1
|
Sato F, Tsutsumi Y, Oka A, Furuta T, Sohn J, Oi Y, Amano M, Morita A, Uchino K, Kato T, Bae YC, Tachibana Y, Sessle BJ, Yoshida A. Projections from Regions of the Cerebellar Nuclei Receiving Jaw Muscle Proprioceptive Signals to Trigeminal Motoneurons and Their Premotoneurons in the Rat Pons and Medulla. CEREBELLUM (LONDON, ENGLAND) 2025; 24:113. [PMID: 40506626 PMCID: PMC12162381 DOI: 10.1007/s12311-025-01862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/27/2025] [Indexed: 06/16/2025]
Abstract
The cerebellum plays a crucial role in sensorimotor control through cerebellofugal projections from the cerebellar nuclei. However, little is known about the cerebellofugal projection features involved in jaw sensorimotor control, although the dorsolateral parts of the interposed cerebellar nucleus (IntDL) and medial cerebellar nucleus (MedDL) do receive proprioceptive signals bilaterally from rat jaw-closing muscle spindles (JCMSs). This study aimed to detail the cerebellofugal projection features involved in jaw sensorimotor control. Anterograde tracer was injected into regions of the rat IntDL and MedDL receiving JCMS proprioceptive inputs (i.e., jcms-IntDL and jcms-MedDL). Axon terminals arising from the jcms-IntDL were labeled bilaterally with an ipsilateral predominance in several pontomedullary regions, although very few terminals were labeled in the dorsolateral and ventromedial divisions (5dl and 5vm) of the trigeminal motor nucleus. In contrast, terminals from the jcms-MedDL were labeled bilaterally with a contralateral predominance in several pontomedullary regions and a few terminals were labeled in the contralateral 5dl and 5vm. Thus, the projections from the jcms-IntDL and jcms-MedDL were well segregated. Subsequent retrograde tracer injections into the pontomedullary regions demonstrated that amongst the entire cerebellar nuclei the nucleofugal projections principally arose from the IntDL and MedDL. Additionally, many premotoneurons for the 5dl or 5vm were widely labeled in the pontomedullary regions where many axons from the jcms-IntDL or jcms-MedDL terminated. The various connections involving the jcms-IntDL and jcms-MedDL may play a crucial role in jaw sensorimotor control, mainly through indirect cerebellofugal pathways to the 5dl and 5vm via their premotoneurons.
Collapse
Affiliation(s)
- Fumihiko Sato
- Department of Systematic Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Yumi Tsutsumi
- Department of Systematic Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Ayaka Oka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Takahiro Furuta
- Department of Systematic Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Jaerin Sohn
- Department of Systematic Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Yuki Oi
- Department of Acupuncture, Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo, 666-0162, Japan
| | - Mai Amano
- Department of Physical Therapy, Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo, 666-0162, Japan
| | - Akiko Morita
- Department of Oral Health Sciences, Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo, 666-0162, Japan
| | - Katsuro Uchino
- Department of Acupuncture, Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo, 666-0162, Japan
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 700-412, Korea
| | - Yoshihisa Tachibana
- Division of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Barry J Sessle
- Faculty of Dentistry and Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | - Atsushi Yoshida
- Department of Systematic Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan.
- Department of Oral Health Sciences, Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo, 666-0162, Japan.
| |
Collapse
|
2
|
Hadjiosif AM, Gibo TL, Smith MA. The cerebellum acts as the analog to the medial temporal lobe for sensorimotor memory. Proc Natl Acad Sci U S A 2024; 121:e2411459121. [PMID: 39374383 PMCID: PMC11494333 DOI: 10.1073/pnas.2411459121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/23/2024] [Indexed: 10/09/2024] Open
Abstract
The cerebellum is critical for sensorimotor learning. The specific contribution that it makes, however, remains unclear. Inspired by the classic finding that for declarative memories, medial temporal lobe (MTL) structures provide a gateway to the formation of long-term memory but are not required for short-term memory, we hypothesized that for sensorimotor memories, the cerebellum may play an analogous role. Here, we studied the sensorimotor learning of individuals with severe ataxia from cerebellar degeneration. We dissected the memories they formed during sensorimotor learning into a short-term temporally-volatile component, that decays rapidly with a time constant of just 15 to 20 s and thus cannot lead to long-term retention, and a longer-term temporally-persistent component that is stable for 60 s or more and leads to long-term retention. Remarkably, we find that these individuals display dramatically reduced levels of temporally-persistent sensorimotor memory, despite spared and even elevated levels of temporally-volatile sensorimotor memory. In particular, we find both impairment that systematically worsens with memory window duration over shorter memory windows (<12 s) and near-complete impairment of memory maintenance over longer memory windows (>25 s). This dissociation uncovers a unique role for the cerebellum as a gateway for the formation of long-term but not short-term sensorimotor memories, mirroring the role of the MTL for declarative memories. It thus reveals the existence of distinct neural substrates for short-term and long-term sensorimotor memory, and it explains both the trial-to-trial differences identified in this study and long-standing study-to-study differences in the effects of cerebellar damage on sensorimotor learning ability.
Collapse
Affiliation(s)
- Alkis M. Hadjiosif
- John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA02138
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA02114
| | - Tricia L. Gibo
- Philips Medical Systems, Best, Noord-Brabant5684, The Netherlands
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Maurice A. Smith
- John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA02138
- Center for Brain Science, Harvard University, Cambridge, MA02138
| |
Collapse
|
3
|
Hadjiosif AM, Gibo TL, Smith MA. The cerebellum acts as the analog to the medial temporal lobe for sensorimotor memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.11.553008. [PMID: 38645006 PMCID: PMC11030252 DOI: 10.1101/2023.08.11.553008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The cerebellum is critical for sensorimotor learning. The specific contribution that it makes, however, remains unclear. Inspired by the classic finding that, for declarative memories, medial temporal lobe structures provide a gateway to the formation of long-term memory but are not required for short-term memory, we hypothesized that, for sensorimotor memories, the cerebellum may play an analogous role. Here we studied the sensorimotor learning of individuals with severe ataxia from cerebellar degeneration. We dissected the memories they formed during sensorimotor learning into a short-term temporally-volatile component, that decays rapidly with a time constant of just 15-20sec and thus cannot lead to long-term retention, and a longer-term temporally-persistent component that is stable for 60 sec or more and leads to long-term retention. Remarkably, we find that these individuals display dramatically reduced levels of temporally-persistent sensorimotor memory, despite spared and even elevated levels of temporally-volatile sensorimotor memory. In particular, we find both impairment that systematically increases with memory window duration over shorter memory windows (<12 sec) and near-complete impairment of memory maintenance over longer memory windows (>25 sec). This dissociation uncovers a new role for the cerebellum as a gateway for the formation of long-term but not short-term sensorimotor memories, mirroring the role of the medial temporal lobe for declarative memories. It thus reveals the existence of distinct neural substrates for short-term and long-term sensorimotor memory, and it explains both newly-identified trial-to-trial differences and long-standing study-to-study differences in the effects of cerebellar damage on sensorimotor learning ability. Significance Statement A key discovery about the neural underpinnings of memory, made more than half a century ago, is that long-term, but not short-term, memory formation depends on neural structures in the brain's medial temporal lobe (MTL). However, this dichotomy holds only for declarative memories - memories for explicit facts such as names and dates - as long-term procedural memories - memories for implicit knowledge such as sensorimotor skills - are largely unaffected even with substantial MTL damage. Here we demonstrate that the formation of long-term, but not short-term, sensorimotor memory depends on a neural structure known as the cerebellum, and we show that this finding explains the variability previously reported in the extent to which cerebellar damage affects sensorimotor learning.
Collapse
|
4
|
Parras GG, Leal-Campanario R, López-Ramos JC, Gruart A, Delgado-García JM. Functional properties of eyelid conditioned responses and involved brain centers. Front Behav Neurosci 2022; 16:1057251. [PMID: 36570703 PMCID: PMC9780278 DOI: 10.3389/fnbeh.2022.1057251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
For almost a century the classical conditioning of nictitating membrane/eyelid responses has been used as an excellent and feasible experimental model to study how the brain organizes the acquisition, storage, and retrieval of new motor abilities in alert behaving mammals, including humans. Lesional, pharmacological, and electrophysiological approaches, and more recently, genetically manipulated animals have shown the involvement of numerous brain areas in this apparently simple example of associative learning. In this regard, the cerebellum (both cortex and nuclei) has received particular attention as a putative site for the acquisition and storage of eyelid conditioned responses, a proposal not fully accepted by all researchers. Indeed, the acquisition of this type of learning implies the activation of many neural processes dealing with the sensorimotor integration and the kinematics of the acquired ability, as well as with the attentional and cognitive aspects also involved in this process. Here, we address specifically the functional roles of three brain structures (red nucleus, cerebellar interpositus nucleus, and motor cortex) mainly involved in the acquisition and performance of eyelid conditioned responses and three other brain structures (hippocampus, medial prefrontal cortex, and claustrum) related to non-motor aspects of the acquisition process. The main conclusion is that the acquisition of this motor ability results from the contribution of many cortical and subcortical brain structures each one involved in specific (motor and cognitive) aspects of the learning process.
Collapse
|
5
|
Cerebellum and Emotion Recognition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:41-51. [DOI: 10.1007/978-3-030-99550-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Long-term effects of cerebellar anodal transcranial direct current stimulation (tDCS) on the acquisition and extinction of conditioned eyeblink responses. Sci Rep 2020; 10:22434. [PMID: 33384434 PMCID: PMC7775427 DOI: 10.1038/s41598-020-80023-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022] Open
Abstract
Cerebellar transcranial direct current stimulation (tDCS) has been reported to enhance the acquisition of conditioned eyeblink responses (CR), a form of associative motor learning. The aim of the present study was to determine possible long-term effects of cerebellar tDCS on the acquisition and extinction of CRs. Delay eyeblink conditioning was performed in 40 young and healthy human participants. On day 1, 100 paired CS (conditioned stimulus)–US (unconditioned stimulus) trials were applied. During the first 50 paired CS–US trials, 20 participants received anodal cerebellar tDCS, and 20 participants received sham stimulation. On days 2, 8 and 29, 50 paired CS–US trials were applied, followed by 30 CS-only extinction trials on day 29. CR acquisition was not significantly different between anodal and sham groups. During extinction, CR incidences were significantly reduced in the anodal group compared to sham, indicating reduced retention. In the anodal group, learning related increase of CR magnitude tended to be reduced, and timing of CRs tended to be delayed. The present data do not confirm previous findings of enhanced acquisition of CRs induced by anodal cerebellar tDCS. Rather, the present findings suggest a detrimental effect of anodal cerebellar tDCS on CR retention and possibly CR performance.
Collapse
|
7
|
Gatti D, Vecchi T, Mazzoni G. Cerebellum and semantic memory: A TMS study using the DRM paradigm. Cortex 2020; 135:78-91. [PMID: 33360762 DOI: 10.1016/j.cortex.2020.11.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Traditionally, the cerebellum has been linked to motor functions, but recent evidence suggest that it is also involved in a wide range of cognitive processes. Given the uniformity of cerebellar cortex microstructure, it has been proposed that the same computational process might underlie cerebellar involvement in both motor and cognitive functions. Within motor functions, the cerebellum it is involved in procedural memory and associative learning. Here, we hypothesized that the cerebellum may participate to semantic memory as well. To test whether the cerebellum is causally involved in semantic memory, we carried out two experiments in which participants performed the Deese-Roediger-McDermott paradigm (DRM) while online transcranial magnetic stimulation (TMS) was administered over the right cerebellum or over a control site. In Experiment 1, cerebellar TMS selectively affected participants' discriminability for critical lures without affecting participants' discriminability for unrelated words and in Experiment 2 we found that the higher was the semantic association between new and studied words, the higher was the memory impairment caused by the TMS. These results indicate that the right cerebellum is causally involved in semantic memory and provide evidence consistent with theories that proposed the existence of a unified cerebellar function within motor and cognitive domains, as well with recent perspectives about cerebellar involvement in semantic memory and predictive functions.
Collapse
Affiliation(s)
- Daniele Gatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Giuliana Mazzoni
- Faculty of Medicine and Psychology, University La Sapienza, Rome, Italy; School of Life Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
8
|
Dellatolas G, Câmara-Costa H. The role of cerebellum in the child neuropsychological functioning. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:265-304. [PMID: 32958180 DOI: 10.1016/b978-0-444-64150-2.00023-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This chapter proposes a review of neuropsychologic and behavior findings in pediatric pathologies of the cerebellum, including cerebellar malformations, pediatric ataxias, cerebellar tumors, and other acquired cerebellar injuries during childhood. The chapter also contains reviews of the cerebellar mutism/posterior fossa syndrome, reported cognitive associations with the development of the cerebellum in typically developing children and subjects born preterm, and the role of the cerebellum in neurodevelopmental disorders such as autism spectrum disorders and developmental dyslexia. Cognitive findings in pediatric cerebellar disorders are considered in the context of known cerebellocerebral connections, internal cellular organization of the cerebellum, the idea of a universal cerebellar transform and computational internal models, and the role of the cerebellum in specific cognitive and motor functions, such as working memory, language, timing, or control of eye movements. The chapter closes with a discussion of the strengths and weaknesses of the cognitive affective syndrome as it has been described in children and some conclusions and perspectives.
Collapse
Affiliation(s)
- Georges Dellatolas
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France.
| | - Hugo Câmara-Costa
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France; Centre d'Etudes en Santé des Populations, INSERM U1018, Paris, France
| |
Collapse
|
9
|
Extinction and Renewal of Conditioned Eyeblink Responses in Focal Cerebellar Disease. THE CEREBELLUM 2019; 18:166-177. [PMID: 30155831 DOI: 10.1007/s12311-018-0973-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Extinction of conditioned aversive responses (CR) has been shown to be context-dependent. The hippocampus and prefrontal cortex are of particular importance. The cerebellum may contribute to context-related processes because of its known connections with the hippocampus and prefrontal cortex. Context dependency of extinction can be demonstrated by the renewal effect. When CR acquisition takes place in context A and is extinguished in context B, renewal refers to the recovery of the CR in context A (A-B-A paradigm). In the present study acquisition, extinction and renewal of classically conditioned eyeblink responses were tested in 18 patients with subacute focal cerebellar lesions and 18 age- and sex-matched healthy controls. Standard delay eyeblink conditioning was performed using an A-B-A paradigm. All cerebellar patients underwent a high-resolution T1-weighted brain MRI scan to perform lesion-symptom mapping. CR acquisition was not significantly different between cerebellar and control participants allowing to draw conclusions on extinction. CR extinction was significantly less in cerebellar patients. Reduction of CR extinction tended to be more likely in patients with lesions in the lateral parts of lobule VI and Crus I. A significant renewal effect was present in controls only. The present data provide further evidence that the cerebellum contributes to extinction of conditioned eyeblink responses. Because acquisition was preserved and extinction took place in another context than acquisition, more lateral parts of the cerebellar hemisphere may contribute to context-related processes. Furthermore, lack of renewal in cerebellar patients suggest a contribution of the cerebellum to context-related processes.
Collapse
|
10
|
Long Trace Eyeblink Conditioning Is Largely Preserved in Essential Tremor. THE CEREBELLUM 2019; 18:67-75. [PMID: 29916048 DOI: 10.1007/s12311-018-0956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Geminiani A, Casellato C, Antonietti A, D’Angelo E, Pedrocchi A. A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies. Int J Neural Syst 2018; 28:1750017. [DOI: 10.1142/s0129065717500174] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cerebellum plays a crucial role in sensorimotor control and cerebellar disorders compromise adaptation and learning of motor responses. However, the link between alterations at network level and cerebellar dysfunction is still unclear. In principle, this understanding would benefit of the development of an artificial system embedding the salient neuronal and plastic properties of the cerebellum and operating in closed-loop. To this aim, we have exploited a realistic spiking computational model of the cerebellum to analyze the network correlates of cerebellar impairment. The model was modified to reproduce three different damages of the cerebellar cortex: (i) a loss of the main output neurons (Purkinje Cells), (ii) a lesion to the main cerebellar afferents (Mossy Fibers), and (iii) a damage to a major mechanism of synaptic plasticity (Long Term Depression). The modified network models were challenged with an Eye-Blink Classical Conditioning test, a standard learning paradigm used to evaluate cerebellar impairment, in which the outcome was compared to reference results obtained in human or animal experiments. In all cases, the model reproduced the partial and delayed conditioning typical of the pathologies, indicating that an intact cerebellar cortex functionality is required to accelerate learning by transferring acquired information to the cerebellar nuclei. Interestingly, depending on the type of lesion, the redistribution of synaptic plasticity and response timing varied greatly generating specific adaptation patterns. Thus, not only the present work extends the generalization capabilities of the cerebellar spiking model to pathological cases, but also predicts how changes at the neuronal level are distributed across the network, making it usable to infer cerebellar circuit alterations occurring in cerebellar pathologies.
Collapse
Affiliation(s)
- Alice Geminiani
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133, Milano, Italy
| | - Claudia Casellato
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133, Milano, Italy
| | - Alberto Antonietti
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133, Milano, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, I-27100 Pavia, Italy
- Brain Connectivity Center, Istituto Neurologico, IRCCS Fondazione C. Mondino Via, Mondino 2, I-27100, Pavia, Italy
| | - Alessandra Pedrocchi
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
12
|
Beyer L, Batsikadze G, Timmann D, Gerwig M. Cerebellar tDCS Effects on Conditioned Eyeblinks using Different Electrode Placements and Stimulation Protocols. Front Hum Neurosci 2017; 11:23. [PMID: 28203151 PMCID: PMC5285376 DOI: 10.3389/fnhum.2017.00023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/11/2017] [Indexed: 11/13/2022] Open
Abstract
There is good evidence that the human cerebellum is involved in the acquisition and timing of classically conditioned eyeblink responses (CRs). Animal studies suggest that the cerebellum is also important in CR extinction and savings. Cerebellar transcranial direct current stimulation (tDCS) was reported to modulate CR acquisition and timing in a polarity dependent manner. To extent previous findings three experiments were conducted using standard delay eyeblink conditioning. In a between-group design, effects of tDCS were assessed with stimulation over the right cerebellar hemisphere ipsilaterally to the unconditioned stimulus (US). An extracephalic reference electrode was used in Experiment 1 and a cephalic reference in Experiment 2. In both parts the influence on unconditioned eyeblink responses (UR) was investigated by starting stimulation in the second half of the pseudoconditioning phase lasting throughout the first half of paired trials. In a third experiment, effects of cerebellar tDCS during 40 extinction trials were assessed on extinction and reacquisition on the next day. In each experiment, 30 subjects received anodal, cathodal or sham stimulation in a double-blinded fashion. Using the extracephalic reference electrode, no significant effects on CR incidences comparing stimulation groups were observed. Using the cephalic reference anodal as well as cathodal cerebellar tDCS increased CR acquisition compared to sham only on a trend level. Analysis of timing parameters did not reveal significant effects on CR onset and peaktime latencies nor on UR timing. In the third experiment, cerebellar tDCS during extinction trials had no significant effect on extinction and savings on the next day. The present study did not reveal clear polarity dependent effects of cerebellar tDCS on CR acquisition and timing as previously described. Weaker effects may be explained by start of tDCS before the learning phase i.e., offline, individual thresholds and current flow based on individual anatomy may also play role. Likewise cerebellar tDCS during extinction did not modulate extinction or reacquisition. Further studies are needed in larger subject populations to determine parameters of stimulation and learning paradigms yielding robust cerebellar tDCS effects.
Collapse
Affiliation(s)
- Linda Beyer
- Department of Neurology, University of Duisburg-EssenEssen, Germany
| | | | - Dagmar Timmann
- Department of Neurology, University of Duisburg-EssenEssen, Germany
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-EssenEssen, Germany
| |
Collapse
|
13
|
Ernst T, Beyer L, Mueller O, Göricke S, Ladd M, Gerwig M, Timmann D. Pronounced reduction of acquisition of conditioned eyeblink responses in young adults with focal cerebellar lesions impedes conclusions on the role of the cerebellum in extinction and savings. Neuropsychologia 2016; 85:287-300. [DOI: 10.1016/j.neuropsychologia.2016.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/09/2016] [Accepted: 03/23/2016] [Indexed: 11/30/2022]
|
14
|
Hu C, Zhang LB, Chen H, Xiong Y, Hu B. Neurosubstrates and mechanisms underlying the extinction of associative motor memory. Neurobiol Learn Mem 2015. [DOI: 10.1016/j.nlm.2015.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Schara U, Busse M, Timmann D, Gerwig M. Cerebellar-dependent associative learning is preserved in Duchenne muscular dystrophy: a study using delay eyeblink conditioning. PLoS One 2015; 10:e0126528. [PMID: 25973604 PMCID: PMC4431835 DOI: 10.1371/journal.pone.0126528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/03/2015] [Indexed: 02/03/2023] Open
Abstract
Objective Besides progressive muscle weakness cognitive deficits have been reported in patients with Duchenne muscular dystrophy (DMD). Cerebellar dysfunction has been proposed to explain cognitive deficits at least in part. In animal models of DMD disturbed Purkinje cell function has been shown following loss of dystrophin. Furthermore there is increasing evidence that the lateral cerebellum contributes to cognitive processing. In the present study cerebellar-dependent delay eyeblink conditioning, a form of associative learning, was used to assess cerebellar function in DMD children. Methods Delay eyeblink conditioning was examined in eight genetically defined male patients with DMD and in ten age-matched control subjects. Acquisition, timing and extinction of conditioned eyeblink responses (CR) were assessed during a single conditioning session. Results Both groups showed a significant increase of CRs during the course of learning (block effect p < 0.001). CR acquisition was not impaired in DMD patients (mean total CR incidence 37.4 ± 17.6%) as compared to control subjects (36.2 ± 17.3%; group effect p = 0.89; group by block effect p = 0.38; ANOVA with repeated measures). In addition, CR timing and extinction was not different from controls. Conclusions Delay eyeblink conditioning was preserved in the present DMD patients. Because eyeblink conditioning depends on the integrity of the intermediate cerebellum, this older part of the cerebellum may be relatively preserved in DMD. The present findings agree with animal model data showing that the newer, lateral cerebellum is primarily affected in DMD.
Collapse
Affiliation(s)
- Ulrike Schara
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics,University of Duisburg-Essen, Essen, Germany
| | - Melanie Busse
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics,University of Duisburg-Essen, Essen, Germany
| | - Dagmar Timmann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
16
|
Casellato C, Antonietti A, Garrido JA, Ferrigno G, D'Angelo E, Pedrocchi A. Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks. Front Comput Neurosci 2015; 9:24. [PMID: 25762922 PMCID: PMC4340181 DOI: 10.3389/fncom.2015.00024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/08/2015] [Indexed: 11/23/2022] Open
Abstract
The cerebellum plays a crucial role in motor learning and it acts as a predictive controller. Modeling it and embedding it into sensorimotor tasks allows us to create functional links between plasticity mechanisms, neural circuits and behavioral learning. Moreover, if applied to real-time control of a neurorobot, the cerebellar model has to deal with a real noisy and changing environment, thus showing its robustness and effectiveness in learning. A biologically inspired cerebellar model with distributed plasticity, both at cortical and nuclear sites, has been used. Two cerebellum-mediated paradigms have been designed: an associative Pavlovian task and a vestibulo-ocular reflex, with multiple sessions of acquisition and extinction and with different stimuli and perturbation patterns. The cerebellar controller succeeded to generate conditioned responses and finely tuned eye movement compensation, thus reproducing human-like behaviors. Through a productive plasticity transfer from cortical to nuclear sites, the distributed cerebellar controller showed in both tasks the capability to optimize learning on multiple time-scales, to store motor memory and to effectively adapt to dynamic ranges of stimuli.
Collapse
Affiliation(s)
- Claudia Casellato
- NeuroEngineering And Medical Robotics Laboratory, Department Electronics, Information and Bioengineering, Politecnico di Milano Milano, Italy
| | - Alberto Antonietti
- NeuroEngineering And Medical Robotics Laboratory, Department Electronics, Information and Bioengineering, Politecnico di Milano Milano, Italy ; Brain Connectivity Center, IRCCS Istituto Neurologico Nazionale C. Mondino Pavia, Italy
| | - Jesus A Garrido
- Brain Connectivity Center, IRCCS Istituto Neurologico Nazionale C. Mondino Pavia, Italy ; Department of Computer Architecture and Technology, University of Granada Granada, Spain
| | - Giancarlo Ferrigno
- NeuroEngineering And Medical Robotics Laboratory, Department Electronics, Information and Bioengineering, Politecnico di Milano Milano, Italy
| | - Egidio D'Angelo
- Brain Connectivity Center, IRCCS Istituto Neurologico Nazionale C. Mondino Pavia, Italy ; Department Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Alessandra Pedrocchi
- NeuroEngineering And Medical Robotics Laboratory, Department Electronics, Information and Bioengineering, Politecnico di Milano Milano, Italy
| |
Collapse
|
17
|
Casellato C, Antonietti A, Garrido JA, Carrillo RR, Luque NR, Ros E, Pedrocchi A, D'Angelo E. Adaptive robotic control driven by a versatile spiking cerebellar network. PLoS One 2014; 9:e112265. [PMID: 25390365 PMCID: PMC4229206 DOI: 10.1371/journal.pone.0112265] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/11/2014] [Indexed: 11/29/2022] Open
Abstract
The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.
Collapse
Affiliation(s)
- Claudia Casellato
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Alberto Antonietti
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy; Brain Connectivity Center, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Nazionale Casimiro Mondino, Pavia, Italy
| | - Jesus A Garrido
- Brain Connectivity Center, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Nazionale Casimiro Mondino, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Richard R Carrillo
- Department of Computer Architecture and Technology, Escuela Técnica Superior de Ingegnerías Informática y de Telecomunicación, University of Granada, Granada, Spain
| | - Niceto R Luque
- Department of Computer Architecture and Technology, Escuela Técnica Superior de Ingegnerías Informática y de Telecomunicación, University of Granada, Granada, Spain
| | - Eduardo Ros
- Department of Computer Architecture and Technology, Escuela Técnica Superior de Ingegnerías Informática y de Telecomunicación, University of Granada, Granada, Spain
| | - Alessandra Pedrocchi
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Egidio D'Angelo
- Brain Connectivity Center, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Nazionale Casimiro Mondino, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
18
|
Zuchowski ML, Timmann D, Gerwig M. Acquisition of conditioned eyeblink responses is modulated by cerebellar tDCS. Brain Stimul 2014; 7:525-31. [PMID: 24776785 DOI: 10.1016/j.brs.2014.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/02/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Classical conditioning of the eyeblink reflex is a simple form of motor learning which depends on the integrity of the cerebellum. Acquisition of conditioned eyeblink responses is markedly reduced in patients with cerebellar disorders. Noninvasive transcranial direct current stimulation (tDCS) has been reported to modify the excitability of the cerebellar cortex. OBJECTIVE The aim of the study was to assess whether acquisition of conditioned eyeblink responses (CR) is altered by cerebellar tDCS. METHODS A standard delay conditioning paradigm with a 540 ms tone as conditioned stimulus (CS) coterminating with a 100 ms air puff as unconditioned stimulus (US) was used in a total of 30 healthy subjects (18 female, 12 male, mean age 23.4 ± 1.9 years). One hundred paired CS-US trials and 30 extinction CS alone trials were given. tDCS (2 mA intensity, ramp like onset) was applied over the right cerebellar hemisphere ipsilaterally to the US during the acquisition phase. Subjects were randomly assigned to three groups (n = 10) using anodal, cathodal or sham stimulation. The investigator as well as the participants was blinded to the stimulation modality. RESULTS CR acquisition was significantly enhanced by anodal tDCS (mean total CR incidence 73.4 ± 25.2%) and significantly reduced by cathodal stimulation (12.6 ± 17.2%) compared to sham stimulation (43.8 ± 24.1%). During anodal tDCS CR onset occurred significantly earlier, that is mean onset of responses was shifted closer to CS onset. CONCLUSION Acquisition and timing of conditioned eyeblink responses is modified by cerebellar tDCS in a polarity dependent manner.
Collapse
Affiliation(s)
| | - Dagmar Timmann
- Department of Neurology, University of Duisburg-Essen, Germany
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-Essen, Germany.
| |
Collapse
|
19
|
Thürling M, Galuba J, Thieme A, Burciu R, Göricke S, Beck A, Wondzinski E, Siebler M, Gerwig M, Bracha V, Timmann D. Age effects in storage and extinction of a naturally acquired conditioned eyeblink response. Neurobiol Learn Mem 2014; 109:104-12. [DOI: 10.1016/j.nlm.2013.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/08/2013] [Accepted: 12/13/2013] [Indexed: 12/24/2022]
|
20
|
Thieme A, Thürling M, Galuba J, Burciu RG, Göricke S, Beck A, Aurich V, Wondzinski E, Siebler M, Gerwig M, Bracha V, Timmann D. Storage of a naturally acquired conditioned response is impaired in patients with cerebellar degeneration. ACTA ACUST UNITED AC 2013; 136:2063-76. [PMID: 23729474 PMCID: PMC3692033 DOI: 10.1093/brain/awt107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous findings suggested that the human cerebellum is involved in the acquisition but not the long-term storage of motor associations. The finding of preserved retention in cerebellar patients was fundamentally different from animal studies which show that both acquisition and retention depends on the integrity of the cerebellum. The present study investigated whether retention had been preserved because critical regions of the cerebellum were spared. Visual threat eye-blink responses, that is, the anticipatory closure of the eyes to visual threats, have previously been found to be naturally acquired conditioned responses. Because acquisition is known to take place in very early childhood, visual threat eye-blink responses can be used to test retention in patients with adult onset cerebellar disease. Visual threat eye-blink responses were tested in 19 adult patients with cerebellar degeneration, 27 adult patients with focal cerebellar lesions due to stroke, 24 age-matched control subjects, and 31 younger control subjects. High-resolution structural magnetic resonance images were acquired in patients to perform lesion–symptom mapping. Voxel-based morphometry was performed in patients with cerebellar degeneration, and voxel-based lesion–symptom mapping in patients with focal disease. Visual threat eye-blink responses were found to be significantly reduced in patients with cerebellar degeneration. Visual threat eye-blink responses were also reduced in patients with focal disease, but to a lesser extent. Visual threat eye-blink responses declined with age. In patients with cerebellar degeneration the degree of cerebellar atrophy was positively correlated with the reduction of conditioned responses. Voxel-based morphometry showed that two main regions within the superior and inferior parts of the posterior cerebellar cortex contributed to expression of visual threat eye-blink responses bilaterally. Involvement of the more inferior parts of the posterior lobe was further supported by voxel-based lesion symptom mapping in focal cerebellar patients. The present findings show that the human cerebellar cortex is involved in long-term storage of learned responses.
Collapse
Affiliation(s)
- Andreas Thieme
- Department of Neurology, University Clinic Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mawase F, Karniel A. Adaptation to sequence force perturbation during vertical and horizontal reaching movement-averaging the past or predicting the future? Front Syst Neurosci 2012; 6:60. [PMID: 22912606 PMCID: PMC3418520 DOI: 10.3389/fnsys.2012.00060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/26/2012] [Indexed: 11/22/2022] Open
Abstract
Several studies conducted during the past decade have suggested that episodic memory is better equipped to handle the future than the past. Here, we consider this premise in the context of motor memory. State-of-the-art computational models for trial-by-trial motor adaptation to constant and stochastic force field perturbations in a horizontal reaching paradigm have shown that motor memory registers a weighted sum of past experiences to predict force perturbation in a subsequent trial. In the current study, we used the standard horizontal reaching movement paradigm and a novel vertical reaching movement paradigm to test motor memory function during adaptation to force fields increasing in magnitude in a simple predictable linear series. We found that adaptation to constant and sequence force fields are similar in vertical and horizontal reaching. For both horizontal and vertical reaching, we found that the expectation in a particular trial was the average of the previous few trials rather than an expectation of a larger perturbation, as would be expected from a simple extrapolation. These findings are not consistent with those of our previous studies on lifting and grasping tasks, in which we found that the grip force is correctly adjusted to the next weight in a series of tasks with gradually increasing weights, thus predicting the future rather than averaging the past. The results of the current study devoted to reaching movements and of our previous study addressing a lifting task suggest that the brain can generate at least two different types of motor representation, either addressing the past in reaching or predicting the future in lifting. We propose that prior experience and the effect of environment's variability are the reasons for the observed differences in expectation during lifting and reaching. Finally, we discuss these two types of memory mechanisms with respect to the distinct neural circuits responsible for lifting and reaching.
Collapse
Affiliation(s)
| | - Amir Karniel
- Department of Biomedical Engineering, Ben-Gurion University of the NegevBeer-Sheva, Israel
| |
Collapse
|
22
|
Dynamic changes in the cerebellar-interpositus/red-nucleus-motoneuron pathway during motor learning. THE CEREBELLUM 2012; 10:702-10. [PMID: 21181461 DOI: 10.1007/s12311-010-0242-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Understanding the role played by the cerebellum in the genesis and control of learned motor responses requires a precise knowledge of interdependent relationships between kinetic neural commands and the performance (kinematics) of the acquired movements. The eyelid motor system is a useful model for studying how simple motor responses are generated and performed. Here, we recorded the activity of interpositus, red nucleus, and/or facial motor neurons during classical eyeblink conditioning, using a delay paradigm. Experiments were carried out in behaving cats, and in conscious wild-type and (Purkinje cell devoid) Lurcher mice. Kinetic variables were determined by recording the firing activities of identified neurons at the mentioned nuclei, whilst kinematic variables were selected from the electromyographic activity of the orbicularis oculi muscle and/or from eyelid position recorded during the conditioned-stimulus/unconditioned-stimulus interval. Whereas motoneurons encoded eyelid kinematics for acquired eyelid responses, interpositus, and red nucleus neurons did not directly encode eyelid performance, and the dynamic association between their neuronal activities was barely significant (from moderate to weak correlation, nonlinear coupling with high asymmetry, and neural firing activities that always lagged the beginning of the conditioned response). Nevertheless, interpositus and red nucleus neurons seem to play a modulating role in the dynamic control of this type of learned motor response, and present interesting adaptive properties in Lurcher mice. The analytical procedures proposed here could be very helpful in defining the functional state corresponding to each stage across the acquisition of new motor and cognitive abilities.
Collapse
|
23
|
Sánchez-Campusano R, Gruart A, Fernández-Mas R, Delgado-García JM. An agonist-antagonist cerebellar nuclear system controlling eyelid kinematics during motor learning. Front Neuroanat 2012; 6:8. [PMID: 22435053 PMCID: PMC3303085 DOI: 10.3389/fnana.2012.00008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/24/2012] [Indexed: 01/01/2023] Open
Abstract
The presence of two antagonistic groups of deep cerebellar nuclei neurons has been reported as necessary for a proper dynamic control of learned motor responses. Most models of cerebellar function seem to ignore the biomechanical need for a double activation–deactivation system controlling eyelid kinematics, since most of them accept that, for closing the eyelid, only the activation of the orbicularis oculi (OO) muscle (via the red nucleus to the facial motor nucleus) is necessary, without a simultaneous deactivation of levator palpebrae motoneurons (via unknown pathways projecting to the perioculomotor area). We have analyzed the kinetic neural commands of two antagonistic types of cerebellar posterior interpositus neuron (IPn) (types A and B), the electromyographic (EMG) activity of the OO muscle, and eyelid kinematic variables in alert behaving cats during classical eyeblink conditioning, using a delay paradigm. We addressed the hypothesis that the interpositus nucleus can be considered an agonist–antagonist system controlling eyelid kinematics during motor learning. To carry out a comparative study of the kinetic–kinematic relationships, we applied timing and dispersion pattern analyses. We concluded that, in accordance with a dominant role of cerebellar circuits for the facilitation of flexor responses, type A neurons fire during active eyelid downward displacements—i.e., during the active contraction of the OO muscle. In contrast, type B neurons present a high tonic rate when the eyelids are wide open, and stop firing during any active downward displacement of the upper eyelid. From a functional point of view, it could be suggested that type B neurons play a facilitative role for the antagonistic action of the levator palpebrae muscle. From an anatomical point of view, the possibility that cerebellar nuclear type B neurons project to the perioculomotor area—i.e., more or less directly onto levator palpebrae motoneurons—is highly appealing.
Collapse
|
24
|
Bellebaum C, Daum I, Suchan B. Mechanisms of cerebellar contributions to cognition in humans. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2012; 3:171-184. [DOI: 10.1002/wcs.1161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christian Bellebaum
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr‐University of Bochum, Bochum, Germany
| | - Irene Daum
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr‐University of Bochum, Bochum, Germany
| | - Boris Suchan
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr‐University of Bochum, Bochum, Germany
| |
Collapse
|
25
|
Gerwig M, Guberina H, Eßer AC, Siebler M, Schoch B, Frings M, Kolb FP, Aurich V, Beck A, Forsting M, Timmann D. Evaluation of multiple-session delay eyeblink conditioning comparing patients with focal cerebellar lesions and cerebellar degeneration. Behav Brain Res 2010; 212:143-51. [DOI: 10.1016/j.bbr.2010.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/31/2010] [Accepted: 04/03/2010] [Indexed: 10/19/2022]
|
26
|
Wang L, Yu C, Chen H, Qin W, He Y, Fan F, Zhang Y, Wang M, Li K, Zang Y, Woodward TS, Zhu C. Dynamic functional reorganization of the motor execution network after stroke. Brain 2010; 133:1224-38. [DOI: 10.1093/brain/awq043] [Citation(s) in RCA: 458] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Cognitive processing impairments in a supra-second temporal discrimination task in rats with cerebellar lesion. Neurobiol Learn Mem 2009; 91:250-9. [DOI: 10.1016/j.nlm.2008.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 11/27/2008] [Accepted: 12/02/2008] [Indexed: 11/22/2022]
|
28
|
Smit AE, van der Geest JN, Vellema M, Koekkoek SKE, Willemsen R, Govaerts LCP, Oostra BA, De Zeeuw CI, VanderWerf F. Savings and extinction of conditioned eyeblink responses in fragile X syndrome. GENES BRAIN AND BEHAVIOR 2008; 7:770-7. [PMID: 18616611 PMCID: PMC2613242 DOI: 10.1111/j.1601-183x.2008.00417.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The fragile X syndrome (FRAXA) is the most widespread heritable form of mental retardation caused by the lack of expression of the fragile X mental retardation protein (FMRP). This lack has been related to deficits in cerebellum-mediated acquisition of conditioned eyelid responses in individuals with FRAXA. In the present behavioral study, long-term effects of deficiency of FMRP were investigated by examining the acquisition, savings and extinction of delay eyeblink conditioning in male individuals with FRAXA. In the acquisition experiment, subjects with FRAXA displayed a significantly poor performance compared with controls. In the savings experiment performed at least 6 months later, subjects with FRAXA and controls showed similar levels of savings of conditioned responses. Subsequently, extinction was faster in subjects with FRAXA than in controls. These findings confirm that absence of the FMRP affects cerebellar motor learning. The normal performance in the savings experiment and aberrant performance in the acquisition and extinction experiments of individuals with FRAXA suggest that different mechanisms underlie acquisition, savings and extinction of cerebellar motor learning.
Collapse
Affiliation(s)
- A E Smit
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
It is possible that motor adaptation in timescales of minutes is supported by two distinct processes: one process that learns slowly from error but has strong retention, and another that learns rapidly from error but has poor retention. This two-state model makes the prediction that if a period of adaptation is followed by a period of reverse-adaptation, then in the subsequent period in which errors are clamped to zero (error-clamp trials) there will be a spontaneous recovery, i.e., a rebound of behavior toward the initial level of adaptation. Here we tested and confirmed this prediction during double-step, on-axis, saccade adaptation. When people adapted their saccadic gain to a magnitude other than one (adaptation) and then the gain was rapidly reversed back to one (reverse-adaptation), in the subsequent error-clamp trials (visual target placed on the fovea after the saccade) the gain reverted toward the initially adapted value and then gradually reverted toward normal. We estimated that the fast system was about 20-fold more sensitive to error than the slow system, but had a time constant of 28 s, whereas the slow system had a time constant of nearly 8 min. Therefore short-term adaptive mechanisms that maintain accuracy of saccades rely on a memory system that has characteristics of a multistate process with a logarithmic distribution of timescales.
Collapse
Affiliation(s)
- Vincent Ethier
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - David Zee
- Department of Neurology and Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Reza Shadmehr
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD 21205
| |
Collapse
|
30
|
Gerwig M, Esser AC, Guberina H, Frings M, Kolb FP, Forsting M, Aurich V, Beck A, Timmann D. Trace eyeblink conditioning in patients with cerebellar degeneration: comparison of short and long trace intervals. Exp Brain Res 2008; 187:85-96. [PMID: 18253726 DOI: 10.1007/s00221-008-1283-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
Abstract
To elucidate whether the cerebellar cortex may contribute to trace eyeblink conditioning in humans, eight patients with degenerative cerebellar disorders (four with sporadic adult onset ataxia, three with autosomal dominant cerebellar ataxia type III and one with spinocerebellar ataxia type 6) and eight age- and sex-matched healthy control subjects were investigated. Individual high resolution three-dimensional MRI data sets were acquired. As revealed by volumetric measurements of the cerebellum using ECCET software, patients showed cerebellar atrophy to various degrees. No abnormalities were observed in the control subjects. Eyeblink conditioning was performed twice using a tone of 40 ms as conditioned stimulus, followed by a short (400 ms) and a long (1,000 ms) trace interval and an air-puff of 100 ms as unconditioned stimulus. Using the short trace interval, eyeblink conditioning was significantly impaired in cerebellar patients compared to controls, even in those who fulfilled criteria of awareness. Using the long trace interval no significant group differences could be observed. The present findings of impaired trace eyeblink acquisition in patients with cortical cerebellar degeneration suggest that the cerebellar cortex in humans, in addition to the interposed nucleus, is involved in trace eyeblink conditioning, if the trace interval is relatively short. Using a long trace interval, the cerebellum appears to be less important.
Collapse
Affiliation(s)
- M Gerwig
- Department of Neurology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dimitrova A, Gerwig M, Brol B, Gizewski ER, Forsting M, Beck A, Aurich V, Kolb FP, Timmann D. Correlation of cerebellar volume with eyeblink conditioning in healthy subjects and in patients with cerebellar cortical degeneration. Brain Res 2008; 1198:73-84. [PMID: 18262502 DOI: 10.1016/j.brainres.2008.01.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/24/2007] [Accepted: 01/03/2008] [Indexed: 11/18/2022]
Abstract
In the present study, acquisition and timing of conditioned eyeblink responses (CRs) were correlated with magnetic resonance imaging (MRI)-based cerebellar volume both in healthy human subjects and patients with cerebellar disease. Thirty-three healthy subjects and 25 patients with pure cortical cerebellar degeneration participated. Cerebellar volumes were measured for the cortex of the anterior lobe, the cortex of the posterior lobe, the white matter of the cerebellum and the cerebrum based on 3D MR images. CR parameters were assessed in a standard delay paradigm. In healthy subjects CR acquisition was significantly related to the volume of the grey matter of the posterior lobe, but neither to the volume of the grey matter of the anterior lobe, nor to the cerebellar white matter and nor to the cerebral volume. As expected, CR acquisition and volume of the cortex of the posterior lobe showed age-related decline in the controls. Furthermore, CR acquisition was significantly reduced in patients with cerebellar degeneration compared to controls. In the cerebellar group, however, no significant correlations between CR acquisition and any of the cerebellar volumes were observed. Floor effects are most likely responsible for this observation. Although CRs occurred significantly earlier in cerebellar patients compared to controls, no significant correlations between CR timing parameters and any of the cerebellar volumes were observed. Extending previous findings in healthy human subjects, age-related decline of the cerebellar cortex of the posterior lobe was related with a reduction of CR acquisition. Findings provide further evidence that the cerebellar cortex plays an important role in the acquisition of eyeblink conditioning in humans.
Collapse
Affiliation(s)
- Albena Dimitrova
- Department of Neurology, University of Duisburg-Essen, Hufelandstrasse 55, 45138 Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sánchez-Campusano R, Gruart A, Delgado-García JM. The cerebellar interpositus nucleus and the dynamic control of learned motor responses. J Neurosci 2007; 27:6620-32. [PMID: 17581949 PMCID: PMC6672710 DOI: 10.1523/jneurosci.0488-07.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Revised: 04/25/2007] [Accepted: 04/26/2007] [Indexed: 11/21/2022] Open
Abstract
The role played by the cerebellum in movement control requires knowledge of interdependent relationships between kinetic neural commands and the performance (kinematics) of learned motor responses. The eyelid motor system is an excellent model for studying how simple motor responses are elaborated and performed. Kinetic variables (n = 24) were determined here by recording the firing activities of orbicularis oculi motoneurons and cerebellar interpositus neurons in alert cats during classical conditioning, using a delay paradigm. Kinematic variables (n = 36) were selected from eyelid position, velocity, and acceleration traces recorded during the conditioned stimulus-unconditioned stimulus interval. Optimized experimental and analytical tools allowed us to determine the evolution of kinetic and kinematic variables, the dynamic correlation functions relating motoneuron and interpositus neuron firing to eyelid conditioning responses, the falling correlation property of the interpositus nucleus across the successive training sessions, the time and significance of the linear relationships between these variables, and finally, the phase-inversion property of interpositus neurons with respect to acquired conditioned responses. Whereas motoneurons encoded eyelid kinematics at every instant of the dynamic correlation range and generated the natural oscillatory properties of the neuromuscular elements involved in eyeblinks, interpositus neurons did not directly encode eyelid performance: namely, their contribution was only slightly significant in the dynamic correlation range, and this regularity caused the integrated neuronal activity to oscillate by progressively inverting phase information. Therefore, interpositus neurons seem to play a modulating role in the dynamic control of learned motor responses, i.e., they could be considered a neuronal phase-modulating device.
Collapse
Affiliation(s)
- Raudel Sánchez-Campusano
- División de Neurociencias, Universidad Pablo de Olavide, Sevilla 41013, Spain, and
- Centro de Biofísica Médica, Universidad de Oriente, Santiago de Cuba 90500, Cuba
| | - Agnès Gruart
- División de Neurociencias, Universidad Pablo de Olavide, Sevilla 41013, Spain, and
| | | |
Collapse
|
33
|
Gerwig M, Kolb FP, Timmann D. The involvement of the human cerebellum in eyeblink conditioning. THE CEREBELLUM 2007; 6:38-57. [PMID: 17366265 DOI: 10.1080/14734220701225904] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Besides its known importance for motor coordination, the cerebellum plays a major role in associative learning. The form of cerebellum-dependent associative learning, which has been examined in greatest detail, is classical conditioning of eyeblink responses. The much advanced knowledge of anatomical correlates, as well as cellular and molecular mechanisms involved in eyeblink conditioning in animal models are of particular importance because there is general acceptance that findings in humans parallel the animal data. The aim of the present review is to give an update of findings in humans. Emphasis is put on human lesion studies, which take advantage of the advances of high-resolution structural magnetic resonance imaging (MRI). In addition, findings of functional brain imaging in healthy human subjects are reviewed. The former helped to localize areas involved in eyeblink conditioning within the cerebellum, the latter was in particular helpful in delineating extracerebellar neural substrates, which may contribute to eyeblink conditioning. Human lesion studies support the importance of cortical areas of the ipsilateral superior cerebellum both in the acquisition and timing of conditioned eyeblink responses (CR). Furthermore, the ipsilateral cerebellar cortex seems to be also important in extinction of CRs. Cortical areas, which are important for CR acquisition, overlap with areas related to the control of the unconditioned eyeblink response. Likewise, cortical lesions are followed by increased amplitudes of unconditioned eyeblinks. These findings are in good accordance with the animal literature. Knowledge about contributions of the cerebellar nuclei in humans, however, is sparse. Due to methodological limitations both of human lesion and functional MRI studies, at present no clear conclusions can be drawn on the relative contributions of the cerebellar cortex and nuclei.
Collapse
Affiliation(s)
- M Gerwig
- Department of Neurology, University of Duisburg-Essen, Hufelandstrasse 55, 45138 Essen, Germany
| | | | | |
Collapse
|
34
|
Gerwig M, Hajjar K, Frings M, Dimitrova A, Thilmann AF, Kolb FP, Forsting M, Timmann D. Extinction of conditioned eyeblink responses in patients with cerebellar disorders. Neurosci Lett 2006; 406:87-91. [PMID: 16905257 DOI: 10.1016/j.neulet.2006.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/28/2006] [Accepted: 07/07/2006] [Indexed: 11/21/2022]
Abstract
Extinction of conditioned eyeblink responses (CRs) was analyzed in sixteen patients with pure cortical cerebellar degeneration, 14 patients with lesions within the territory of the superior cerebellar artery (SCA), 13 patients with infarctions within the territory of the posterior inferior cerebellar artery (PICA) and 45 age-matched controls. Three-dimensional (3D) magnetic resonance (MRI) data sets were acquired in patients with focal lesions to identify affected cerebellar lobules and possible involvement of nuclei. Eyeblink conditioning was performed using a standard delay protocol. At the end of the experiment 10 CS-alone trials were presented as extinction trials. Controls showed significant effects of extinction that is a significant decline comparing CR-incidences in the extinction trials and the last block of 10 trials of the paired trials. In the group of all cerebellar patients, however, no significant effects of extinction were observed. In patients with unilateral lesions effects of extinction were present on the unaffected, but not on the affected side. Deficits of extinction were observed in PICA and SCA patients both with and without involvement of cerebellar nuclei. Extending previous reports in cerebellar patients the present findings show that the ipsilateral cerebellar hemisphere contributes to extinction of conditioned eyeblink responses in humans. It cannot be ruled out, however, that impaired acquisition affected the extinction results.
Collapse
Affiliation(s)
- Marcus Gerwig
- Department of Neurology, University of Duisburg-Essen, Hufelandstrasse 55, Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Krakauer JW, Shadmehr R. Consolidation of motor memory. Trends Neurosci 2006; 29:58-64. [PMID: 16290273 PMCID: PMC2553888 DOI: 10.1016/j.tins.2005.10.003] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 09/21/2005] [Accepted: 10/20/2005] [Indexed: 11/16/2022]
Abstract
An issue of great recent interest is whether motor memory consolidates in a manner analogous to declarative memory--that is, with the formation of a memory that progresses over time from a fragile state, which is susceptible to interference by a lesion or a conflicting motor task, to a stabilized state, which is resistant to such interference. Here, we first review studies that examine the anatomical basis for motor consolidation. Evidence implicates cerebellar circuitry in two types of associative motor learning--eyelid conditioning and vestibulo-ocular reflex adaptation--and implicates primary motor cortex in skilled finger movements. We also review evidence for and against a consolidation process for adaptation of arm movements. We propose that contradictions have arisen because consolidation can be masked by inhibition of memory retrieval.
Collapse
Affiliation(s)
- John W Krakauer
- The Neurological Institute, Columbia University College of Physicians and Surgeons, 710 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
36
|
Gerwig M, Haerter K, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Thilmann AF, Gizewski ER, Timmann D. Trace eyeblink conditioning in human subjects with cerebellar lesions. Exp Brain Res 2005; 170:7-21. [PMID: 16328300 DOI: 10.1007/s00221-005-0171-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022]
Abstract
Trace eyeblink conditioning was investigated in 31 patients with focal cerebellar lesions and 19 age-matched controls. Twelve patients presented with lesions including the territory of the superior cerebellar artery (SCA). In 19 patients lesions were restricted to the territory of the posterior inferior cerebellar artery (PICA). A 3D magnetic resonance imaging was used to determine the extent of the cortical lesion and possible involvement of cerebellar nuclei. Eyeblink conditioning was performed using a 40 ms tone as conditioned stimulus (CS) followed by a stimulus free trace-interval of 400 ms and a 100 ms air-puff as unconditioned stimulus (US). In SCA patients with lesions including parts of the cerebellar interposed nucleus trace eyeblink conditioning was significantly impaired. Pure cortical lesions of the superior cerebellum were not sufficient to reduce acquisition of trace conditioned eyeblink responses. PICA patients were not impaired in trace eyeblink conditioning. Consistent with animal studies the findings of the present human lesion study suggest that, in addition to forebrain areas, the interposed nucleus is of importance in trace eyeblink conditioning. Although cortical cerebellar areas appear less important in trace compared with delay eyeblink conditioning, the present data strengthen the view that cerebellar structures contribute to different forms of eyeblink conditioning paradigms.
Collapse
Affiliation(s)
- M Gerwig
- Department of Neurology, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Distinct neural regions may be engaged during acquisition and maintenance of some memories. In delay classical conditioning of the eyeblink response, the cerebellum is necessary for acquisition and expression of the conditioned response (CR), but loci of long-term memory storage are not known. Rabbits (Oryctolagus cuniculus) were trained, overtrained, and given either 30 additional days of training or 30 days of rest. Half the subjects in the rest group were given a reminder training session. Subjects then received either reversible inactivation of the cerebellar interpositus nucleus (muscimol) or permanent electrolytic lesions. In all cases, inactivation and lesions of the interpositus completely abolished the CR. The site of memory formation in the interpositus nucleus also appears to be the site of long-term memory storage.
Collapse
|
38
|
Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, Thilmann AF, Forsting M, Diener HC, Timmann D. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci 2005; 25:3919-31. [PMID: 15829644 PMCID: PMC6724917 DOI: 10.1523/jneurosci.0266-05.2005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 02/27/2005] [Accepted: 03/02/2005] [Indexed: 11/21/2022] Open
Abstract
In the present study, timing of conditioned eyeblink responses (CRs) was investigated in cerebellar patients and age-matched controls using a standard delay paradigm. Findings were compared with previously published data of CR incidences in the same patient population (Gerwig et al., 2003; Timmann et al., 2005). Sixteen patients with pure cortical cerebellar degeneration (spinocerebellar ataxia type 6 and idiopathic cerebellar ataxia), 14 patients with lesions within the territory of the superior cerebellar artery, and 13 patients with infarctions within the territory of the posterior inferior cerebellar artery were included. The affected cerebellar lobules and possible involvement of cerebellar nuclei were determined by three-dimensional magnetic resonance imaging (MRI) in patients with focal lesions (n = 27). Based on a voxel-by-voxel analysis, MRI lesion data were related to eyeblink conditioning data. CR incidence was significantly reduced, and CRs occurred significantly earlier in patients with cortical cerebellar degeneration and lesions of the superior cerebellum compared with controls. Incidence and timing of CRs was not impaired in patients with lesions restricted to the posterior and inferior cerebellum. Voxel-based MRI analysis revealed that cortical areas within the anterior lobe (Larsell lobule HV) were most significantly related to timing deficits, whereas reduced CR incidences were related to more caudal parts (lobule HVI) of the superior cerebellar cortex. The present data suggest that different parts of the superior cerebellar cortex may be involved in the formation of the stimulus association and appropriate timing of conditioned eyeblink responses in humans. Extracerebellar premotoneuronal disinhibition, however, is another possible explanation for changes in CR timing.
Collapse
Affiliation(s)
- Marcus Gerwig
- Department of Neurology, University of Duisburg-Essen, D-45147 Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Strosznajder JB, Jeśko H, Zambrzycka A, Eckert A, Chalimoniuk M. Age-related alteration of activity and gene expression of endothelial nitric oxide synthase in different parts of the brain in rats. Neurosci Lett 2005; 370:175-9. [PMID: 15488318 DOI: 10.1016/j.neulet.2004.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 07/14/2004] [Accepted: 08/09/2004] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) plays important roles in aging and neurodegeneration. Our previous results indicated that aging differently affects NOS isoforms. Expression of nNOS mRNA was lower while iNOS was absent at any age. However, total NO synthesis increased in aged cerebral cortex and cerebellum as a consequence of changes of nNOS phosphorylation state. The question arise how aging influences activity and expression of eNOS in different parts of adult and aged brain. The levels of eNOS mRNA, protein and activity were measured using RT-PCR, immuno- and radiochemical methods, respectively. Our studies indicated that after inhibition of nNOS with 7-nitroindazole (7-NI) NO synthesis is lower in all parts of aged brain comparing to adults. However, eNOS activity significantly decreases only in cerebellum. The expression of eNOS determined on mRNA level was enhanced in all investigated aged brain parts to 140-190% of adult value and the data were statistically significant for cerebral cortex and cerebellum. The higher level of mRNA is probably the adaptive response to lower NOS activity. However, the Western-blot signal of eNOS protein was unchanged in aged brain parts comparing to adults suggesting age-related disturbances of protein synthesis and its function. It is also possible that a post-translational modification of the enzyme occurs in the aged rat brain. The lower eNOS activity in aged brain may significantly affects the signal transduction processes on the pathway NO/cGMP/PKG.
Collapse
Affiliation(s)
- Joanna B Strosznajder
- Department of Cellular Signaling, Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego st., PL-02106 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
40
|
Timmann D, Gerwig M, Frings M, Maschke M, Kolb FP. Eyeblink conditioning in patients with hereditary ataxia: a one-year follow-up study. Exp Brain Res 2004; 162:332-45. [PMID: 15586270 DOI: 10.1007/s00221-004-2181-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 10/18/2004] [Indexed: 10/26/2022]
Abstract
Delay eyeblink conditioning was examined in patients with genetically-defined heredoataxias and age-matched control subjects. 24 patients with spinocerebellar ataxia type 6 (SCA6), type 3 (SCA3), and Friedreich's ataxia (FRDA) participated. SCA6 affects primarily the cerebellum, whereas extracerebellar involvement is common in SCA3 and FRDA. Testing was performed in three sessions six months apart. Severity of ataxia was defined based on the International Ataxia Cooperative Rating Scale (ICARS). As expected, cerebellar patients were significantly impaired in eyeblink conditioning compared to controls. Signs of retention and further learning across sessions were present in controls, but not in the cerebellar patients. In addition, findings of disturbed timing of conditioned responses were observed. Both onsets and peaks of the conditioned responses (CRs) occurred significantly earlier in cerebellar patients. Shortened CR responses were most prominent in patients with primarily cerebellar cortical disease (SCA6). In the group of all cerebellar patients, the SCA3 and the FRDA group correlations between learning deficits and clinical findings were weak. Moderate-to-strong correlations were found in the SCA6 patients. There was no significant change, however, in clinical ataxia scores and CR incidence across the three sessions. In summary, impaired learning of conditioned eyeblink responses is a stable finding across multiple sessions in patients with degenerative cerebellar disorders. Eyeblink conditioning may be a useful measure of cerebellar impairment in patients with hereditary ataxias that primarily affect the cerebellum (such as SCA6). In other heredoataxias (such as SCA3 and FRDA), extracerebellar involvement not assessed by ICARS likely contributes to eyeblink conditioning abnormalities.
Collapse
Affiliation(s)
- D Timmann
- Department of Neurology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| | | | | | | | | |
Collapse
|
41
|
Jiménez-Díaz L, Navarro-López JDD, Gruart A, Delgado-García JM. Role of cerebellar interpositus nucleus in the genesis and control of reflex and conditioned eyelid responses. J Neurosci 2004; 24:9138-45. [PMID: 15483132 PMCID: PMC6730068 DOI: 10.1523/jneurosci.2025-04.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 07/26/2004] [Accepted: 08/20/2004] [Indexed: 11/21/2022] Open
Abstract
The role of cerebellar circuits in the acquisition of new motor abilities is still a matter of intensive debate. To establish the contribution of posterior interpositus nucleus (PIN) to the performance and/or acquisition of reflex and classically conditioned responses (CRs) of the eyelid, the effects of microstimulation and/or pharmacological inhibition by muscimol of the nucleus were investigated in conscious cats. Microstimulation of the PIN in naive animals evoked ramp-like eyelid responses with a wavy appearance, without producing any noticeable plastic functional change in the cerebellar and brainstem circuits involved. Muscimol microinjections decreased the amplitude of reflex eyeblinks evoked by air puffs, both when presented alone or when paired with a tone as conditioned stimulus (CS). In half-conditioned animals, muscimol injections also decreased the amplitude and damped the typical wavy profile of CRs, whereas microstimulation of the same sites increased both parameters. However, neither muscimol injections nor microstimulation modified the expected percentage of CRs, suggesting a major role of the PIN in the performance of eyelid responses rather than in the learning process. Moreover, the simultaneous presentation of CS and microstimulation in well trained animals evoked CRs similar in amplitude to the added value of those evoked by the two stimuli presented separately. In contrast, muscimol-injected animals developed CRs to paired CS and microstimulation presentations, larger than those evoked by the two stimuli when presented alone. It is concluded that the PIN contributes to the enhancement of both reflex and conditioned eyelid responses and to the damping of resonant properties of neuromuscular elements controlling eyelid kinematics.
Collapse
Affiliation(s)
- Lydia Jiménez-Díaz
- División de Neurociencias, Universidad Pablo de Olavide, Sevilla-41013, Spain
| | | | | | | |
Collapse
|
42
|
Richter S, Matthies K, Ohde T, Dimitrova A, Gizewski E, Beck A, Aurich V, Timmann D. Stimulus-response versus stimulus-stimulus-response learning in cerebellar patients. Exp Brain Res 2004; 158:438-49. [PMID: 15221174 DOI: 10.1007/s00221-004-1920-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 04/06/2004] [Indexed: 10/26/2022]
Abstract
Ample evidence exists that the cerebellum is involved in associative motor learning, particularly in eyeblink-conditioning. In visuomotor associative learning the role of the cerebellum is less clear. One open question is whether cerebellar patients' deficits in visuomotor learning are present both in a stimulus-response and a stimulus-stimulus-response association task. Twelve patients with cerebellar degeneration and 12 healthy matched control subjects participated. A magnetic resonance imaging (MRI) volumetric analysis of the cerebellum was performed to assess the degree of cerebellar atrophy. In a blocked design, subjects had to learn the association between one color square or two color squares and a right or left key press. In the latter condition, the two colors were shown one after the other in the same sequence except for two blocks at the end of the experiment. Overall, cerebellar subjects reacted significantly slower than controls. In both groups, reaction time decreased over blocks, and the learning effect was more pronounced in the stimulus-response than in the stimulus-stimulus-response condition. Post hoc analyses revealed that learning differences between conditions were significant in cerebellar patients but not control subjects. Furthermore, only healthy subjects were irritated, i.e., they significantly increased reaction times in the blocks with reversed sequence in the stimulus-stimulus-response condition. Cerebellar subjects tended to name less correct stimulus-stimulus-response associations after the experiment. Finally, cerebellar volume correlated with parameters of motor performance, but not learning. In conclusion, cerebellar patients showed deficits in stimulus-stimulus-response, but not stimulus-response learning. Future experiments are needed to differentiate between possible deficits in learning the stimulus-stimulus association, use of sequence information, and/or impaired motor performance interfering with learning.
Collapse
Affiliation(s)
- S Richter
- Department of Neurology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kolb FP, Lachauer S, Maschke M, Timmann D. Classically conditioned postural reflex in cerebellar patients. Exp Brain Res 2004; 158:163-79. [PMID: 15170524 DOI: 10.1007/s00221-004-1889-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Accepted: 03/01/2004] [Indexed: 10/26/2022]
Abstract
The aim of the current study was to compare postural responses to repetitive platform-evoked perturbations in cerebellar patients with those of healthy subjects using a classical conditioning paradigm. The perturbations consisted of tilting of the platform (unconditioned stimulus: US) at random time intervals, preceded by an auditory signal that represented the conditioning stimulus (CS). Physiological reactions were recorded biomechanically by measuring the vertical ground forces, yielding the center of vertical pressure (CVP), and electrophysiologically by EMG measurements of the main muscle groups of both legs. The recording session consisted of a control section with US-alone trials, a testing section with paired stimuli and a brief final section with US-alone trials. Healthy control subjects were divided into those establishing conditioned responses (CR) in all muscles tested (strategy I) and those with CR in the gastrocnemius muscles only (strategy II), suggesting an associative motor-related process is involved. Patients with a diffuse, non-localized disease were almost unable to establish CR. This was also true for a patient with a focal surgical lesion with no CR on the affected side but who, simultaneously, showed an essentially normal CR incidence on the intact side. During US-alone trials healthy controls exhibited a remarkable decay of the UR amplitude due to a non-associative motor-related process such as habituation. The decay was most prominent in the paired trials section. In contrast, patients showed no significant differences in the UR amplitude throughout the entire recording session. Analysis of the CVP supported the electrophysiological findings, showing CR in the controls only. The differences between the responses of control subjects and those of the cerebellar patients imply strongly that the cerebellum is involved critically in controlling associative and non-associative motor-related processes.
Collapse
Affiliation(s)
- F P Kolb
- Institute of Physiology, University of Munich, Pettenkoferstr. 12, 80336, Munich, Germany.
| | | | | | | |
Collapse
|
44
|
Abstract
The mammalian cerebellum is thought to participate in motor control and motor learning. The specific cerebellar contribution to these processes is not clear, however. Advances in understanding cerebellar function have been relatively slow, because, at least in most cases, the cerebellum appears to play only an ancillary role in the behaviors studied to date. A remarkable exception is classical conditioning of eyeblink responses in the rabbit. In this model, an intact cerebellum is critical for both the acquisition and expression of conditioned responses. Recent experiments suggest that the cerebellar role in classical conditioning might be similar in all mammals, including the human. Moreover, anticipatory defensive reflexes in other effector systems show a similar dependence on the intermediate cerebellum. Further developments in our understanding of cerebellar function will depend on examination of a wider array of cerebellar-involved neural networks. There is also need for the development of new experimental approaches to associative learning in both the nonhuman primate and the human.
Collapse
Affiliation(s)
- Vlastislav Bracha
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, USA.
| |
Collapse
|
45
|
Christian KM, Thompson RF. Neural Substrates of Eyeblink Conditioning: Acquisition and Retention. Learn Mem 2003; 10:427-55. [PMID: 14657256 DOI: 10.1101/lm.59603] [Citation(s) in RCA: 441] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Classical conditioning of the eyeblink reflex to a neutral stimulus that predicts an aversive stimulus is a basic form of associative learning. Acquisition and retention of this learned response require the cerebellum and associated sensory and motor pathways and engage several other brain regions including the hippocampus, neocortex, neostriatum, septum, and amygdala. The cerebellum and its associated circuitry form the essential neural system for delay eyeblink conditioning. Trace eyeblink conditioning, a learning paradigm in which the conditioned and unconditioned stimuli are noncontiguous, requires both the cerebellum and the hippocampus and exhibits striking parallels to declarative memory formation in humans. Identification of the neural structures critical to the development and maintenance of the conditioned eyeblink response is an essential precursor to the investigation of the mechanisms responsible for the formation of these associative memories. In this review, we describe the evidence used to identify the neural substrates of classical eyeblink conditioning and potential mechanisms of memory formation in critical regions of the hippocampus and cerebellum. Addressing a central goal of behavioral neuroscience, exploitation of this simple yet robust model of learning and memory has yielded one of the most comprehensive descriptions to date of the physical basis of a learned behavior in mammals.
Collapse
Affiliation(s)
- Kimberly M Christian
- Neuroscience Program, University of Southern California, Los Angeles, California 90089-2520, USA.
| | | |
Collapse
|
46
|
Gerwig M, Dimitrova A, Kolb FP, Maschke M, Brol B, Kunnel A, Böring D, Thilmann AF, Forsting M, Diener HC, Timmann D. Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions. Brain 2003; 126:71-94. [PMID: 12477698 DOI: 10.1093/brain/awg011] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of the present study was to compare eyeblink conditioning in cerebellar patients with lesions including the territory of the superior cerebellar artery (SCA) and in patients with lesions restricted to the territory of the posterior inferior cerebellar artery (PICA). The cerebellar areas known to be most critical in eyeblink conditioning based on animal data (i.e. Larsell lobule H VI and interposed nucleus) are commonly supplied by the SCA. Eyeblink conditioning was expected to be impaired in SCA, but not in PICA patients. A total of 27 cerebellar patients and 25 age-matched controls were tested. Cerebellar lesions were primarily unilateral (n = 20). Most patients suffered from ischaemic infarctions of the SCA (n = 11) or the PICA (n = 13). The other patients presented with cerebellar tumours (n = 2) and cerebellar agenesis (n = 1). The extent of the cortical lesion (i.e. which lobuli were affected) and possible involvement of the cerebellar nuclei was determined by 3D-MRI. As expected, the ability to acquire classically conditioned eyeblink responses was significantly reduced in the group of all cerebellar patients compared with the controls. In the patients with unilateral cerebellar lesions, conditioning deficits were present ipsilaterally. In SCA patients with lesions including hemispheral lobules VI and Crus I, eyeblink conditioning was significantly reduced on the affected side compared with the unaffected side. No significant difference between the affected and unaffected sides was present in patients with lesions restricted to the common PICA territory (i.e. Crus II and below). Conditioning deficits were neither significantly different in SCA patients with pure cortical lesions compared with SCA patients with additional nuclear impairment nor in SCA patients with unilateral lesions compared with SCA patients with bilateral lesions. To summarize, unilateral cortical lesions of the superior cerebellum appear to be sufficient to reduce eyeblink conditioning in humans significantly.
Collapse
Affiliation(s)
- M Gerwig
- Department of Neurology, University of Essen, Department of Neurology, Fachklinik Rhein-Ruhr, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|