1
|
Abu Almaaty AH, Mosaad RM, Hassan MK, Ali EHA, Mahmoud GA, Ahmed H, Anber N, Alkahtani S, Abdel-Daim MM, Aleya L, Hammad S. Urtica dioica extracts abolish scopolamine-induced neuropathies in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18134-18145. [PMID: 33405105 DOI: 10.1007/s11356-020-12025-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is characterized by alterations in monoamines, oxidative stress, and metabolic dysfunctions. We aim to assess the therapeutic impacts of roots or leaf extract from Urtica dioica (UD; stinging nettle) against scopolamine (SCOP)-induced memory dysfunction, amnesia, and oxidative stress in rats. Spatial memory was assessed by Y maze test. Tissue analyses of norepinephrine (NE), dopamine (DA), serotonin (5-HT), malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH, GSSG), AMP, ADP, and ATP were assessed by HPLC. mRNA levels of Tau and Hsp70 were estimated by PCR. UD extracts particularly nettle root (NR) significantly normalized the SCOP-induced memory deficits even more potent than sermion (SR) and donepezil (DON). Similarly, NR had potent therapeutic impacts on the levels of cortical and hippocampal monoamines e.g. DA, NE, and 5-HT. SCOP induced a dramatic oxidative stress as measured by MDA, NO, and GSSG levels; however, UD extracts showed significant anti-oxidative stress impacts. Additionally, UD extracts restored ATP levels and reduced the levels of AMP and ADP compared to SCOP-treated rats. Furthermore, cortical Tau and hippocampal Hsp70 were modulated by UD extracts particularly NR compared to the SCOP group. In conclusion, UD extracts particularly roots have potential therapeutic impacts against SCOP-induced neuroinflammatory and/or Alzheimer-like phenotype in rats.
Collapse
Affiliation(s)
- Ali H Abu Almaaty
- Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Rehab M Mosaad
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Mohamed K Hassan
- Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Elham H A Ali
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ghada A Mahmoud
- Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Hassan Ahmed
- Department of Physiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Nahla Anber
- Emergency Hospital, Mansoura University, Mansoura, Egypt
| | - Saad Alkahtani
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Lotfi Aleya
- Laboratoire Chrono-Environment, CNRS 6249, Université de Bourgogne Franche-Comté, Besançon, France
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
2
|
Frinchi M, Scaduto P, Cappello F, Belluardo N, Mudò G. Heat shock protein (Hsp) regulation by muscarinic acetylcholine receptor (mAChR) activation in the rat hippocampus. J Cell Physiol 2018; 233:6107-6116. [DOI: 10.1002/jcp.26454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neuroscienc es, div. of Human PhysiologyUniversity of PalermoPalermoItaly
| | - Pietro Scaduto
- Department of Experimental Biomedicine and Clinical Neuroscienc es, div. of Human PhysiologyUniversity of PalermoPalermoItaly
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neurosciences, div. of AnatomyUniversity of PalermoPalermoItaly
- Euro‐Mediterranean Institute of Science and TechnologyPalermoItaly
- Department of BiologyTemple UniversityPhiladelphiaPennsylvania
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neuroscienc es, div. of Human PhysiologyUniversity of PalermoPalermoItaly
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neuroscienc es, div. of Human PhysiologyUniversity of PalermoPalermoItaly
| |
Collapse
|
3
|
Gao M, Kondo F, Murakami T, Xu JW, Ma N, Zhu X, Mori K, Ishida T. 1-Aminocyclopropanecarboxylic acid, an antagonist of N-methyl-D-aspartate receptors, causes hypotensive and antioxidant effects with upregulation of heme oxygenase-1 in stroke-prone spontaneously hypertensive rats. Hypertens Res 2007; 30:249-57. [PMID: 17510507 DOI: 10.1291/hypres.30.249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
1-Aminocyclopropanecarboxylic acid (ACPC) has been shown to protect neurons against glutamate-induced neurotoxicity by reducing N-methyl-D-aspartate (NMDA) receptor activation. Recent studies have demonstrated that several antagonists of NMDA receptors have important cardiovascular effects. In this study, we examined whether the cardiovascular effects of ACPC involve the role of heme oxygenase-1 (HO-1) and its antioxidant effect in stroke-prone spontaneously hypertensive rats (SHRSP). Male SHRSP were divided into two groups: a control group and an ACPC group administered ACPC at 50 mg/kg per day for 4 weeks by peritoneal injection. Systolic blood pressure (SBP) and mortality of stroke were significantly lower in the ACPC group than in the control group. Urinary Na(+) and Cl(-) excretion and plasma superoxide dismutase (SOD) activity were increased in the ACPC group. Western analysis detected proteins that were immunoreactive to anti-nitrotyrosine antibody and showed lower levels of expression in the cerebral cortex compared to that in the control group. Immunohistochemical analysis revealed that 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in the hippocampus and cerebral cortex was reduced in the ACPC group. Quantitative reverse-transcription-polymerase chain reaction (RT-PCR) showed that administration of ACPC also significantly decreased the expression of neuronal nitric oxide synthase (nNOS) mRNA in the hippocampus and endotherial nitric oxide synthase (eNOS) mRNA in the cerebral cortex, and drastically increased HO-1 mRNA in the cerebral cortex. Enhanced HO-1 staining on sections from the hippocampus and cerebral cortex was observed in the ACPC group. These data suggest that the normalization by ACPC of blood pressure elevation and mortality of stroke involves induction of the expression of HO-1, which exerts antioxidant and vascular relaxation effects, in SHRSP.
Collapse
Affiliation(s)
- Ming Gao
- Faculty of Pharmaceutical Science, School of Human Environmental Science, Mukogawa Women's University, Nishinomiya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
|
5
|
Abstract
Antagonists of the NMDA glutamate receptor, including phencyclidine (PCP), ketamine, and CGS-19755, produce cognitive and behavioral changes in humans. In rodents these agents produce a myriad of histopathological and neurochemical changes. Several lines of evidence suggest that a large number of these drug-induced effects are dose-dependent manifestations of the same general disinhibition process in which NMDA antagonists abolish GABAergic inhibition, resulting in the simultaneous excessive release of acetylcholine and glutamate. Progressive increases in the severity of NMDA receptor hypofunction (NRHypo) within the brain produce an increasing range of effects on brain function. Underexcitation of NMDA receptors, induced by even relatively low doses of NMDA antagonist drugs, can produce specific forms of memory dysfunction without clinically evident psychosis. More severe NRHypo can produce a clinical syndrome very similar to a psychotic schizophrenic exacerbation. Finally, sustained and severe NRHypo in the adult brain is associated with a form of neurotoxicity with well-characterized neuropathological features. In this paper several of these effects of NMDA antagonists and a likely mechanism responsible for producing them will be reviewed. In addition the possible role of NRHypo in the pathophysiology of idiopathic psychotic disorders will be considered.
Collapse
Affiliation(s)
- Nuri B Farber
- Department of Psychiatry, Washington University, St. Louis, Missouri 63110-1093, USA.
| |
Collapse
|
6
|
Hayase T, Yamamoto Y, Yamamoto K, Muso E, Shiota K. Stressor-like effects of cocaine on heat shock protein and stress-activated protein kinase expression in the rat hippocampus: interaction with ethanol and anti-toxicity drugs. Leg Med (Tokyo) 2003; 5 Suppl 1:S87-90. [PMID: 12935560 DOI: 10.1016/s1344-6223(02)00093-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study examined the stressor-like effects of repeated (4 days) administration of cocaine hydrochloride(COC) (35 mg/kg, i.p.) on the expression of heat shock proteins (HSPs) (HSP27, HSP60, HSP70, HSC70) and stress-activated protein kinases (SAPKs) (SAPKalpha, SAPKbeta, SAPKgamma) in the rat hippocampus. The interactions with intraperitoneal ethanol and drugs known as antidotes against COC toxicity were also examined. Similar to the effects of a 10 min immobilization stress (IM) over 4 days, an early increase (5 h time point) in nerve cells immunoreactive for HSPs (HSP27, HSP60, HSP70, HSC70) and SAPKs (SAPKbeta, SAPKgamma) was observed in the COC group. At the 24 h time point, a recovery was observed only for SAPKs, which have been suggested to control the HSP levels. Before the 48 h time point, alterations in the number of HSP+cells as compared to the control group (increase for HSP27 and HSP70+cells, and attenuation for HSP60 and HSC70+cells) could still be observed. Stress-related, attenuated swimming behaviors in the forced swimming test were also the most severe at the 5 h time point. Ethanol (1.5 g/kg) cotreatment on each administration day, even at non-toxic and/or euphoric doses, enhanced these stressor-like alterations. On the other hand, the protective effects of daily coadministered drugs related to benzodiazepine (5 mg/kg Ro 15-4513), dopamine (0.5 mg/kg SCH 23390), muscarinic (0.25 mg/kg pirenzepine) and serotonin (5 mg/kg ketanserin) receptors could be observed on the number of HSP-immunoreactive (24 h) and SAPK-immunoreactive cells (5 h). Against the stressor-altered swimming behaviors, Ro 15-4513 and SCH 23390 were more effective as compared to pirenzepine and ketanserin.
Collapse
Affiliation(s)
- Tamaki Hayase
- Department of Legal Medicine, Faculty of Medicine, Kyoto University Graduate School of Medicine, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | |
Collapse
|
7
|
Cochran SM, Fujimura M, Morris BJ, Pratt JA. Acute and delayed effects of phencyclidine upon mRNA levels of markers of glutamatergic and GABAergic neurotransmitter function in the rat brain. Synapse 2002; 46:206-14. [PMID: 12325047 DOI: 10.1002/syn.10126] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glutamatergic and GABAergic neurotransmitter systems exist in equilibrium to maintain "normal" brain function. Evidence is accumulating that disturbance of this equilibrium may be one of the key factors giving rise to schizophrenia. While there is widespread evidence that the psychotomimetic phencyclidine (PCP) induces schizophrenia-related symptoms, it is not clear how this dramatic effect is mediated. This study was designed to investigate acute and delayed effects of PCP on the mRNA expression of a range of markers of neuronal function associated with the glutamatergic and GABAergic systems within the rat brain. The mRNA levels of CaMKIIalpha, an enzyme which is located within the postsynaptic density and phosphorylates AMPA receptors, remained unaltered both 2 and 24 h posttreatment. Homer 1a, an immediate early gene associated with metabotropic glutamate receptors within the postsynaptic density, displayed region-specific differential changes within the prefrontal, primary auditory, and retrosplenial cortices 2 and 24 h posttreatment. Parvalbumin, a calcium-binding protein located within a subpopulation of GABAergic interneurones, displayed altered mRNA levels within the reticular nucleus of the thalamus at 2 and 24 h posttreatment and the substantia nigra pars reticulata 24 h posttreatment only. These phencyclidine-induced changes in mRNA expression were not accompanied by any changes in hsp-70 mRNA levels, a marker of NMDA antagonist-induced reversible neurotoxicity. These results indicate that the glutamatergic (group I metabotropic glutamate receptors) and GABAergic (parvalbumin-containing interneurones) neurotransmitter systems are differentially modulated in a region- and time-dependent manner by exposure to phencyclidine.
Collapse
Affiliation(s)
- Susan M Cochran
- Yoshitomi Research Institute of Neuroscience in Glasgow (YRING), University of Glasgow, G12 8QQ, UK
| | | | | | | |
Collapse
|
8
|
Sharp FR, Tomitaka M, Bernaudin M, Tomitaka S. Psychosis: pathological activation of limbic thalamocortical circuits by psychomimetics and schizophrenia? Trends Neurosci 2001; 24:330-4. [PMID: 11356504 DOI: 10.1016/s0166-2236(00)01817-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Non-competitive NMDA receptor antagonists, such as phencyclidine, ketamine and MK801, produce psychosis in humans. These drugs also produce injury to cingulate-retrosplenial cortex in adult rodents that can be prevented by GABA-receptor agonists and antipsychotics such as haloperidol and clozapine. MK801 injections into anterior thalamus reproduce limbic cortex injury, and GABA-receptor agonist injections into anterior thalamus prevent injury produced by systemic MK801. Inhibition of NMDA receptors on GABAergic thalamic reticular nucleus neurons might activate thalamocortical 'injury' circuits in animals. Pathological activation of thalamocortical circuits might also mediate the psychosis produced by NMDA-receptor antagonists in humans, and might contribute to psychosis in schizophrenia.
Collapse
Affiliation(s)
- F R Sharp
- Department of Neurology and Neurosciences Program, University of Cincinnati Vontz Center, 3125 Eden Avenue Rm 2327, Cincinnati, OH 45267-0536, USA.
| | | | | | | |
Collapse
|
9
|
Abstract
Memantine, a non-competitive NMDA antagonist, has been approved for use in the treatment of dementia in Germany for over ten years. The rationale for use is excitotoxicity as a pathomechanism of neurodegenerative disorders. Memantine acts as a neuroprotective agent against this pathomechanism, which is also implicated in vascular dementia. HIV-1 proteins Tat and gp120 have been implicated in the pathogenesis of dementia associated with HIV infection and the neurotoxicity caused by HIV-1 proteins can be blocked completely by memantine. Memantine has been investigated extensively in animal studies and following this, its efficacy and safety has been established and confirmed by clinical experience in humans. It exhibits none of the undesirable effects associated with competitive NMDA antagonists such as dizocilpine. The efficacy of memantine in a variety of dementias has been shown in clinical trials. Memantine is considered to be a promising neuroprotective drug for the treatment of dementias, particularly Alzheimer's disease for which there is no neuroprotective therapy available currently. It can be combined with acetylcholinesterase inhibitors which are the mainstay of current symptomatic treatment of Alzheimer's disease. Memantine has a therapeutic potential in numerous CNS disorders besides dementias which include stroke, CNS trauma, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), epilepsy, drug dependence and chronic pain. If memantine is approved by the FDA for some of these indications by the year 2005, it can become a blockbuster drug by crossing the US$1 billion mark in annual sales.
Collapse
Affiliation(s)
- K K Jain
- Jain PharmaBiotech, Bläsiring 7, CH-4057 Basel, Switzerland.
| |
Collapse
|
10
|
Tomitaka M, Tomitaka S, Rajdev S, Sharp FR. Fluoxetine prevents PCP- and MK801-induced HSP70 expression in injured limbic cortical neurons of rats. Biol Psychiatry 2000; 47:836-41. [PMID: 10812043 DOI: 10.1016/s0006-3223(99)00323-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND N-Methyl-D-aspartate (NMDA) receptor antagonists, including phencyclidine (PCP) and dizocilpine (MK801), cause schizophrenialike psychosis in humans, and produce vacuolated neurons in the cingulate and retrosplenial cortices of the rat brain. Since psychotically depressed patients and schizophrenic depressed patients may require treatment with selective serotonin reuptake inhibitors (SSRIs), it is of interest to examine the relationship between SSRIs and NMDA antagonist neurotoxicity. METHODS The neurotoxicity of PCP and MK801 was assessed using heat shock protein (HSP70) immunocytochemistry and HSP70 Western blots because HSP70 is expressed in the injured, vacuolated neurons. Female rats were given fluoxetine (0, 5, 10, and 20 mg/kg IP) followed 1 hour later by MK801 (1 mg/kg IP) or PCP (50 mg/kg IP). RESULTS Pretreatment with fluoxetine (20 mg/kg IP) 1 hour before MK801 prevented the induction of HSP70 by MK801 in the cingulate and retrosplenial cortices. Pretreatment with fluoxetine (10 or 20 mg/kg IP) 1 hour before PCP also prevented the HSP70 induction by PCP. CONCLUSIONS Fluoxetine prevents the neurotoxicity of NMDA receptor antagonists in rat brain. This suggests the possibility that SSRIs could modulate psychosis, and may provide a model for examining the link between the hallucinogenic properties of PCP and lysergic acid diethylamide.
Collapse
Affiliation(s)
- M Tomitaka
- Department of Neurology, University of Cincinnati, Ohio 45267-0525, USA
| | | | | | | |
Collapse
|
11
|
Tomitaka S, Tomitaka M, Tolliver BK, Sharp FR. Bilateral blockade of NMDA receptors in anterior thalamus by dizocilpine (MK-801) injures pyramidal neurons in rat retrosplenial cortex. Eur J Neurosci 2000; 12:1420-30. [PMID: 10762370 DOI: 10.1046/j.1460-9568.2000.00018.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists, ketamine, phencyclidine (PCP) and dizocilpine (MK-801), produce psychosis in people. In rodents they produce cytoplasmic vacuoles in injured retrosplenial cortical neurons that express HSP70 heat shock protein. This study examined possible circuits and receptors that mediate this neuronal injury. Bilateral, but not unilateral, injection of dizocilpine (5, 10, 15, 20 microg/microL per side) into the anterior thalamus induced HSP70 protein in pyramidal neurons in deep layer III of rat retrosplenial cortex 24 h later. In contrast, bilateral dizocilpine injections (5, 10, 15, 20 microg/microL per side) into the retrosplenial cortex or into the diagonal band of Broca did not induce HSP70. Bilateral injections of muscimol (0.1, 1, 10 microg/microL per side), a GABAA (gamma-aminobutyric acid) agonist, into the anterior thalamus blocked HSP70 induction in the retrosplenial cortex produced by systemic dizocilpine (1 mg/kg). Bilateral thalamic injections of baclofen (0.1, 1, 10 microg/microL per side), a GABAB agonist, were ineffective. Anterograde tracer studies confirmed that neurons in the anterior thalamus project to superficial layer III of the retrosplenial cortex where the dendrites of HSP70-immunostained neurons in deep layer III reside. Bilateral blockade of NMDA receptors on GABA neurons in the reticular nuclei of the thalamus is proposed to decrease GABA neuronal firing, decrease GABA release and decrease activation of GABAA receptors. This activates thalamic projection neurons that damage retrosplenial cortical neurons presumably via unblocked cortical glutamate alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and kainate receptors. The increases of blood flow that occur in the thalamus and retrosplenial cortex of people that have psychosis produced by NMDA antagonists could be related to thalamic excitation of the retrosplenial cortex produced by these drugs.
Collapse
Affiliation(s)
- S Tomitaka
- Departments of Neurology, University of California at San Francisco, San Francisco, CA 94121, USA
| | | | | | | |
Collapse
|
12
|
Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist--a review of preclinical data. Neuropharmacology 1999; 38:735-67. [PMID: 10465680 DOI: 10.1016/s0028-3908(99)00019-2] [Citation(s) in RCA: 614] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists have therapeutic potential in numerous CNS disorders ranging from acute neurodegeneration (e.g. stroke and trauma), chronic neurodegeneration (e.g. Parkinson's disease, Alzheimer's disease, Huntington's disease, ALS) to symptomatic treatment (e.g. epilepsy, Parkinson's disease, drug dependence, depression, anxiety and chronic pain). However, many NMDA receptor antagonists also produce highly undesirable side effects at doses within their putative therapeutic range. This has unfortunately led to the conclusion that NMDA receptor antagonism is not a valid therapeutic approach. However, memantine is clearly an uncompetitive NMDA receptor antagonist at therapeutic concentrations achieved in the treatment of dementia and is essentially devoid of such side effects at doses within the therapeutic range. This has been attributed to memantine's moderate potency and associated rapid, strongly voltage-dependent blocking kinetics. The aim of this review is to summarise preclinical data on memantine supporting its mechanism of action and promising profile in animal models of chronic neurodegenerative diseases. The ultimate purpose is to provide evidence that it is indeed possible to develop clinically well tolerated NMDA receptor antagonists, a fact reflected in the recent interest of several pharmaceutical companies in developing compounds with similar properties to memantine.
Collapse
Affiliation(s)
- C G Parsons
- Department of Pharmacological Research, Merz and Co., Frankfurt am Main, Germany.
| | | | | |
Collapse
|