1
|
Chen T, Zhang WW, Chu YX, Wang YQ. Acupuncture for Pain Management: Molecular Mechanisms of Action. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:793-811. [DOI: 10.1142/s0192415x20500408] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acupuncture reduces pain by activating specific areas called acupoints on the patient’s body. When these acupoints are fully activated, sensations of soreness, numbness, fullness, or heaviness called De qi or Te qi are felt by clinicians and patients. There are two kinds of acupuncture, manual acupuncture and electroacupuncture (EA). Compared with non-acupoints, acupoints are easily activated on the basis of their special composition of blood vessels, mast cells, and nerve fibers that mediate the acupuncture signals. In the spinal cord, EA can inhibit glial cell activation by down-regulating the chemokine CX3CL1 and increasing the anti-inflammatory cytokine interleukin-10. This inhibits P38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways, which are associated with microglial activation of the C-Jun N-terminal kinase signaling pathway and subsequent astrocyte activation. The inactivation of spinal microglia and astrocytes mediates the immediate and long-term analgesic effects of EA, respectively. A variety of pain-related substances released by glial cells such as the proinflammatory cytokines tumor necrosis factor [Formula: see text], interleukin-1[Formula: see text], interleukin-6, and prostaglandins such as prostaglandins E2 can also be reduced. The descending pain modulation system in the brain, including the anterior cingulated cortex, the periaqueductal gray, and the rostral ventromedial medulla, plays an important role in EA analgesia. Multiple transmitters and modulators, including endogenous opioids, cholecystokinin octapeptide, 5-hydroxytryptamine, glutamate, noradrenalin, dopamine, [Formula: see text]-aminobutyric acid, acetylcholine, and orexin A, are involved in acupuncture analgesia. Finally, the “Acupuncture [Formula: see text]” strategy is introduced to help clinicians achieve better analgesic effects, and a newly reported acupuncture method called acupoint catgut embedding, which injects sutures made of absorbable materials at acupoints to achieve long-term effects, is discussed.
Collapse
Affiliation(s)
- Teng Chen
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University Shanghai, P. R. China
| | - Wen Wen Zhang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University Shanghai, P. R. China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University Shanghai, P. R. China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University Shanghai, P. R. China
| |
Collapse
|
2
|
Abstract
The neuropeptide Oxytocin (ΟΤ) is involved as a neurohormone, a neurotransmitter, or a neuromodulator in an extensive range of central and peripheral effects, complex emotional and social human behaviors, memory and learning processes. It is implicated in homeostatic, neuroadaptive processes associated with stress responses and substance use via interactions with the hypothalamic-pituitary-adrenal (HPA) axis and the dopamine mesolimbic reward stress system. This chapter reviews the preclinical and clinical literature on the complicated relationships between endogenous and exogenous opioids and ΟΤ systems and attempts to highlight key findings to date on the effectiveness of intranasal OT administration to treat opioid use disorders. OΤ seems to attenuate, even inhibit, the development of opioid use disorders in preclinical models but is still under clinical research as a promising pharmacological agent in the treatment of opioid use related behaviors. Evidence suggests a role for OT as an adjunctive or stand-alone treatment of behavioral, cognitive and emotional deficits associated with substance use, which may be responsible for seeking behavior and relapse. The mechanisms by which oxytocin acts to reverse the neural substrates of these deficits, partially due to substance induced alterations of the endogenous OT system, and thus modify the behavioral response to substance use are discussed. Other clinically relevant issues are also discussed.
Collapse
|
3
|
Xiao Z, Li YY, Sun MJ. Activation of P2X7 receptors in the midbrain periaqueductal gray of rats facilitates morphine tolerance. Pharmacol Biochem Behav 2015; 135:145-53. [PMID: 26054441 DOI: 10.1016/j.pbb.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/27/2015] [Accepted: 06/04/2015] [Indexed: 02/01/2023]
Abstract
Opiates such as morphine exhibit analgesic effect in various pain models, but repeated and chronic morphine administration may develop resistance to antinociception. The purinergic signaling system is involved in the mechanisms of pain modulation and morphine tolerance. This study aimed to determine whether the P2X7 receptor in the ventrolateral midbrain periaqueductal gray (vlPAG) is involved in morphine tolerance. Development of tolerance to the antinociceptive effect of morphine was induced in normal adult male Sprague-Dawley (SD) rats through subcutaneous injection of morphine (10mg/kg). The analgesic effect of morphine (5mg/kg, i.p.) was assessed by measuring mechanical withdrawal thresholds (MWTs) in rats with an electronic von Frey anesthesiometer. The expression levels and distribution of the P2X7 receptor in the vlPAG was evaluated through Western blot analysis and immunohistochemistry. The acute effects of intra-vlPAG injection of the selective P2X7 receptor agonist Bz-ATP, the selective P2X7 receptor antagonist A-740003, or antisense oligodeoxynucleotide (AS ODN) targeting the P2X7 receptor on morphine-treated rats were also observed. Results demonstrated that repeated morphine administration decreased the mechanical pain thresholds. By contrast, the expression of the P2X7 receptor protein was up-regulated in the vlPAG in morphine tolerant rats. The percent changes in MWT were markedly but only transiently attenuated by intra-vlPAG injection of Bz-ATP (9nmol/0.3μL) but elevated by A-740003 at doses of 10 and 100nmol/0.3μL. AS ODN (15nmol/0.3μL) against the P2X7 receptor reduced the development of chronic morphine tolerance in rats. These results suggest that the development of antinociceptive tolerance to morphine is partially mediated by activating the vlPAG P2X7 receptors. The present data also suggest that the P2X7 receptors may be a therapeutic target for improving the analgesic effect of morphine in treatments of pain when morphine tolerance occurs.
Collapse
Affiliation(s)
- Zhi Xiao
- Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, Guizhou 563003, PR China.
| | - You-Yan Li
- Graduate School, Zunyi Medical University, Zunyi, Guizhou 563003, PR China
| | - Meng-Jie Sun
- Graduate School, Zunyi Medical University, Zunyi, Guizhou 563003, PR China
| |
Collapse
|
5
|
Blackburn-Munro G, Brown CH, Neumann ID, Landgraf R, Russell JA. Verapamil prevents withdrawal excitation of oxytocin neurones in morphine-dependent rats. Neuropharmacology 2000; 39:1596-607. [PMID: 10854904 DOI: 10.1016/s0028-3908(99)00232-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated whether the full expression of morphine withdrawal excitation by supraoptic nucleus (SON) oxytocin neurones is a property of the neurones themselves or a partial function of their afferent inputs, by interrupting synaptic input activity via central administration of the L-type Ca(2+) channel blocker verapamil. In morphine-dependent rats, withdrawal-induced release of oxytocin from the posterior pituitary was suppressed by prior administration of intracerebroventricular (i.c.v.) verapamil (160 microg), as was release of oxytocin within the SON measured by microdialysis. During morphine withdrawal the increased electrical activity of SON neurones was also reduced both by i.c.v. verapamil and microdialysis application of verapamil or nifedipine into the SON. Oxytocin secretion evoked by electrical stimulation of the pituitary stalk was unaffected by i.c.v. verapamil suggesting a central site of action. To determine whether the inhibitory actions of verapamil were specific to morphine withdrawal, we also investigated the effects of verapamil on other oxytocin-secreting stimuli. I.C.V. verapamil given to morphine-naïve rats abolished pituitary oxytocin release in response to activation of brainstem or rostral excitatory inputs by cholecystokinin (20 microg kg(-1), i.v.) and 1.5 M saline (4 ml kg(-1), i.p.) respectively, whilst in lactating rats, i.c.v. verapamil reduced suckling-induced release of oxytocin within the SON. These results suggest that verapamil has a central site of action on stimulated oxytocin release (including an action within the SON) and that both pre and post-synaptic L-type Ca(2+) channels are required for the full expression of morphine withdrawal in SON oxytocin neurones.
Collapse
Affiliation(s)
- G Blackburn-Munro
- Department of Biomedical Sciences, University Medical School, EH8 9XD, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
6
|
Abstract
Magnocellular neurosecretory cells of the hypothalamic supraoptic and paraventricular nuclei secrete the hormones, oxytocin and vasopressin, into the systemic circulation from the posterior pituitary gland. Oxytocin is important for parturition and is essential for lactation. Vasopressin regulates body fluid homeostasis. The secretion of these hormones is altered in response to peripheral stimuli that are conveyed via projections from other parts of the brain. Endogenous opioid peptide systems interact with the magnocellular neurosecretory system at several levels to restrain the basal secretion of these hormones as well as their secretory responses to various physiological stimuli. The inhibition of basal secretion can occur at the level of the neurosecretory terminals where endogenous opioids inhibit the release of oxytocin, and at the cell bodies of magnocellular cells to modulate the activity pattern of vasopressin cells. The responses of the magnocellular neurosecretory system to physiological stimuli are also regulated by these mechanisms but in addition probably also by pre-synaptic inhibition of afferent inputs to magnocellular cells as well as direct effects on the cell bodies of afferent input cells to modulate their activity. Here, we review the mechanisms and functional consequences of opioid interactions with oxytocin and vasopressin cells.
Collapse
Affiliation(s)
- C H Brown
- Department of Biomedical Sciences, University of Edinburgh, UK.
| | | | | |
Collapse
|
7
|
Abstract
This paper is the twenty-first installment of our annual review of research concerning the opiate system. It summarizes papers published during 1998 that studied the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress; tolerance and dependence; eating and drinking; alcohol; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurologic disorders; electrical-related activity; general activity and locomotion; sex, pregnancy, and development; immunologic responses; and other behaviors.
Collapse
Affiliation(s)
- A L Vaccarino
- Department of Psychology, University of New Orleans, LA 70148, USA.
| | | | | | | |
Collapse
|