1
|
Sanli E, Dincel GC, Umay E. Effect of Local and Systemic Dimethylsulfoxide on Peripheral Nerve Repair: A Controlled Randomized Experimental Study. J INVEST SURG 2021; 34:454-465. [PMID: 31343376 DOI: 10.1080/08941939.2019.1644403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION We investigated the possible beneficial effect of dimethylsulfoxide (DMSO) on peripheral nerve repair in rats. Methods: Seventy rats were divided into four groups: control, sham, DMSO-L, and DMSO-IP. Except in the control group, nerve repair was done at the right sciatic nerve. DMSO was administered locally and intraperitoneally for 12 weeks to the DMSO-L and DMSO-IP groups, respectively. No therapeutic agent was administered to the other groups. Nerve regeneration was assessed by behavioral, electrophysiological, histopathological, and immunohistochemical tests. Results: With the exception of S-100 protein expression, all results indicate that DMSO has a beneficial effect on peripheral nerve regeneration. Functional nerve recovery was notably more evident in the DMSO-L than in the DMSO-IP group. Under macroscopic examination, nerve scores of the regeneration area in the DMSO-L group was also better than in the others. Discussion: We believe that DMSO can improve peripheral nerve regeneration in rats.
Collapse
Affiliation(s)
- Elif Sanli
- Department of Plastic, Reconstructive and Aesthetic Surgery, Kirikkale University Faculty of Medicine, Kirikkale, Turkey
| | - Gungor Cagdas Dincel
- Eskil Vocational High School, Laboratory and Veterinary Science, Aksaray University, Aksaray, Turkey
| | - Ebru Umay
- Diskapi Yildirim Beyazit Training and Research Hospital, Department of Physical Medicine and Rehabilitation, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
2
|
Failed Neuroprotection of Combined Inhibition of L-Type and ASIC1a Calcium Channels with Nimodipine and Amiloride. Int J Mol Sci 2020; 21:ijms21238921. [PMID: 33255506 PMCID: PMC7727815 DOI: 10.3390/ijms21238921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/15/2023] Open
Abstract
Effective pharmacological neuroprotection is one of the most desired aims in modern medicine. We postulated that a combination of two clinically used drugs-nimodipine (L-Type voltage-gated calcium channel blocker) and amiloride (acid-sensing ion channel inhibitor)-might act synergistically in an experimental model of ischaemia, targeting the intracellular rise in calcium as a pathway in neuronal cell death. We used organotypic hippocampal slices of mice pups and a well-established regimen of oxygen-glucose deprivation (OGD) to assess a possible neuroprotective effect. Neither nimodipine (at 10 or 20 µM) alone or in combination with amiloride (at 100 µM) showed any amelioration. Dissolved at 2.0 Vol.% dimethyl-sulfoxide (DMSO), the combination of both components even increased cell damage (p = 0.0001), an effect not observed with amiloride alone. We conclude that neither amiloride nor nimodipine do offer neuroprotection in an in vitro ischaemia model. On a technical note, the use of DMSO should be carefully evaluated in neuroprotective experiments, since it possibly alters cell damage.
Collapse
|
3
|
Rowland MJ, Ezra M, Winkler A, Garry P, Lamb C, Kelly M, Okell TW, Westbrook J, Wise RG, Douaud G, Pattinson KT. Calcium channel blockade with nimodipine reverses MRI evidence of cerebral oedema following acute hypoxia. J Cereb Blood Flow Metab 2019; 39:285-301. [PMID: 28857714 PMCID: PMC6360646 DOI: 10.1177/0271678x17726624] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute cerebral hypoxia causes rapid calcium shifts leading to neuronal damage and death. Calcium channel antagonists improve outcomes in some clinical conditions, but mechanisms remain unclear. In 18 healthy participants we: (i) quantified with multiparametric MRI the effect of hypoxia on the thalamus, a region particularly sensitive to hypoxia, and on the whole brain in general; (ii) investigated how calcium channel antagonism with the drug nimodipine affects the brain response to hypoxia. Hypoxia resulted in a significant decrease in apparent diffusion coefficient (ADC), a measure particularly sensitive to cell swelling, in a widespread network of regions across the brain, and the thalamus in particular. In hypoxia, nimodipine significantly increased ADC in the same brain regions, normalizing ADC towards normoxia baseline. There was positive correlation between blood nimodipine levels and ADC change. In the thalamus, there was a significant decrease in the amplitude of low frequency fluctuations (ALFF) in resting state functional MRI and an apparent increase of grey matter volume in hypoxia, with the ALFF partially normalized towards normoxia baseline with nimodipine. This study provides further evidence that the brain response to acute hypoxia is mediated by calcium, and importantly that manipulation of intracellular calcium flux following hypoxia may reduce cerebral cytotoxic oedema.
Collapse
Affiliation(s)
- Matthew J Rowland
- 1 Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,2 FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,3 Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Martyn Ezra
- 1 Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,2 FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,3 Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Anderson Winkler
- 2 FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Payashi Garry
- 1 Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,3 Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Catherine Lamb
- 3 Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Michael Kelly
- 4 Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Thomas W Okell
- 2 FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Jon Westbrook
- 1 Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,3 Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Richard G Wise
- 5 Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Gwenaëlle Douaud
- 2 FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Kyle Ts Pattinson
- 1 Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,2 FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,3 Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, UK
| |
Collapse
|
4
|
Wang Q, Diao Q, Dai P, Chu Y, Wu Y, Zhou T, Cai Q. Exploring poisonous mechanism of honeybee, Apis mellifera ligustica Spinola, caused by pyrethroids. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 135:1-8. [PMID: 28043325 DOI: 10.1016/j.pestbp.2016.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
As the important intracellular secondary messengers, calcium channel is the target of many neurotoxic pesticides as calcium homeostasis in the neuroplasm play important role in neuronal functions and behavior in insects. This study investigated the effect of deltamethrin (DM) on calcium channel in the brain nerve cells of adult workers of Apis mellifera ligustica Spinola that were cultured in vitro. The results showed that the intracellular calcium concentration was significantly elevated even with a very low concentration of the DM (3.125×10-2mg/L). Further testing revealed that T-type voltage-gated calcium channels (VGCCs), except for sodium channels, was one of the target of DM on toxicity of Apis mellifera, while DM has no significant effect on the L-type VGCCs, N-methyl-d-aspartate receptor-gated calcium channels and calcium store. These results suggesting that the DM may act on T-type VGCCs in brain cells of honeybees and result in behavioral abnormalities including swarming, feeding, learning, and acquisition.
Collapse
Affiliation(s)
- Qiang Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China; Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Qingyun Diao
- Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Pingli Dai
- Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Yanna Chu
- Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Yanyan Wu
- Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Ting Zhou
- Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Qingnian Cai
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
5
|
Abstract
Neuronal nitric oxide synthase (nNOS) and p38MAPK are strongly implicated in excitotoxicity, a mechanism common to many neurodegenerative conditions, but the intermediary mechanism is unclear. NOS1AP is encoded by a gene recently associated with sudden cardiac death, diabetes-associated complications, and schizophrenia (Arking et al., 2006; Becker et al., 2008; Brzustowicz, 2008; Lehtinen et al., 2008). Here we find it interacts with p38MAPK-activating kinase MKK3. Excitotoxic stimulus induces recruitment of NOS1AP to nNOS in rat cortical neuron culture. Excitotoxic activation of p38MAPK and subsequent neuronal death are reduced by competing with the nNOS:NOS1AP interaction and by knockdown with NOS1AP-targeting siRNAs. We designed a cell-permeable peptide that competes for the unique PDZ domain of nNOS that interacts with NOS1AP. This peptide inhibits NMDA-induced recruitment of NOS1AP to nNOS and in vivo in rat, doubles surviving tissue in a severe model of neonatal hypoxia-ischemia, a major cause of neonatal death and pediatric disability. The highly unusual sequence specificity of the nNOS:NOS1AP interaction and involvement in excitotoxic signaling may provide future opportunities for generation of neuroprotectants with high specificity.
Collapse
|
6
|
Karimzadeh F, Hosseini M, Mangeng D, Alavi H, Hassanzadeh GR, Bayat M, Jafarian M, Kazemi H, Gorji A. Anticonvulsant and neuroprotective effects of Pimpinella anisum in rat brain. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:76. [PMID: 22709243 PMCID: PMC3416669 DOI: 10.1186/1472-6882-12-76] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/18/2012] [Indexed: 12/04/2022]
Abstract
BACKGROUND Essential oil of Pimpinella anisum L. Apiaceae (anise oil) has been widely used in traditional Persian medicine to treat a variety of diseases, including some neurological disorders. This study was aimed to test the possible anti-seizure and anti-hypoxia effects of anise oil. METHODS The effects of different concentrations of anise oil were tested on seizure attacks induced by pentylenetetrazol (PTZ) injection and neuronal hypoxia induced by oxygen withdrawal as well as on production of dark neurons and induction of long-term potentiation (LTP) in in vivo and in vitro experimental models of rat brain. RESULTS Anise oil significantly prolonged the latency of seizure attacks and reduced the amplitude and duration of epileptiform burst discharges induced by injection of intraperitoneal PTZ. In addition, anise oil significantly inhibited production of dark neurons in different regions of the brain in epileptic rats. Anise oil also significantly enhanced the duration of the appearance of anoxic terminal negativity induced by oxygen withdrawal and inhibited induction of LTP in hippocampal slices. CONCLUSIONS Our data indicate the anticonvulsant and neuroprotective effects of anise oil, likely via inhibition of synaptic plasticity. Further evaluation of anise oil to use in the treatment of neurological disorders is suggested.
Collapse
Affiliation(s)
- Fariba Karimzadeh
- Shefa Neuroscience Center, Tehran, Iran
- Mashhad Neuroscience Center, University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Diana Mangeng
- Institut für Physiologie I, Westfalische Wilhelms-University Münster, Münster, Germany
| | - Hassan Alavi
- Mashhad Neuroscience Center, University of Medical Sciences, Mashhad, Iran
| | | | - Mohamad Bayat
- Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hadi Kazemi
- Department of Pediatric, Shahed University, Tehran, Iran
| | - Ali Gorji
- Shefa Neuroscience Center, Tehran, Iran
- Institut für Physiologie I, Westfalische Wilhelms-University Münster, Münster, Germany
- Razavi Neuroscience Center, Mashhad, Iran
| |
Collapse
|
7
|
|
8
|
Ferguson AL, Stone TW. Glutamate-induced depression of EPSP-spike coupling in rat hippocampal CA1 neurons and modulation by adenosine receptors. Eur J Neurosci 2010; 31:1208-18. [PMID: 20345917 DOI: 10.1111/j.1460-9568.2010.07157.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The presence of high concentrations of glutamate in the extracellular fluid following brain trauma or ischaemia may contribute substantially to subsequent impairments of neuronal function. In this study, glutamate was applied to hippocampal slices for several minutes, producing over-depolarization, which was reflected in an initial loss of evoked population potential size in the CA1 region. Orthodromic population spikes recovered only partially over the following 60 min, whereas antidromic spikes and excitatory postsynaptic potentials (EPSPs) showed greater recovery, implying a change in EPSP-spike coupling (E-S coupling), which was confirmed by intracellular recording from CA1 pyramidal cells. The recovery of EPSPs was enhanced further by dizocilpine, suggesting that the long-lasting glutamate-induced change in E-S coupling involves NMDA receptors. This was supported by experiments showing that when isolated NMDA-receptor-mediated EPSPs were studied in isolation, there was only partial recovery following glutamate, unlike the composite EPSPs. The recovery of orthodromic population spikes and NMDA-receptor-mediated EPSPs following glutamate was enhanced by the adenosine A1 receptor blocker DPCPX, the A2A receptor antagonist SCH58261 or adenosine deaminase, associated with a loss of restoration to normal of the glutamate-induced E-S depression. The results indicate that the long-lasting depression of neuronal excitability following recovery from glutamate is associated with a depression of E-S coupling. This effect is partly dependent on activation of NMDA receptors, which modify adenosine release or the sensitivity of adenosine receptors. The results may have implications for the use of A1 and A2A receptor ligands as cognitive enhancers or neuroprotectants.
Collapse
Affiliation(s)
- Alexandra L Ferguson
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|
9
|
Shrestha S, Gracias NG, Mujenda F, Khodorova A, Vasko MR, Strichartz GR. Local antinociception induced by endothelin-1 in the hairy skin of the rat's back. THE JOURNAL OF PAIN 2009; 10:702-14. [PMID: 19559389 PMCID: PMC2720057 DOI: 10.1016/j.jpain.2008.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/09/2008] [Accepted: 12/17/2008] [Indexed: 10/20/2022]
Abstract
UNLABELLED Subcutaneous injection of endothelin-1 (ET-1) into the glabrous skin of the rat's hind paw is known to produce impulses in nociceptors and acute nocifensive behavioral responses, such as hind paw flinching, and to sensitize the skin to mechanical and thermal stimulation. In this report, we show that in contrast to the responses in glabrous skin, ET-1 injected subcutaneously into rat hairy skin causes transient antinociception. Concentrations of 1 to 50 microM ET-1 (in 0.05 mL) depress the local nocifensive response to noxious tactile probing at the injection site with von Frey filaments for 30 to 180 minutes; distant injections have no effect at this site, showing that the response is local. Selective inhibition of ET(A) but not of ET(B) receptors inhibits this antinociception, as does coinjection with nimodipine (40 muM), a blocker of L-type Ca(2+) channels. Local subcutaneous injection of epinephrine (45 microM) also causes antinociception through alpha-1 adrenoreceptors, but such receptors are not involved in the ET-1-induced effect. Both epinephrine and ET-1, at antinociceptive concentrations, reduce blood flow in the skin; the effect from ET-1 is largely prevented by subcutaneous nimodipine. These data suggest that ET-1-induced antinociception in the hairy skin of the rat involves cutaneous vasoconstriction, presumably through neural ischemia, resulting in conduction block. PERSPECTIVE The pain-inducing effects of ET-1 have been well documented in glabrous skin of the rat, a frequently used test site. The opposite behavioral effect, antinociception, occurs from ET-1 in hairy skin and is correlated with a reduction in blood flow. Vasoactive effects are important in assessing mechanisms of peripherally acting agents.
Collapse
Affiliation(s)
- Saurav Shrestha
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
10
|
Sommer C, Schomacher M, Berger C, Kuhnert K, Müller HD, Schwab S, Schäbitz WR. Neuroprotective cannabinoid receptor antagonist SR141716A prevents downregulation of excitotoxic NMDA receptors in the ischemic penumbra. Acta Neuropathol 2006; 112:277-86. [PMID: 16871404 DOI: 10.1007/s00401-006-0110-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 06/16/2006] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
Whether cannabinoids act as neuroprotectants or, on the contrary, even worsen neuronal damage after cerebral ischemia is currently under discussion. We have previously shown that treatment with the cannabinoid (CB1) receptor antagonist SR141716A reduces infarct volume by approximately 40% after experimental stroke. Since it is suggested that SR141716A may exert neuroprotection besides its cannabinoid receptor-blocking effect, we addressed the question whether SR141716A may act via modulation of postischemic ligand binding to excitatory NMDA and/or alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid (AMPA) receptors. For this purpose, rats (n = 12) were treated with either intravenous saline (control) or CB1 receptor antagonist SR141716A (1 mg/kg) 30 min after permanent middle cerebral artery occlusion. Five hours after ischemia, quantitative receptor autoradiography was performed using [(3)H]CP 55,940, [(3)H]MK-801, and [(3)H]AMPA for labeling of CB1, NMDA, and AMPA receptors, respectively. Ligand binding was analyzed within the infarct core, cortical penumbra, and corresponding areas of the contralateral hemisphere and compared to that of sham-operated rats (n = 5). Both in ischemic controls and SR141716A-treated rats [(3)H]CP 55,940 ligand binding was not specifically regulated in the cortical penumbra or contralateral cortex. Importantly, reduced infarct volumes in SR141716A-treated rats were associated with maintained [(3)H]MK-801 binding to excitotoxic NMDA receptors in the penumbra, compared to a decrease in the control group. In summary, our data suggest that SR141716A may possess additional intrinsic neuroprotective properties independent of receptor-coupled pathways or due to action as a partial agonist.
Collapse
Affiliation(s)
- Clemens Sommer
- Department of Neuropathology, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Lee CJ, Kim KW, Lee HM, Nahm FS, Lim YJ, Park JH, Kim CS. The effect of thalidomide on spinal cord ischemia/reperfusion injury in a rabbit model. Spinal Cord 2006; 45:149-57. [PMID: 16568139 DOI: 10.1038/sj.sc.3101931] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Randomized study. OBJECTIVES To evaluate the effects of thalidomide on spinal cord ischemia/reperfusion injury via reduced TNF-alpha production. SETTING Animal experimental laboratory, Clinical Research Institute of Seoul National University Hospital, Seoul, Korea. METHODS Spinal cord ischemia was induced in rabbits by occluding the infrarenal aorta. Rabbits in group N did not undergo ischemic insult, but rabbits in groups C (the untreated group), THA, and THB underwent ischemic insult for 15 min. The THA and THB groups received thalidomide (20 mg/kg) intraperitoneally (i.p.) before ischemia, but only the THB group received thalidomide (i.p., 20 mg/kg) after 24 and 48 h of reperfusion. After evaluating neurologic functions at 1.5 h, 3, and 5 days of reperfusion, rabbits were killed for histopathologic examination and Western blot analysis of TNF-alpha. RESULTS The THA and THB groups showed significantly less neurologic dysfunction than the C group at 1.5 h, 3, and 5 days of reperfusion. The number of normal spinal motor neurons in ventral gray matter was higher in THA and THB than in C, but no difference was observed between THA and THB. Western blot analysis showed a significantly higher level of TNF-alpha in C than in THA and THB at 1.5 h of reperfusion, but no difference was observed between C, THA, or THB at 3 or 5 days of reperfusion. CONCLUSION Thalidomide treatment before ischemic insult reduces early phase ischemia/reperfusion injury of the spinal cord in rabbits.
Collapse
Affiliation(s)
- C-J Lee
- Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Ma B, Zhang J. Nimodipine treatment to assess a modified mouse model of intracerebral hemorrhage. Brain Res 2006; 1078:182-8. [PMID: 16492378 DOI: 10.1016/j.brainres.2006.01.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 11/22/2005] [Accepted: 01/03/2006] [Indexed: 11/15/2022]
Abstract
One of the main limitations of intracerebral hemorrhage (ICH) research is lack of reproducible animal models. ICH appears to be associated with a volume of edema and ischemic injury surrounding the hematoma that may be reduced by nimodipine due to its vasodilating and cytoprotective effects. The present study was designed to produce a modified ICH model in mice based on the double-injection method initially developed by Dr. Belayev and accordingly performed in 3 groups: to evaluate this model itself and to assess the pharmacological effects of nimodipine in this model, respectively. In 80 ICR mice (32 +/- 3 g), ICH was induced by 30 microL whole blood injection into the caudate nucleus. ICH animals were then randomly received either nimodipine (5 mg/kg) or vehicle intraperitoneal injection just before and every 24 h after ICH (total of four times). The changes for cortical blood flow (CBF) were studied by the technique of Laser Doppler Perfusion Measure (LDPM). Animals were rated on a behavioral test and sacrificed at 72 h after ICH. The brains were removed, and hematoma volume and brain edema were subsequently determined. Due to the vasodilating effect of nimodipine, ICH animals treated with nimodipine had marked improved CBF accompanied by the improvement of forelimb placing performance compared with vehicle-treated ICH animals, though there was no marked difference in the hematoma volume and brain water content. In conclusion, the 30 microL whole blood injection closely mimicked natural ischemic events that occurred in human massive ICH and confirmed the anti-ischemia effect of nimodipine. This study suggested that nimodipine could be markedly effective to reduce edema and hematoma volume when administered in combination with other neuroprotective agents because ICH can induce brain injury by multiple mechanisms.
Collapse
Affiliation(s)
- Bo Ma
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | | |
Collapse
|
13
|
Vartazarmian R, Malik S, Baker GB, Boksa P. Long-term effects of fluoxetine or vehicle administration during pregnancy on behavioral outcomes in guinea pig offspring. Psychopharmacology (Berl) 2005; 178:328-38. [PMID: 15365684 DOI: 10.1007/s00213-004-2003-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 07/26/2004] [Indexed: 11/30/2022]
Abstract
RATIONALE Assessment of the benefits versus risks associated with antidepressant use during pregnancy must include an analysis of possible drug effects on fetal development. Human studies indicate that prenatal fluoxetine exposure is associated with adverse neonatal outcomes. Animal modeling may provide useful information concerning possible long-term effects of prenatal fluoxetine exposure. Limitations in previous such studies using rat models may be overcome using a guinea pig model in which fluoxetine is delivered by osmotic pump throughout pregnancy. METHODS Initial experiments measured the half-life of fluoxetine and dosing required to achieve human therapeutic blood levels in the guinea pig. In subsequent experiments, guinea pigs received fluoxetine or vehicle via osmotic pump or no treatment throughout pregnancy. Outcome measures included: pregnancy characteristics, weight gain, and, in offspring as adults, pain threshold, acoustic startle responses and prepulse inhibition. RESULTS There was no effect of treatment group on gestation length, number of live-births or still-births, maternal or offspring weight gain, and acoustic startle responses. In adult offspring, pain threshold was decreased by vehicle treatment during gestation. Prenatal fluoxetine increased pain threshold, relative to vehicle controls. Prepulse inhibition of startle was increased in adult offspring treated prenatally with either vehicle or fluoxetine compared to no treatment. CONCLUSIONS The guinea pig provides a practicable and clinically relevant model of prenatal fluoxetine exposure. Adult guinea pigs exposed to fluoxetine prenatally showed increased thermal pain thresholds but no change in prepulse inhibition, indicating selective long-term effects of prenatal fluoxetine on serotonin-modulated behaviors. Further studies on long-term effects of prenatal fluoxetine on nociception are warranted.
Collapse
Affiliation(s)
- Raphael Vartazarmian
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, 6875 LaSalle Boulevard, Verdun, QC, Canada, H4H 1R3
| | | | | | | |
Collapse
|
14
|
Feng Y, Fratkins JD, LeBlanc MH. Treatment with tamoxifen reduces hypoxic–ischemic brain injury in neonatal rats. Eur J Pharmacol 2004; 484:65-74. [PMID: 14729383 DOI: 10.1016/j.ejphar.2003.10.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tamoxifen, an estrogen receptor modulator, is neuroprotective in adult rats. Does tamoxifen reduce brain injury in the rat pup? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of hypoxia (8% oxygen). Tamoxifen (10 mg/kg) or vehicle was given i.p. 5 min prior to hypoxia, or 5 min after reoxygenation, with a second dose given 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere 22 days following hypoxia and gross and microscopic morphology. Tamoxifen pre-treatment reduced brain weight loss from 21.5+/-4.0% in vehicle pups (n=27) to 2.6+/-2.5% in the treated pups (n=22, P<0.05). Treatment 5 min after reoxygenation reduced brain weight loss from 27.5+/-4.0% in vehicle pups (n=42) to 12.0+/-3.9% in the treated pups (n=30, P<0.05). Tamoxifen reduces brain injury in the neonatal rat.
Collapse
Affiliation(s)
- Yangzheng Feng
- Department of Pediatrics, University of Mississippi Medical Center, 2500 North State Street, 39216-4505, Jackson, MS, USA.
| | | | | |
Collapse
|
15
|
Lennmyr F, Ericsson A, Gerwins P, Ahlström H, Terént A. Increased brain injury and vascular leakage after pretreatment with p38-inhibitor SB203580 in transient ischemia. Acta Neurol Scand 2003; 108:339-45. [PMID: 14616304 DOI: 10.1034/j.1600-0404.2003.00129.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Focal cerebral ischemia activates intracellular signaling pathways including the mitogen-activated protein kinase p38, which may be involved in the process of ischemic brain injury. In this study, the effect of pretreatment with the p38-inhibitor SB203580 on infarct size and blood-brain barrier (BBB) breakdown was investigated with magnetic resonance imaging (MRI). MATERIALS AND METHODS Rats were given SB203580 (n = 6) or vehicle (n = 6) in the right lateral ventricle prior to transient (90 min) middle cerebral artery occlusion (MCAO) on the left side. The rats were examined with serial MRI during MCAO, at reperfusion and after 1 and 4 days. RESULTS The mean infarct size on T2-weighted images after 1 day was significantly higher in the SB203580-treated group than in controls (300 +/- 95 mm3 vs 126 +/- 75 mm3; P < 0.01). Vascular gadolinium leakage, indicating BBB breakdown, was significantly larger in the SB203580-treated group than in controls after 1 day (median leakage score 18.5; range 15-21 vs 6.5; 4-17; P < 0.05) and 4 days (11; 6-15 vs 3.5; 1-9; P < 0.05), although no significant difference was seen initially. CONCLUSION Pretreatment with SB203580 may aggravate ischemic brain injury and cerebral vascular leakage in the present model of transient ischemia.
Collapse
Affiliation(s)
- F Lennmyr
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University Hospital, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Greiner C, Wölfer J, Hülsmann S, Vanhatalo S, Köhling R, Pannek HW, Speckmann EJ, Wassmann H. Bioelectrical behaviour of hypoxic human neocortical tissue under the influence of nimodipine and dimethyl sulfoxide. Brain Res 2003; 959:199-205. [PMID: 12493607 DOI: 10.1016/s0006-8993(02)03743-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nimodipine and dimethyl sulfoxide (DMSO) have been shown to affect electrophysiological responses in rodent brain tissue in an vitro model of hypoxia. In the present study, the same agents were now examined for their effects on human neocortical brain slices under repeated hypoxic conditions. DMSO (0.4%), with and without addition of nimodipine (40 micromol/l), did not increase the latency of anoxic depolarization (AD). This finding is not in line with our previous observations of DMSO effects, with and without nimodipine, on brain slices of guinea pigs. AD latency was significantly longer in human neocortical brain slices compared with hippocampal slices of rodents even without any pharmacological influence. A possible acute effect of DMSO-nimodipine may therefore be masked by an interspecies difference of hypoxia resistance.
Collapse
Affiliation(s)
- Christoph Greiner
- Department of Neurosurgery, University of Münster, Albert-Schweitzer-Str 33, 48142, Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Greiner C, Wölfer J, Wassmann H, Köhling R, Speckmann EJ. Effects of methohexital on bioelectrical reactions in guinea pig hippocampal slices during hypoxia. Neurosci Lett 2002; 329:227-31. [PMID: 12165418 DOI: 10.1016/s0304-3940(02)00649-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The barbiturate methohexital (42 and 140 micromol/l) was tested for an acute effect on anoxic depolarization (AD) and evoked potentials (EP) in hippocampal slices of guinea pigs exposed to repeated hypoxic conditions (n = 78). The dosages of methohexital resemble the range of plasma levels measured in patients with an intraoperative burst suppression electroencephalogram. Direct current potential and EP were recorded in the CA1 region. Hypoxia was terminated either when AD had reached its peak, or 2 min after maximum AD. Excluding the actions of methohexital on cerebral blood flow, reperfusion phase and the delayed mechanisms of cellular protection, a dose-dependent direct effect on EP even after repeated hypoxic conditions could be observed.
Collapse
Affiliation(s)
- Christoph Greiner
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Münster, Albert-Schweitzer-Strasse 33, 48129 Münster, Germany.
| | | | | | | | | |
Collapse
|