1
|
Qin X, Liu X, Yan X, Long M, Wang Z, Dong Y, Chen Y, Cao J. Melatonin mediates monochromatic light-induced expression of somatostatin in the hypothalamus and pituitary of chicks. Poult Sci 2021; 100:101285. [PMID: 34229215 PMCID: PMC8261012 DOI: 10.1016/j.psj.2021.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/28/2021] [Accepted: 05/21/2021] [Indexed: 11/26/2022] Open
Abstract
Melatonin (MEL) plays an important role in regulating growth and development of organisms and the cellular metabolism. This study was conducted to explore the role of MEL in mediating monochromatic light-induced secretion of somatostatin (SST) in the hypothalamus and pituitary in chicks. Pinealectomy models of newly hatched broilers were exposed to white (WL), red (RL), green (GL), and blue (BL) lights. The results showed that SST immunoreactive neurons and fibers were distributed in the hypothalamus. SST and SST receptor 2 (SSTR2) mRNA and protein levels in the hypothalamus and pituitary were higher in chicks exposed to RL than in chicks exposed to GL and BL. However, after pinealectomy, the mRNA and protein levels of SST and SSTR2 in the hypothalamus and pituitary in the different light groups were increased, and the differences between the groups disapeared. The expression trend of SSTR5 mRNA in the pituitary was the idential to that of SSTR2 mRNA in the pituitary. In vitro, exogenous SST inhibited growth hormone (GH) secretion, and selective antogonists of SSTR2 and SSTR5 promoted GH secretion. Selective antogonists of the melatonin receptor 1b (Mel1b) and Mel1c increased the relative concentrations of SST in the adenohypophysis cells. These results indicated that monochromatic light affects the expression of SST in chick hypothalamus and pituitary. MEL, via Mel1b and Mel1c, decreased SST secretion under GL, which was associated with the inhibition of SST, SSTR2, and SSTR5 in adenohypophysis cells.
Collapse
Affiliation(s)
- Xiaojing Qin
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinfeng Liu
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xingyue Yan
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Meizhen Long
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yulan Dong
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Li X, Li Z, Deng Y, Zhang J, Li J, Wang Y. Characterization of a novel thyrotropin-releasing hormone receptor, TRHR3, in chickens. Poult Sci 2019; 99:1643-1654. [PMID: 32115036 PMCID: PMC7587745 DOI: 10.1016/j.psj.2019.10.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 11/06/2022] Open
Abstract
The physiological roles of thyrotropin-releasing hormone (TRH) are proposed to be mediated by TRH receptors (TRHR), which have been divided into 3 subtypes, namely, TRHR1, TRHR2, and TRHR3, in vertebrates. Although 2 TRH receptors (TRHR1 and TRHR3) have been predicted to exist in birds, it remains unclear whether TRHR3 is a functional TRH receptor similar to TRHR1. Here, we reported the functionality and tissue expression of TRHR3 in chickens. The cloned chicken TRHR3 (cTRHR3) encodes a receptor of 387 amino acids, which shares high-amino-acid identities (63–80%) to TRHR3 of parrots, lizards, Xenopus tropicalis, and tilapia and comparatively lower sequence identities to chicken TRHR1 or mouse TRHR2. Using cell-based luciferase reporter assays and Western blot, we demonstrated that similar to chicken TRHR1 (cTRHR1), cTRHR3 expressed in HEK 293 cells can be potently activated by TRH and that its activation stimulates multiple signaling pathways, indicating both TRH receptors are functional. Quantitative real-time PCR revealed that cTRHR1 and cTRHR3 are widely, but differentially, expressed in chicken tissues, and their expression is likely controlled by promoters located upstream of exon 1, which display strong promoter activities in cultured DF-1 cells. cTRHR1 is highly expressed in the anterior pituitary and testes, while cTRHR3 is highly expressed in the muscle, testes, fat, pituitary, spinal cord, and many brain regions (including hypothalamus). These findings indicate that TRH actions are likely mediated by 2 TRH receptors in chickens. In conclusion, our data provide the first piece of evidence that both cTRHR3 and cTRHR1 are functional TRH receptors, which helps to elucidate the physiological roles of TRH in birds.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Zhengyang Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yue Deng
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
3
|
Szalai K, Tempfli K, Lencsés-Varga E, Bali Papp Á. Genotyping of four loci in Hungarian Yellow and broiler chickens. Acta Vet Hung 2019; 67:1-10. [PMID: 30922096 DOI: 10.1556/004.2019.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Traditional selection has led to remarkable differences in allele frequencies among various chicken breeds. Indigenous and broiler-type chicken populations were genotyped for polymorphisms in thyroid hormone responsive Spot14α, prolactin (PRL), IGF-binding protein 2 (IGFBP2), and somatostatin (SST) genes in order to determine potential utilisation type-associated allele frequencies. Significant (P < 0.05) differences were detected between Hungarian Yellow and broiler populations for Spot14α, PRL, and IGFBP2 allele frequencies, whereas the same SST allele (A) was fixed in both groups. In this study, the most significant associations (P < 0.05) were found between the IGFBP2 genotypes and the measured traits (body weight, carcass weight, breast muscle weight with or without skin, breast muscle weight as a percentage of carcass weight) in the broiler population. The results can be applied for the evaluation of polymorphism effects in the analysed populations; however, contradictory allele effects in different breeds and hybrids indicate the need for cautious marker utilisation in selection programmes.
Collapse
Affiliation(s)
- Klaudia Szalai
- Széchenyi István University, Faculty of Agricultural and Food Sciences, Vár 4, H-9200 Mosonmagyaróvár, Hungary
| | - Károly Tempfli
- Széchenyi István University, Faculty of Agricultural and Food Sciences, Vár 4, H-9200 Mosonmagyaróvár, Hungary
| | - Erika Lencsés-Varga
- Széchenyi István University, Faculty of Agricultural and Food Sciences, Vár 4, H-9200 Mosonmagyaróvár, Hungary
| | - Ágnes Bali Papp
- Széchenyi István University, Faculty of Agricultural and Food Sciences, Vár 4, H-9200 Mosonmagyaróvár, Hungary
| |
Collapse
|
4
|
Ávila-Mendoza J, Pérez-Rueda E, Urban-Sosa V, Carranza M, Martínez-Moreno CG, Luna M, Arámburo C. Characterization and distribution of GHRH, PACAP, TRH, SST and IGF1 mRNAs in the green iguana. Gen Comp Endocrinol 2018; 255:90-101. [PMID: 28974369 DOI: 10.1016/j.ygcen.2017.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 11/17/2022]
Abstract
The somatotropic axis (SA) regulates numerous aspects of vertebrate physiology such as development, growth, and metabolism and has influence on several tissues including neural, immune, reproductive and gastric tract. Growth hormone (GH) is a key component of SA, it is synthesized and released mainly by pituitary somatotrophs, although now it is known that virtually all tissues can express GH, which, in addition to its well-described endocrine roles, also has autocrine/paracrine/intracrine actions. In the pituitary, GH expression is regulated by several hypothalamic neuropeptides including GHRH, PACAP, TRH and SST. GH, in turn, regulates IGF1 synthesis in several target tissues, adding complexity to the system since GH effects can be exerted either directly or mediated by IGF1. In reptiles, little is known about the SA components and their functional interactions. The aim of this work was to characterize the mRNAs of the principal SA components in the green iguana and to develop the tools that allow the study of the structural and functional evolution of this system in reptiles. By employing RT-PCR and RACE, the cDNAs encoding for GHRH, PACAP, TRH, SST and IGF1 were amplified and sequenced. Results showed that these cDNAs coded for the corresponding protein precursors of 154, 170, 243, 113, and 131 amino acids, respectively. Of these, GHRH, PACAP, SST and IGF1 precursors exhibited a high structural conservation with respect to its counterparts in other vertebrates. On the other hand, iguana's TRH precursor showed 7 functional copies of mature TRH (pyr-QHP-NH2), as compared to 4 and 6 copies of TRH in avian and mammalian proTRH sequences, respectively. It was found that in addition to its primary production site (brain for GHRH, PACAP, TRH and SST, and liver for IGF1), they were also expressed in other peripheral tissues, i.e. testes and ovaries expressed all the studied mRNAs, whereas TRH and IGF1 mRNAs were observed ubiquitously in all tissues considered. These results show that the main SA components in reptiles of the Squamata Order maintain a good structural conservation among vertebrate phylogeny, and suggest important physiological interactions (endocrine, autocrine and/or paracrine) between them due to their wide peripheral tissue expression.
Collapse
Affiliation(s)
- José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Ernesto Pérez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor. 62210, Mexico; Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mérida, Yuc. 97302, Mexico
| | - Valeria Urban-Sosa
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico.
| |
Collapse
|
5
|
Wang H, Zhang R, Zhang S, Zhou Y, Wu X. Immunohistochemical Localization of Somatostatin in the Brain of Chinese Alligator Alligator sinensis. Anat Rec (Hoboken) 2016; 300:507-519. [PMID: 27615412 DOI: 10.1002/ar.23474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022]
Abstract
In this study, the regional distribution and histological localization of somatostatin (SS) immunoreactive (IR) perikarya and fibers was investigated for the first time in the brain of adult Chinese alligator by immunohistochemical method. The results showed SS-IR perikarya and fibers were widely distributed in various parts of the brain except for olfactory bulbs. In the telencephalon, SS-IR perikarya were predominantly located in the cellular layer and deep plexiform layer of dorsomedial and medial cortex, less in the dorsal and lateral cortex, while SS-IR fibers were found in all layers of the cerebral cortex. SS-IR perikarya and fibers were also detected in the dorsal ventricular ridge, hippocampus cortex, accessory olfactory bulb nuclearus, lenticular nucleus, and caudate nucleus. In the diencephalon, SS-IR perikarya and fibers were mainly present in supraoptic nucleus, paraventricular nucleus of hypothalamus, recessus infundibular nucleus, median eminence, the pineal gland and pituitary gland, in which the IR-fibers were abundant, appearing dot-shaped and varicosity-like. In the mesencephalon, they were present in tectum cortex, ependyma of cerebral aqueduct and the periaqueductal grey matter. Additionally, they were also detected in Purkinje's cellular layer of cerebellum, in the reticularis nucleus and raphe nucleus of medulla oblongata. The distribution pattern of SS-IR perikarya and fibers in the brain of Chinese alligator is generally similar to that reported in other reptiles, but also has some specific features. The wide distribution indicated that SS might be a neurotransmitter or neuromodulator which acts on many kinds of target cells with a wide range of physiological functions. Anat Rec, 300:507-519, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Ruidong Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Shengzhou Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Yongkang Zhou
- Alligator Research Center of Anhui Province, Xuanzhou, 242000, China
| | - Xiaobing Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| |
Collapse
|
6
|
Liu AL, Li YF, Qi W, Ma XL, Yu KX, Huang B, Liao M, Li F, Pan J, Song MX. Comparative analysis of selected innate immune-related genes following infection of immortal DF-1 cells with highly pathogenic (H5N1) and low pathogenic (H9N2) avian influenza viruses. Virus Genes 2015; 50:189-99. [PMID: 25557928 PMCID: PMC4381041 DOI: 10.1007/s11262-014-1151-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/01/2014] [Indexed: 01/02/2023]
Abstract
H5N1 and H9N2 viruses are important causes of avian influenza in China. H5N1 is typically associated with severe to fatal disease in poultry, while H9N2 is usually associated with mild disease. Differences in viral virulence prompted us to investigate whether innate immune responses would be differentially regulated following infection by H5N1 and H9N2 viruses. To address this hypothesis, expression of a panel of innate immune-related genes including IFN-α, IFN-β, Mx1, OASL, ISG12, IFIT5, IRF7, USP18, SST, and KHSRP in immortal DF-1 cells following H5N1 and H9N2 infection was analyzed and compared by real-time quantitative RT-PCR. Cells infected by either virus overall exhibited a similar expression profile for four ISGs (Mx1, OASL, ISG12, and IFIT5), IFN-α, IFN-β, and SST gene. However, two immune-regulatory genes (IRF7 and KHSRP) were not responsive to highly pathogenic H5N1 infection but were strongly up-regulated in DF-1 cells infected with low pathogenic H9N2 infection. The subtype-dependent host response observed in this study offers new insights into the potential roles of IRF7 and KHSRP in control and modulation of the replication and virulence of different subtypes or strains of avian influenza A virus.
Collapse
Affiliation(s)
- Ai-ling Liu
- The Key Laboratory of Animal Resistance Biology of Shandong, College of Life Sciences, Shandong Normal University, 88, East Culture Road, Jinan, 250014 Shandong China
| | - Yu-feng Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1, JiaoXiao Road, Jinan, 250023 Shandong China
| | - Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, 483, Wushan Road, Guangzhou, 510642 Guangdong China
| | - Xiu-li Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1, JiaoXiao Road, Jinan, 250023 Shandong China
| | - Ke-xiang Yu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1, JiaoXiao Road, Jinan, 250023 Shandong China
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1, JiaoXiao Road, Jinan, 250023 Shandong China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, 483, Wushan Road, Guangzhou, 510642 Guangdong China
| | - Feng Li
- Department of Veterinary and Biomedical Sciences and Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007 USA
| | - Jie Pan
- The Key Laboratory of Animal Resistance Biology of Shandong, College of Life Sciences, Shandong Normal University, 88, East Culture Road, Jinan, 250014 Shandong China
| | - Min-xun Song
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1, JiaoXiao Road, Jinan, 250023 Shandong China
| |
Collapse
|
7
|
Meng F, Huang G, Gao S, Li J, Yan Z, Wang Y. Identification of the receptors for somatostatin (SST) and cortistatin (CST) in chickens and investigation of the roles of cSST28, cSST14, and cCST14 in inhibiting cGHRH1-27NH2-induced growth hormone secretion in cultured chicken pituitary cells. Mol Cell Endocrinol 2014; 384:83-95. [PMID: 24418361 DOI: 10.1016/j.mce.2014.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 12/15/2013] [Accepted: 01/06/2014] [Indexed: 01/13/2023]
Abstract
Somatostatin receptors (SSTRs) are proposed to mediate the actions of somatostatin (SST) and its related peptide, cortistatin (CST), in vertebrates. However, the identity, functionality, and tissue expression of these receptors remain largely unknown in most non-mammalian vertebrates including birds. In this study, five SSTRs (named cSSTR1, cSSTR2, cSSTR3, cSSTR4, cSSTR5) were cloned from chicken brain by RT-PCR. Using a pGL3-CRE-luciferase reporter system, we demonstrated that activation of each cSSTR expressed in CHO cells by cSST28, cSST14 and cCST14 treatment could inhibit forskolin-induced luciferase activity of CHO cells, indicating the functional coupling of all cSSTRs to Gi protein(s). Interestingly, cSSTR1-4 expressed in CHO cells could be activated by cSST28, cSST14 and cCST14 with high potencies, suggesting that they may function as the receptors common for these peptides. In contrast, cSSTR5 could be potently activated by cSST28 only, indicating that it is a cSST28-specific receptor. Using RT-PCR, wide expression of cSSTRs was detected in chicken tissues including pituitary. In accordance with their expression in pituitary, cSST28, cSST14, and cCST14 were demonstrated to inhibit basal and novel cGHRH1-27NH2-induced GH secretion in cultured chicken pituitary cells dose-dependently (0-10nM) by Western blot analysis, suggesting the involvement of cSSTR(s) common for these peptides in mediating their inhibitory actions. Collectively, our study establishes a molecular basis to elucidate the roles of SST/CST in birds and provide insights into the roles of SST/CST in vertebrates, such as their conserved actions on pituitary.
Collapse
Affiliation(s)
- Fengyan Meng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Guian Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Shunyu Gao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Juan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Zhenxin Yan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yajun Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
8
|
Malik N, Moaeen-ud-Din M, Zhao R. Ontogeny of mRNA expression of somatostatin and its receptors in chicken embryos in association with methylation status of their promoters. Comp Biochem Physiol B Biochem Mol Biol 2013; 165:260-70. [PMID: 23727427 DOI: 10.1016/j.cbpb.2013.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/07/2013] [Accepted: 05/21/2013] [Indexed: 12/01/2022]
Abstract
The present study was designed to investigate the ontogeny and tissue distribution of somatostatin and its five receptor subtypes (SSTR1-5) mRNA expression in embryonic chicken (Gallus gallus). Brain, gonads (male), intestine, kidney, liver, muscle, stomach and yolk sac membrane (YSM) of chicken embryos on the embryonic (E) ages of 10, 16 and 21days (right before hatch) were investigated. Bisulfite sequencing PCR (BSP) was performed to determine the methylation status of the promoter region of all the six genes in the liver. Somatostatin (SST) was predominately expressed in intestine, brain and gonads (male) with different ontogenic patterns. The highest expression in intestine was detected at E10. There was ontogenic shift from intestine to brain as development progressed. Expression pattern of SSTRs in brain, intestine and kidney was similar to human embryonic expression. In liver, the ontogenic expression pattern of SST and its receptors was associated to methylation status of the respective promoters. Methylation of site Sp1 determines expression level of SST, SSTR1, SSTR2 and SSTR3 while site a is important in governing the expression of SSTR4 and SSTR5. The results show that ontogenic expression profile of chicken SST and SSTRs is time and tissue specific.
Collapse
Affiliation(s)
- Nosheen Malik
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | |
Collapse
|
9
|
McGuire NL, Bentley GE. Neuropeptides in the gonads: from evolution to pharmacology. Front Pharmacol 2010; 1:114. [PMID: 21607065 PMCID: PMC3095369 DOI: 10.3389/fphar.2010.00114] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 08/07/2010] [Indexed: 01/26/2023] Open
Abstract
Vertebrate gonads are the sites of synthesis and binding of many peptides that were initially classified as neuropeptides. These gonadal neuropeptide systems are neither well understood in isolation, nor in their interactions with other neuropeptide systems. Further, our knowledge of the control of these gonadal neuropeptides by peripheral hormones that bind to the gonads, and which themselves are under regulation by true neuropeptide systems from the hypothalamus, is relatively meager. This review discusses the existence of a variety of neuropeptides and their receptors which have been discovered in vertebrate gonads, and the possible way in which such systems could have evolved. We then focus on two key neuropeptides for regulation of the hypothalamo-pituitary-gonadal axis: gonadotropin-releasing hormone (GnRH) and gonadotropin-inhibitory hormone (GnIH). Comparative studies have provided us with a degree of understanding as to how a gonadal GnRH system might have evolved, and they have been responsible for the discovery of GnIH and its gonadal counterpart. We attempt to highlight what is known about these two key gonadal neuropeptides, how their actions differ from their hypothalamic counterparts, and how we might learn from comparative studies of them and other gonadal neuropeptides in terms of pharmacology, reproductive physiology and evolutionary biology.
Collapse
Affiliation(s)
- Nicolette L McGuire
- Laboratory of Reproductive Neuroendocrinology, Department of Integrative Biology, University of California at Berkeley Berkeley, CA, USA
| | | |
Collapse
|
10
|
McNabb FMA. The Hypothalamic-Pituitary-Thyroid (HPT) Axis in Birds and Its Role in Bird Development and Reproduction. Crit Rev Toxicol 2008; 37:163-93. [PMID: 17364708 DOI: 10.1080/10408440601123552] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article reviews thyroid function and its hypothalamic-pituitary-thyroid (HPT) axis control in birds with emphasis on the similarities and differences in thyroid function compared to mammals and other vertebrate classes. Thyroid hormones are important in metabolism and the thermogenesis required for homeothermy in birds, as in mammals, the other homeothermic class of vertebrates. Thyroid hormones play important roles in development and growth in birds, as is the case for all vertebrate classes. The developmental effects of thyroid hormones in birds are presented in the context of differences in precocial and altricial patterns of development and growth with emphasis on oviparous development. The sections on thyroid hormone actions include discussion of effects on the development of a number of tissue types as well as on seasonal organismal processes and interactions of the thyroid axis with reproduction. The current picture of how environmental chemicals may disrupt avian thyroid function is relatively limited and is presented in the context of the assessment endpoints that have been used to date. These endpoints are categorized as thyroid and HPT axis endpoints versus target organ endpoints. The final section discusses two recommended assay protocols, the avian two-generation toxicity assay and the avian one-generation assay, and whether these protocols can evaluate thyroid disruption in birds.
Collapse
Affiliation(s)
- F M Anne McNabb
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061-0406, USA.
| |
Collapse
|
11
|
De Groef B, Grommen SVH, Darras VM. Feedback control of thyrotropin secretion in the chicken: thyroid hormones increase the expression of hypophyseal somatostatin receptor types 2 and 5. Gen Comp Endocrinol 2007; 152:178-82. [PMID: 17353013 DOI: 10.1016/j.ygcen.2007.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/23/2007] [Accepted: 01/28/2007] [Indexed: 11/16/2022]
Abstract
We have studied the involvement of the somatostatin receptor type 5 (SSTR5) in the control of thyrotropin (TSH) release in the chicken. Hypothalamic somatostatin (SS-14) is known to inhibit both thyrotropin-releasing hormone (TRH)- and corticotropin-releasing hormone (CRH)-induced TSH secretion. Studies using receptor-specific agonists have indicated that the inhibitory effect of SS-14 on TRH-induced TSH release is mediated by SSTR2 and SSTR5. Using the same agonists, we were able to demonstrate the involvement of SSTR5 in the inhibition of the in vitro CRH-induced TSH secretion by SS-14. Subsequently, we determined hypophyseal SSTR5 mRNA expression during the last week of embryonic development using real-time PCR. SSTR5 mRNA levels were low until day 19 of incubation, but between day 19 and hatching SSTR5 mRNA expression increased 3-fold. Since this increase coincides with the increasing plasma T(3) levels towards hatching, and a similar ontogenetic expression pattern was found for SSTR2, we quantified hypophyseal SSTR2 and SSTR5 mRNA expression levels in chicken embryos treated with thyroid hormones. Injection of thyroid hormones was indeed found to increase the expression of both mRNAs significantly. We hypothesize that the negative feedback exerted by the increasing plasma T(3) levels towards hatching is at least in part mediated by an increased expression of SSTR2 and SSTR5.
Collapse
Affiliation(s)
- Bert De Groef
- Laboratory of Comparative Endocrinology, Catholic University of Leuven, Naamsestraat 61, B3000 Leuven, Belgium.
| | | | | |
Collapse
|
12
|
De Groef B, Vandenborne K, Van As P, Darras VM, Kühn ER, Decuypere E, Geris KL. Hypothalamic control of the thyroidal axis in the chicken: over the boundaries of the classical hormonal axes. Domest Anim Endocrinol 2005; 29:104-10. [PMID: 15927770 DOI: 10.1016/j.domaniend.2005.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Indexed: 11/16/2022]
Abstract
The pituitary gland, occupying a central position in the hypothalamo-pituitary thyroidal axis, produces thyrotropin (TSH), which is known to stimulate the thyroid gland to synthetize and release its products, thyroid hormones. TSH is produced by a specific cell population in the pituitary, the so-called thyrotropes. Their secretory activity is controlled by the hypothalamus, releasing both stimulatory and inhibitory factors that reach the pituitary through a portal system of blood vessels. Based on early experiments in mammals, thyrotropin-releasing hormone (TRH) is generally mentioned as the main stimulator of the thyrotropes. During the past few decades, it has become clear that the hypophysiotropic function of the hypothalamus is more complex, with different hormonal axes interacting with each other. In the chicken, it was found that not only TRH, but also corticotropin-releasing hormone (CRH), the main stimulator of corticotropin release, is a potent stimulator of TSH secretion. Somatostatin (SRIH), a hypothalamic factor known for its inhibitory effect on growth hormone secretion, was demonstrated to blunt the TSH response to TRH and CRH. In this review we summarize the latest studies concerning the "interaxial" hypothalamic control of TSH release in the chicken, with a special emphasis on the molecular components of these control mechanisms. It remains to be demonstrated if these findings could also be extrapolated to other species or classes of vertebrates.
Collapse
Affiliation(s)
- Bert De Groef
- Laboratory of Comparative Endocrinology, Naamsestraat 61, B3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
13
|
Trabucchi M, Tostivint H, Lihrmann I, Blähser S, Vallarino M, Vaudry H. Characterization of the cDNA encoding a somatostatin variant in the chicken brain: comparison of the distribution of the two somatostatin precursor mRNAs. J Comp Neurol 2003; 461:441-51. [PMID: 12746861 DOI: 10.1002/cne.10690] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although the existence of two somatostatin variants (SS1 and SS2) has now been demonstrated in the brain of mammals, amphibians, and fish, only one isoform of somatostatin (SS1) has been characterized to date in the brain of birds. Here we report cloning of the cDNA encoding a 101-amino-acid protein (PSS2) that encompasses the somatostatin variant [Pro(2)]somatostatin-14 (SS2) at its C-terminus. Sequence analysis indicated that chicken PSS2 is more closely related to fish PSS2 than to mammalian cortistatin precursors. Northern blot analysis showed that the chicken PSS1 gene is expressed in the central nervous system (CNS) and in the pancreas, whereas the PSS2 gene is expressed only in the CNS and not in peripheral organs. In situ hybridization histochemistry revealed that, in the chicken brain, PSS1 mRNA is more widely distributed than PSS2 mRNA. In particular, PSS1 mRNA expression was found in the hippocampus, the hyperstriatum, the preoptic area, the ventricular hypothalamic nuclei, the optic tectum, and several nuclei of the mesencephalon and rhombencephalon. In contrast, the distribution of PSS2 mRNA was restricted to a few regions of the brain, including the paraolfactory lobe, the paleostriatum, and some nuclei of the mesencephalon and rhombencephalon. The fact that the PSS1 and PSS2 genes are differently expressed in the brain and in peripheral organs indicates that, in chicken, the two somatostatin variants likely exert distinct functions. In particular, the observation that PSS1 mRNA, but not PSS2 mRNA, occurs in the preoptic area and in the ventral hypothalamic nuclei suggests that, of the two somatostatin isoforms, only SS1 acts as a hypophysiotropic factor.
Collapse
Affiliation(s)
- Michele Trabucchi
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U413, UA CNRS, University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | |
Collapse
|
14
|
Bossis I, Porter TE. Identification of the somatostatin receptor subtypes involved in regulation of growth hormone secretion in chickens. Mol Cell Endocrinol 2001; 182:203-13. [PMID: 11514055 DOI: 10.1016/s0303-7207(01)00561-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of somatostatin (SRIF) are mediated through five distinct G-protein-coupled receptors (SSTR1-5). In the present study, pituitary cells from 6-week-old chickens were subjected to reverse hemolytic plaque assays for growth hormone (GH) in the presence of SSTR subtype specific nonpeptidyl agonists. A SSTR2 selective agonist (L-779,976) potently inhibited both basal and GH-releasing hormone (GHRH)-stimulated GH release at low nanomolar concentrations. A SSTR5 agonist (L-817,818) inhibited GH release only under basal conditions and in a subpopulation of somatotrophs. In contrast, a SSTR4 selective agonist (L-803,087) used at high nanomolar concentrations modestly stimulated GH release under basal conditions but did not influence GHRH-stimulated GH secretion. The SSTR1 and SSTR3 specific agonists did not affect GH secretion under any condition tested. Reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot analysis using a partial cDNA for chicken SSTR2 showed relatively high levels of SSTR2 mRNA in the anterior pituitary (both in the caudal and cephalic lobes) and brain and detectable levels in liver, muscle, heart and small intestine. These results indicate that SSTR2 is the primary mediator of the inhibitory effects of SRIF on GH secretion in chickens.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Brain/metabolism
- Cells, Cultured
- Chickens/metabolism
- Cloning, Molecular
- Gene Expression Profiling
- Growth Hormone/metabolism
- Growth Hormone-Releasing Hormone/pharmacology
- Membrane Proteins
- Molecular Sequence Data
- Pituitary Gland/cytology
- Pituitary Gland/drug effects
- Pituitary Gland/metabolism
- Protein Isoforms/agonists
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Somatostatin/agonists
- Receptors, Somatostatin/chemistry
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Somatostatin/pharmacology
Collapse
Affiliation(s)
- I Bossis
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|