 24 in the capsid of filamentous virus Ff determined by polarized Raman spectroscopy. Biochemistry 2001; 40:1238-47. [PMID: 11170449 DOI: 10.1021/bi001936n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The capsid of filamentous virus Ff is assembled from approximately 2750 copies of a 50-residue alpha-helical subunit, the two tyrosines of which (Tyr 21 and Tyr 24) are located within a hydrophobic sequence that constitutes the subunit interface. We have determined the side chain orientations of Tyr 21 and Tyr 24 by polarized Raman microspectroscopy of oriented Ff fibers, utilizing a novel experimental approach that combines site-specific mutation and residue-specific deuteration of capsid subunits. The polarized Raman signature of Tyr 21 was obtained by incorporating C(delta 1),C(delta 2),C(epsilon 1),C(epsilon 2)-tetradeuteriotyrosine at position 21 in an Ff mutant in which Tyr 24 is replaced with methionine. Similarly, the polarized Raman signature of Tyr 24 was obtained by incorporating C(delta 1),C(delta 2),C(epsilon 1),C(epsilon 2)-tetradeuteriotyrosine at position 24 in the analogous Tyr 21 --> Met mutant. Polarizations of the corresponding C-D stretching bands in the 2200-2400 cm(-1) interval of the Raman spectrum were measured and interpreted using tensors transferred from a polarized Raman analysis of L-tyrosine-2,3,5,6-d(4) single crystals. Polarized Raman analysis was extended to the bands of Ff near 642 and 855 cm(-1), which originate from vibrational modes of the tyrosine phenolic ring. The results indicate the following: (i) For both Tyr 21 and Tyr 24, the phenolic 2-fold axis (C(1)-C(4) line) is inclined at 41 +/- 5 degrees from the virion axis and the normal to the plane of the phenolic ring is inclined at 71 +/- 5 degrees from the virion axis; (ii) the mutation of Tyr 24, but not the mutation of Tyr 21, perturbs Raman markers of the subunit tryptophan (Trp 26), suggesting interdependence of Tyr 24 and Trp 26 orientations in native Ff; and (iii) polarization anisotropies observed for Raman markers of Ff DNA bases are unperturbed by mutation of either Tyr 21 or Tyr 24, indicating that nonrandom base orientations of packaged Ff DNA are independent of the mutation of either Tyr 21 or Tyr 24. A molecular model consistent with these findings is proposed.
Collapse
Affiliation(s)
- M Tsuboi
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | | | | | | | | | |
Collapse
|
18
|
Yuen CT, Davidson AR, Deber CM. Role of aromatic residues at the lipid-water interface in micelle-bound bacteriophage M13 major coat protein. Biochemistry 2000; 39:16155-62. [PMID: 11123944 DOI: 10.1021/bi0016117] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analyses of transmembrane domains of proteins have revealed that aromatic residues tend to cluster at or near the lipid-water interface of the membrane. To assess protein-membrane interactions of such residues, a viable mutant library was generated of the major coat protein of bacteriophage M13 (a model single membrane-spanning protein) in which one or the other of its interfacial tyrosine residues (Tyr-21 and Tyr-24) is mutated. Using the interfacial tryptophan (Trp-26) as an intrinsic probe, blue shifts in fluorescence emission spectra and quenching constants indicated that mutants with a polar amino acid substitution (such as Y24D or Y24N) are less buried in a deoxycholate micelle environment than in the wild type protein. These polar mutants also exhibited alpha-helix to beta-structure transition temperatures in incremental-heating circular dichroism studies relatively lower than those of wild type and nonpolar mutants (such as Y21V, Y21I, and Y24A), indicating that specific side chains in the lipid-water interface influence local protein-micelle interactions. Mutant Y21F exhibited the highest transition temperature, suggesting that phenylalanine is ostensibly the most effective interfacial anchoring residue. Using phage viability as the assay in a combination of site-directed and saturation mutagenesis experiments, it was further observed that both Tyr residues could not simultaneously be "knocked out". The overall results support the notion that an interfacial Tyr is a primary recognition element for precise strand positioning in vivo, a function that apparently cannot be performed optimally by residues with simple aliphatic character.
Collapse
Affiliation(s)
- C T Yuen
- Division of Structural Biology and Biochemistry, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | |
Collapse
|
19
|
Blanch EW, Bell AF, Hecht L, Day LA, Barron LD. Raman optical activity of filamentous bacteriophages: hydration of alpha-helices. J Mol Biol 1999; 290:1-7. [PMID: 10388553 DOI: 10.1006/jmbi.1999.2871] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report the first observations of vibrational Raman optical activity (ROA) on intact viruses. Specifically, ROA spectra of the filamentous bacteriophages Pf1, M13 and IKe in aqueous solution were measured in the range approximately 600-1800 cm-1. On account of its ability to probe directly the chiral elements of biomolecular structure, ROA has provided a new perspective on the solution structures of these well-studied systems. The ROA spectra of all three are dominated by signatures of helical elements in the major coat proteins, as expected from pre-existing data. The helical elements generate strong sharp positive ROA bands at approximately 1300 and 1342 cm-1in H2O solution, but in2H2O solution the approximately 1342 cm-1bands disappear completely. The spectra are similar to those of polypeptides under conditions that produce alpha-helical conformations. Our present results, together with results from other studies, suggest that the positive approximately 1342 cm-1ROA bands are generated by a highly hydrated form of alpha-helix, and that the positive approximately 1300 cm-1bands originate in alpha-helix in a more hydrophobic environment. The presence of significant amounts of highly hydrated helical sequences accords with the known flexibility of these viruses. Differences of spectral detail for Pf1, M13 and IKe demonstrate that ROA is sensitive to subtle variations of conformation and hydration within the major coat proteins, with M13 and IKe possibly containing more non-helical structure than Pf1. The ROA spectra of Pf1 at temperatures above and below that at which a structural transition is known to occur (approximately 10 degrees C) reveal little difference in the protein conformation between the two forms, but there are indications of changes in DNA structure.
Collapse
Affiliation(s)
- E W Blanch
- Chemistry Department, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | | | | |
Collapse
|
20
|
Wen ZQ, Armstrong A, Thomas GJ. Demonstration by ultraviolet resonance Raman spectroscopy of differences in DNA organization and interactions in filamentous viruses Pf1 and fd. Biochemistry 1999; 38:3148-56. [PMID: 10074370 DOI: 10.1021/bi981965m] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pf1, a class II filamentous virus, has been investigated by ultraviolet resonance Raman (UVRR) spectroscopy with excitation wavelengths of 257, 244, 238, and 229 nm. The 257-nm UVRR spectrum is rich in Raman bands of the packaged single-stranded DNA (ssDNA) genome, despite the low DNA mass (6%) of the virion. Conversely, the 229-nm UVRR spectrum is dominated by tyrosines (Tyr 25 and Tyr 40) of the 46-residue alpha-helical coat subunit. UVRR spectra excited at 244 and 238 nm exhibit Raman bands diagnostic of both viral DNA and coat protein tyrosines. Raman markers of packaged Pf1 DNA contrast sharply with those of the DNA packaged in the class I filamentous virus fd [Wen, Z. Q., Overman, S. A., and Thomas, G. J., Jr. (1997) Biochemistry 36, 7810-7820]. Interestingly, deoxynucleotides of Pf1 DNA exhibit sugars in the C2'-endo/anti conformation and bases that are largely unstacked, compared with C3'-endo/anti conformers and very strong base stacking in fd DNA; hydrogen-bonding interactions of thymine carbonyls are also different in Pf1 and fd. On the other hand, coat protein tyrosines of Pf1 exhibit Raman markers of ring environment identical to those of fd, including an anomalous singlet at 853 cm-1 in lieu of the canonical Fermi doublet (850/830 cm-1) found in globular proteins. The results indicate markedly different modes of organization of ssDNA in Pf1 and fd virions, despite similar environments for coat protein tyrosines, and suggest strong hydrogen-bonding interactions between DNA bases and coat subunits of Pf1 but not between those of fd. We propose that structural relationships between the protein coat and encapsidated ssDNA genome are also fundamentally different in the two assemblies.
Collapse
Affiliation(s)
- Z Q Wen
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City 64110, USA
| | | | | |
Collapse
|