1
|
Xu Y, Fan Q. Relationship between chronic hypoxia and seizure susceptibility. CNS Neurosci Ther 2022; 28:1689-1705. [PMID: 35983626 PMCID: PMC9532927 DOI: 10.1111/cns.13942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/16/2023] Open
Abstract
Chronic hypobaric hypoxia in high‐altitude areas is closely related to the occurrence of many neurological diseases. Among these diseases, epilepsy is a common disease of the nervous system that is difficult to diagnose and treat, with a long treatment cycle. As of 2019, there were more than 70 million epilepsy patients worldwide, including 10 million in China. Studies have shown that chronic hypoxia promotes the occurrence and development of epilepsy, and elucidation of the relationship between chronic hypoxia and epilepsy is important for studying the pathogenesis of epilepsy and exploring the potential characteristics of epilepsy and new drug targets for epilepsy. In this article, we review the factors that may cause increased seizure susceptibility in chronic hypoxia and consider the potential relationship between chronic hypobaric hypoxia and seizure susceptibility in high‐altitude areas and prospects surrounding related research in the future.
Collapse
Affiliation(s)
- YuanHang Xu
- Qinghai University Graduate School, Xining, China.,Department of Neurology, Qinghai Provincial People's Hospital Xining, Xining, China
| | - QingLi Fan
- Department of Neurology, Qinghai Provincial People's Hospital Xining, Xining, China
| |
Collapse
|
2
|
Hypoxia induced cognitive impairment modulating activity of Cyperus rotundus. Physiol Behav 2017; 175:56-65. [DOI: 10.1016/j.physbeh.2017.03.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/11/2017] [Accepted: 03/23/2017] [Indexed: 12/11/2022]
|
3
|
Guo WY, Bian SZ, Zhang JH, Li QN, Yu J, Chen JF, Tang CF, Rao RS, Yu SY, Jin J, Huang L. Physiological and psychological factors associated with onset of high-altitude headache in Chinese men upon acute high-altitude exposure at 3700 m. Cephalalgia 2016; 37:336-347. [PMID: 27152016 DOI: 10.1177/0333102416646761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aim We aimed to identify clinical characteristics and risk factors associated with onset of high-altitude headache (HAH) after acute exposure at 3700 m. Method In two hours, 163 individuals ascended by plane to 3700 m. Demographic information, physiological and psychological measurements, cognitive function, physical work capacity tests and profile of mood states within one week prior to the departure and within 24 hours after arrival were examined. Results HAH patients featured significantly higher vertebral artery diastolic velocity (Vd), heart rate (HR) and pulmonary artery diameter. HAH was also associated with a more negative mood state, including scores for tension anxiety, depression, hostility, fatigue and confusion, as well as lower vigor (all p values <0.05). Furthermore, negative emotions were positively related to HAH severity. HAH slightly decreased cognitive functioning. HR, Vd, lack of vigor, confusion and self-reported anxiety (all p values <0.05) were independent risk factors for HAH. We have identified three independent baseline predictors for HAH including internal diameter of the left ventricle (LVD), Athens Insomnia Scale (AIS) and confusion score. Conclusions Higher HR, Vd, confusion and self-reported anxiety and insufficient vigor were independent risk factors for HAH. Furthermore, higher baseline LVD, AIS and confusion score are independent predictors of HAH.
Collapse
Affiliation(s)
- Wen-Yun Guo
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, China
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University, China
| | - Shi-Zhu Bian
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, China
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University, China
| | - Ji-Hang Zhang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, China
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University, China
| | - Qian-ning Li
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, China
| | - Jie Yu
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, China
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University, China
| | - Jian-Fei Chen
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, China
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University, China
| | - Cai-Fa Tang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, China
| | - Rong-Sheng Rao
- Department of Ultrasonography, Xinqiao Hospital, Third Military Medical University
| | - Shi-Yong Yu
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, China
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University, China
| | - Jun Jin
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, China
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, China
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University, China
| |
Collapse
|
4
|
Udayabanu M, Kumaran D, Katyal A. Free chelatable zinc modulates the cholinergic function during hypobaric hypoxia-induced neuronal damage: an in vivo study. Neuroscience 2012; 202:434-45. [DOI: 10.1016/j.neuroscience.2011.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 11/08/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
|
5
|
Decreased GABAA receptor binding in the medullary serotonergic system in the sudden infant death syndrome. J Neuropathol Exp Neurol 2011; 70:799-810. [PMID: 21865888 DOI: 10.1097/nen.0b013e31822c09bc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
γ-Aminobutyric acid (GABA) neurons in the medulla oblongata help regulate homeostasis, in part through interactions with the medullary serotonergic (5-HT) system. Previously, we reported abnormalities in multiple 5-HT markers in the medullary 5-HT system of infants dying from sudden infant death syndrome (SIDS), suggesting that 5-HT dysfunction is involved in its pathogenesis. Here, we tested the hypothesis that markers of GABAA receptors are decreased in the medullary 5-HT system in SIDS cases compared with controls. Using tissue receptor autoradiography with the radioligand H-GABA, we found 25% to 52% reductions in GABAA receptor binding density in 7 of 10 key nuclei sampled of the medullary 5-HT system in the SIDS cases (postconceptional age [PCA] = 51.7 ± 8.3, n = 28) versus age-adjusted controls (PCA = 55.3 ± 13.5, n = 8) (p ≤ 0.04). By Western blotting, there was 46.2% reduction in GABAAα3 subunit levels in the gigantocellularis (component of the medullary 5-HT system) of SIDS cases (PCA = 53.9 ± 8.4, n = 24) versus controls (PCA = 55.3 ± 8.3, n = 8) (56.8% standard in SIDS cases vs 99.35% in controls; p = 0.026). These data suggest that medullary GABAA receptors are abnormal in SIDS infants and that SIDS is a complex disorder of a homeostatic network in the medulla that involves deficits of the GABAergic and 5-HT systems.
Collapse
|
6
|
Cholinesterase inhibitors ameliorate spatial learning deficits in rats following hypobaric hypoxia. Exp Brain Res 2010; 203:583-92. [PMID: 20458473 DOI: 10.1007/s00221-010-2266-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 04/16/2010] [Indexed: 01/25/2023]
Abstract
Cognitive functions especially learning and memory are severely affected by high altitude (HA) exposure. Hypobaric hypoxia (HBH) encountered at HA is known to cause oxidative stress, alterations of neurotransmitters and cognitive impairment. We hypothesized that alteration in cholinergic system may be involved in HBH-induced learning impairment. The present study has investigated the cholinergic dysfunctions associated with simulated HBH-induced impairment of learning in rats and protective role of acetylcholine esterase inhibitors (AChEIs). Male Sprague-Dawley rats were exposed to HBH equivalent to 6,100 m for 7 days in a simulated decompression chamber. After stipulated period of exposure, learning ability was assessed using Morris water maze (MWM) task. Cholinergic markers like acetylcholine (ACh) and acetyl cholinesterase (AChE) were evaluated from cortex and hippocampus. Morphological changes were evaluated from cortex, CA1, and CA3 region of hippocampus by Nissle staining and by electron microscopy. We found that exposure to HBH led to impairment of learning ability in MWM task, and it was accompanied by decrease in ACh level, increase in AChE activity, and revealed critical cellular damage. Administration of AChEIs like physostigmine (PHY) and galantamine (GAL) resulted in amelioration of the deleterious effects induced by HBH. The AChEIs were also able to restore the neuronal morphology. Our data suggest that cholinergic system is affected by HBH, and AChEIs were able to improve HBH-induced learning impairment in rats.
Collapse
|
7
|
Anju TR, Peeyush Kumar T, Paulose CS. Decreased GABAA receptors functional regulation in the cerebral cortex and brainstem of hypoxic neonatal rats: effect of glucose and oxygen supplementation. Cell Mol Neurobiol 2010; 30:599-606. [PMID: 20033840 PMCID: PMC11498792 DOI: 10.1007/s10571-009-9485-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
Hypoxia in neonates can lead to biochemical and molecular alterations mediated through changes in neurotransmitters resulting in permanent damage to brain. In this study, we evaluated the changes in the receptor status of GABA(A) in the cerebral cortex and brainstem of hypoxic neonatal rats and hypoxic rats supplemented with glucose and oxygen using binding assays and gene expression of GABA(Aalpha1) and GABA(Agamma5). In the cerebral cortex and brainstem of hypoxic neonatal rats, a significant decrease in GABA(A) receptors was observed, which accounts for the respiratory inhibition. Hypoxic rats supplemented with glucose alone and with glucose and oxygen showed a reversal of the GABA(A) receptors, andGABA(Aalpha1) and GABA(Agamma5) gene expression to control. Glucose acts as an immediate energy source thereby reducing the ATP-depletion-induced increase in GABA and oxygenation, which helps in encountering anoxia. Resuscitation with oxygen alone was less effective in reversing the receptor alterations. Thus, the results of this study suggest that reduction in the GABA(A) receptors functional regulation during hypoxia plays an important role in mediating the brain damage. Glucose alone and glucose and oxygen supplementation to hypoxic neonatal rats helps in protecting the brain from severe hypoxic damage.
Collapse
Affiliation(s)
- T. R. Anju
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022 Kerala India
| | - T. Peeyush Kumar
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022 Kerala India
| | - C. S. Paulose
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022 Kerala India
| |
Collapse
|
8
|
Szubski C, Burtscher M, Löscher WN. Neuromuscular Fatigue during Sustained Contractions Performed in Short-Term Hypoxia. Med Sci Sports Exerc 2007; 39:948-54. [PMID: 17545884 DOI: 10.1249/mss.0b013e3180479918] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Hypoxia is known to change neuronal activity in vitro and to impair performance in vivo. The present study was designed to study neuromuscular fatigue in acute hypoxia, and we hypothesized that hypoxia results in additional fatigue during sustained contractions, presumably because of increased central fatigue. METHODS Twelve healthy subjects participated in a normoxic (NX) and hypoxic (HX) experiment performed on separate days. Hypoxia was induced by breathing an HX air mixture containing 12% oxygen. Before, during, and after a 90-s sustained voluntary maximal contraction (MVC) of the first dorsal interosseus muscle, we measured force, voluntary activation (VA), and parameters of motor cortical excitability (motor-evoked potentials (MEP) and silent periods (SP)). Measures of peripheral nerve and muscle function, compound motor action potential (M-wave), and muscle twitch forces were also taken. RESULTS During the MVC, force declined similarly during both HX and NX. VA decreased throughout the contraction in HX, but, surprisingly, this decrease in VA in HX did not exceed that observed in NX. Also, motor cortical excitability changed to a similar degree in HX and NX; that is, MEP amplitude and SP duration increased. M-wave amplitude decreased significantly during the sustained MVC in NX and HX. The only difference observed between NX and HX was the quicker recovery of the muscle twitch in HX, which was even potentiated after 5 min of recovery. CONCLUSION The present results show that peripheral and central neuromuscular adaptations during a sustained fatiguing contraction are similar in NX and HX. The quicker recovery and potentiation of twitch forces in HX suggest alterations in myosin phosphorylation, which may enhance contractile force.
Collapse
Affiliation(s)
- Christoph Szubski
- 1Department of Sports Science, University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
9
|
Szubski C, Burtscher M, Löscher WN. The effects of short-term hypoxia on motor cortex excitability and neuromuscular activation. J Appl Physiol (1985) 2006; 101:1673-7. [PMID: 16902059 DOI: 10.1152/japplphysiol.00617.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of acute hypoxia on motor cortex excitability, force production, and voluntary activation were studied using single- and double-pulse transcranial magnetic stimulation techniques in 14 healthy male subjects. Electrical supramaximal stimulations of the right ulnar nerve were performed, and transcranial magnetic stimulations were delivered to the first dorsal interosseus motor cortex area during short-term hypoxic (HX) and normoxic (NX) condition. M waves, voluntary activation, F waves, resting motor threshold (rMT), recruitment curves (100-140% of rMT), and short-interval intracortical inhibition and intracortical facilitation were measured. Moreover, motor-evoked potentials (MEPs) and cortical silent periods were determined during brief isometric maximum right index finger abductions. Hypoxia was induced by breathing a fraction of inspired oxygen of 12% via a face mask. M waves, voluntary activation, and F waves did not differ between NX and HX. The rMT was significantly lower in HX (55.79 +/- 9.40%) than in NX (57.50 +/- 10.48%) (P < 0.01), whereas MEP recruitment curve, short-interval intracortical inhibition, intracortical facilitation, maximum right index finger abduction, and MEPs were unaffected by HX. In contrast, the cortical silent periods in HX (158.21 +/- 33.96 ms) was significantly shortened compared with NX (169.42 +/- 39.69 ms) (P < 0.05). These data demonstrate that acute hypoxia results in increased cortical excitability and suggest that acute hypoxia alters motor cortical ion-channel function and GABAergic transmission.
Collapse
Affiliation(s)
- Christoph Szubski
- Department of Sports Science, University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
10
|
David JC, Boelens WC, Grongnet JF. Up-regulation of heat shock protein HSP 20 in the hippocampus as an early response to hypoxia of the newborn. J Neurochem 2006; 99:570-81. [PMID: 16879711 DOI: 10.1111/j.1471-4159.2006.04071.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hypoxia is an important challenge for newborn mammals. Stress generated at the brain level under low oxygenation conditions results in up-regulation of heat shock proteins (HSPs) and other stress proteins. The aim of the present work was to determine the effect of hypoxia in the newborn on some newly described small molecular weight HSPs (HSP 20 and B8) in the hippocampus, cortex and cerebellum of newborn piglets. These effects will be compared with those of other closely related proteins such as alphaB crystallin, HSP 27, heme oxygenase (HO)-1, HO-2, cyclooxygenase (COX)-1 and COX-2. The piglets were submitted to hypoxia (5% O(2); 95% N(2)) over either 1 or 4 h, with recovery periods ranging from 0 to 68 h. Western blot analysis showed that HSP 20 was rapidly induced only in the hippocampus, long before hypoxia-inducible transcription factor HIF-1alpha, while HSP 27 was rapidly induced in the cortex and cerebellum. Vascular epithelial growth factor was increased simultaneously in the three regions. Moreover, an increase in the expression of, respectively, HO-1 and COX-2 was observed later, but at the same time, in the three regions tested. It appears that HSP 20 can be an early marker of hypoxia in the hippocampus. The other small HSPs or stress proteins display different temporal patterns of up-regulation (HSP 27 and HO-1, COX-2) or do not show changes in their expressions (alphaB crystallin, HSP B8, HO-2 and COX-1).
Collapse
|
11
|
Chang KC, Yang JJ, Liao JF, Wang CH, Chiu TH, Hsu FC. Chronic hypobaric hypoxia induces tolerance to acute hypoxia and up-regulation in alpha-2 adrenoceptor in rat locus coeruleus. Brain Res 2006; 1106:82-90. [PMID: 16842765 DOI: 10.1016/j.brainres.2006.05.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 05/24/2006] [Accepted: 05/26/2006] [Indexed: 11/24/2022]
Abstract
Hypoxia preconditioning has been shown to produce tolerance against brain injuries. The hypothesis of this study is that chronic hypobaric hypoxia may also induce acute hypoxia tolerance. We used intracellular recording in slices from rats exposed to chronic hypobaric hypoxia (exposed) and control to investigate the effects of chronic hypobaric hypoxia on the physiology of locus coeruleus (LC) including neuronal excitability. The results showed 35.7% reduced spontaneous firing rate and no change for membrane potential and input resistance in exposed neurons. In response to the alpha-2 adrenoceptor (A2R) agonist clonidine, both the hyperpolarizing potency and efficacy were increased indicated by a decreased EC(50) (control: 30.9 nM and exposed: 19.7 nM) and a 50.5% increase in maximum hyperpolarized potential, respectively. A2R binding sites were also increased 21% in exposed neurons measured by radioligand [(3)H]rauwolscine binding assay. When treated with acute N(2)-hypoxia, the cell survival time (ST) was longer in exposed neurons, suggesting that a tolerance was induced. In addition, the ST for both groups of LC neurons was decreased by the A2R antagonist yohimbine and increased by the glutamate receptor antagonist kynurenic acid but not by MK-801; the decreased percentage of ST by yohimbine was larger and the increased percentage by kynurenic acid was smaller in exposed neurons. The results suggested that up-regulation of A2R and altered non-NMDA glutamate receptor function induced by chronic hypobaric hypoxia may underlie, in part, the decreased LC neuronal excitability and acute hypoxia tolerance.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Acute Disease
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Binding Sites/drug effects
- Binding Sites/physiology
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Chronic Disease
- Excitatory Amino Acid Antagonists/pharmacology
- Hypoxia, Brain/metabolism
- Hypoxia, Brain/physiopathology
- Ischemic Preconditioning/methods
- Locus Coeruleus/drug effects
- Locus Coeruleus/metabolism
- Male
- Norepinephrine/metabolism
- Organ Culture Techniques
- Oxygen Consumption/physiology
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/metabolism
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Kuo-Chi Chang
- Department of Physiology, National Yang Ming University, Taipei 112, Taiwan, ROC
| | - Jia-Jang Yang
- Department of Cosmetic Science, Chung-Hwa Medical College, Tainan 717, Taiwan, ROC
| | - Jyh-Fei Liao
- Department and Institute of Pharmacology, National Yang Ming University, Taipei 112, Taiwan, ROC
| | - Che-Hsiang Wang
- Department of Physical Therapy and Rehabilitation Science, Drexel University, College of Nursing and Health Professions, Philadelphia, PA 19102, USA
| | - Tsai-Hsien Chiu
- Department of Physiology, National Yang Ming University, Taipei 112, Taiwan, ROC
| | - Fu-Chun Hsu
- Division of Neurology, The Children's Hospital of Philadelphia, Abramson Pediatric Research Center, Rm. 409D 3615 Civic Center Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Louapre P, Grongnet JF, Tanguay RM, David JC. Effects of hypoxia on stress proteins in the piglet heart at birth. Cell Stress Chaperones 2005; 10:17-23. [PMID: 15832944 PMCID: PMC1074566 DOI: 10.1379/csc-74r.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 10/06/2004] [Accepted: 11/16/2004] [Indexed: 11/24/2022] Open
Abstract
Hypoxia at birth represents a very stressful event that can result in severe lifelong consequences in different tissues, including those of the heart. Heat shock and other associated stress proteins are involved in cellular protection, but their roles are not clearly defined at the time of birth. Newborn piglets were subjected to 5% oxygen and 95% nitrogen for either 1 or 4 hours. They were allowed to recover over periods of 1 to 68 hours. The relative levels of alphaB-crystallin, HspB8, Hsp20, Hsp27, Hsp60, and Hsp70 as well as nitric oxide synthases (NOS) (endothelial NOS, inducible NOS, neuronal NOS) were examined by Western blot analysis. Surprisingly, alphaB-crystallin expression was drastically increased in animals submitted to hypoxia. The hypoxia-associated factor HIFlalpha was also strongly and rapidly overexpressed. Heme oxygenase 1 was also increased. To a lesser extent, neuronal NOS was also increased in the left ventricle of animals submitted to hypoxia. This work clearly shows that the Hsp chaperone alphaB-crystallin is strongly overexpressed in the left ventricle of animals submitted to hypoxia. This observation dissociates the response to low oxygenation of alphaB-crystallin and other stress-associated proteins including Hsp27, and it indicates that heme oxygenase is not alone among HSPs in its oxygen-related gene expression.
Collapse
Affiliation(s)
- Pamela Louapre
- AGROCAMPUS de Rennes, INRA UMRVP, 65, rue de Saint-Brieuc-CS 84215-35042 Rennes Cedex, France
| | | | | | | |
Collapse
|
13
|
Virués-Ortega J, Buela-Casal G, Garrido E, Alcázar B. Neuropsychological Functioning Associated with High-Altitude Exposure. Neuropsychol Rev 2004; 14:197-224. [PMID: 15796116 DOI: 10.1007/s11065-004-8159-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article focuses on neuropsychological functioning at moderate, high, and extreme altitude. This article summarizes the available literature on respiratory, circulatory, and brain determinants on adaptation to hypoxia that are hypothesized to be responsible for neuropsychological impairment due to altitude. Effects on sleep are also described. At central level, periventricular focal damages (leuko-araiosis) and cortical atrophy have been observed. Frontal lobe and middle temporal lobe alterations are also presumed. A review is provided regarding the effects on psychomotor performance, perception, learning, memory, language, cognitive flexibility, and metamemory. Increase of reaction time and latency of P300 are observed. Reduced thresholds of tact, smell, pain, and taste, together with somesthetic illusions and visual hallucinations have been reported. Impairment in codification and short-term memory are especially noticeable above 6,000 m. Alterations in accuracy and motor speed are identified at lower altitudes. Deficits in verbal fluency, language production, cognitive fluency, and metamemory are also detected. The moderating effects of personality variables over the above-mentioned processes are discussed. Finally, methodological flaws found in the literature are detailed and some applied proposals are suggested.
Collapse
Affiliation(s)
- Javier Virués-Ortega
- Departamento de Personalidad, Evaluación y Tratamiento Psicológicos, Universidad de Granada, Facultad de Psicología, Campus Universitario de Cartuja, 18071 Granada, Spain.
| | | | | | | |
Collapse
|
14
|
Abstract
Newborn piglets were submitted to normobaric hypoxia (5% O2, 95% N2) for either 1 or 4 h. The effects of hypoxia on the neonatal brain were characterized through a time-course analysis of levels of various proteins such as heat shock proteins (HSP27, 70, and 90), hypoxia inducible factor-1alpha (HIF-1alpha), neuronal nitric oxide synthase (nNOS), hemeoxygenase-2 (HO-2), and caspase-3. The expression of these proteins was determined at different stages of recovery up to 72 h in cerebellum, cortex, and hippocampus by Western blot analysis in hypoxic maintained animals that were made hypoxic at either 20 or 37 degrees C. In all regions of the brain, HIF-1alpha and HSP27 expression were strongly increased until 22 h of recovery. No significant changes were observed for HSP70, HSP90, and HO-2. A small elevation of expression of nNOS was observed at early stages in the cerebellum and the cortex with no change in the hippocampus. Expression of caspase 3 was strongly increased in the cortex 24 and 48 h after hypoxia but unchanged in the hippocampus. These results are presented in terms of the porcine model of nonischemic hypoxia and its delayed neuronal effects on the cerebral outcome. Because of their recently established biochemical and functional interactions, the expression of the main HSPs, HIF-1alpha, nNOS, and caspase-3 after hypoxia are delineated.
Collapse
Affiliation(s)
- Magali Chiral
- Sciences et Productions Animales, Agrocampus, 65, rue de Saint-Brieuc, CS 84215, 35042 Rennes Cedex, France
| | | | | | | |
Collapse
|
15
|
Tolstykh G, Belugin S, Mifflin S. Responses to GABA(A) receptor activation are altered in NTS neurons isolated from chronic hypoxic rats. Brain Res 2004; 1006:107-13. [PMID: 15047029 DOI: 10.1016/j.brainres.2004.01.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2004] [Indexed: 11/25/2022]
Abstract
The inhibitory amino acid GABA is released within the nucleus of the solitary tract (NTS) during hypoxia and modulates the respiratory response to hypoxia. To determine if responses of NTS neurons to activation of GABA(A) receptors are altered following exposure to chronic hypoxia, GABA(A) receptor-evoked whole cell currents were measured in enzymatically dispersed NTS neurons from normoxic and chronic hypoxic rats. Chronic hypoxic rats were exposed to 10% O(2) for 9-12 days. Membrane capacitance was the same in neurons from normoxic (6.9+/-0.5 pF, n=16) and hypoxic (6.3+/-0.5 pF, n=15) rats. The EC(50) for peak GABA-evoked current density was significantly greater in neurons from hypoxic (21.7+/-2.2 microM) compared to normoxic rats (12.2+/-0.9 microM) (p<0.001). Peak and 5-s adapted GABA currents evoked by 1, 3 and 10 microM were greater in neurons from normoxic compared to hypoxic rats (p<0.05) whereas peak and 5-s adapted responses to 30 and 100 microM GABA were not different comparing normoxic to hypoxic rats. Desensitization of GABA(A)-evoked currents was observed at concentrations greater than 3 microM and, measured as the ratio of the current 5 s after the onset of 100 microM GABA application to the peak GABA current, was the same in neurons from normoxic (0.37+/-0.03) and hypoxic rats (0.33+/-0.04). Reduced sensitivity to GABA(A) receptor-evoked inhibition in chronic hypoxia could influence chemoreceptor afferent integration by NTS neurons.
Collapse
Affiliation(s)
- Gleb Tolstykh
- The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
16
|
Gao TM, Fung ML. Decreased large conductance Ca(2+)-activated K(+) channel activity in dissociated CA1 hippocampal neurons in rats exposed to perinatal and postnatal hypoxia. Neurosci Lett 2002; 332:163-6. [PMID: 12399006 DOI: 10.1016/s0304-3940(02)00946-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypoxia is a major cause of neonatal encephalopathy and seizures, and an increased neuronal excitability may be an underlying mechanism. To determine the role of Ca(2+)-activated K(+) channels in hyperexcitability, we measured large unitary conductance (>200 pS, BK(Ca)) currents in symmetrical 140/140 mM K(+) using inside-out configuration in CA1 pyramidal cells acutely dissociated from the hippocampus of rats exposed to normoxia or hypoxia (at 10% inspired O(2)) for 4 weeks after birth. About 53% of the patches contained BK(Ca) channels in the normoxic group, but only 20% in the hypoxic one. There were no differences in channel conductance or reversal potential between the groups. Yet, the open probability of BK(Ca) channels was much less in hypoxic neurons than that in the control, because of a decrease in channel open time and a prolongation of the closed time. These were partially recovered by an oxidizing but not by reducing agent, suggesting an involvement of redox mechanism. Results indicate that the Ca(2+)-activated K(+) channel activities in hippocampal CA1 neurons are modulated by hypoxia during maturation. The reduction in BK(Ca) activity may contribute to hypoxia-induced neuronal hyperexcitability.
Collapse
Affiliation(s)
- Tian-Ming Gao
- Department of Physiology, The First Military Medical University, Guangzhou, China
| | | |
Collapse
|