1
|
Koba S, Narai E. Diencephalic and brainstem circuit mechanisms underlying autonomic cardiovascular adjustments to exercise: Recent insights from rodent studies. Auton Neurosci 2025; 258:103248. [PMID: 39955934 DOI: 10.1016/j.autneu.2025.103248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/06/2025] [Accepted: 02/04/2025] [Indexed: 02/18/2025]
Abstract
Autonomic cardiovascular adjustments to exercise, essential for meeting the increased metabolic demands of exercising skeletal muscle, are regulated by motor volition-driven neural activation, i.e., central command. The contribution of brain mechanisms to these adjustments has been suggested for more than a century, yet the functional brain architecture remains incompletely understood. This article discusses recent findings primarily obtained from rodent studies utilizing advanced experimental tools, particularly those enabled by genetic engineering, such as optogenetics and viral neural tracing, to elucidate the diencephalic and brainstem circuits responsible for autonomic cardiovascular adjustments during voluntary exercise. Particular attention is paid to the central neural pathways and specific neuronal populations involved in transmitting central command signals, that drive not only somatic muscular activity but also autonomic cardiovascular responses. The uncovered diencephalic and brainstem circuits are relevant to understanding the brain substrate of central command, which is essential for maintaining cellular homeostasis and enhancing physical performance. Future studies and potential subjects for further investigation to deepen our understanding of the brain mechanisms underlying autonomic cardiovascular regulation are also discussed.
Collapse
Affiliation(s)
- Satoshi Koba
- Division of Veterinary Physiology, Joint Department of Veterinary Medicine, Tottori University Faculty of Agriculture, Japan.
| | - Emi Narai
- Division of Veterinary Physiology, Joint Department of Veterinary Medicine, Tottori University Faculty of Agriculture, Japan
| |
Collapse
|
2
|
Grujic N, Polania R, Burdakov D. Neurobehavioral meaning of pupil size. Neuron 2024; 112:3381-3395. [PMID: 38925124 DOI: 10.1016/j.neuron.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Pupil size is a widely used metric of brain state. It is one of the few signals originating from the brain that can be readily monitored with low-cost devices in basic science, clinical, and home settings. It is, therefore, important to investigate and generate well-defined theories related to specific interpretations of this metric. What exactly does it tell us about the brain? Pupils constrict in response to light and dilate during darkness, but the brain also controls pupil size irrespective of luminosity. Pupil size fluctuations resulting from ongoing "brain states" are used as a metric of arousal, but what is pupil-linked arousal and how should it be interpreted in neural, cognitive, and computational terms? Here, we discuss some recent findings related to these issues. We identify open questions and propose how to answer them through a combination of well-defined tasks, neurocomputational models, and neurophysiological probing of the interconnected loops of causes and consequences of pupil size.
Collapse
Affiliation(s)
- Nikola Grujic
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| | - Rafael Polania
- Decision Neuroscience Lab, ETH Zürich, Department of Health Sciences and Technology, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| |
Collapse
|
3
|
Zhou X, Zhou J, Zhang F, Shu Q, Wu Y, Chang HM, Zhang B, Cai RL, Yu Q. Key targets of signal transduction neural mechanisms in acupuncture treatment of cardiovascular diseases: Hypothalamus and autonomic nervous system. Heliyon 2024; 10:e38197. [PMID: 39386880 PMCID: PMC11462008 DOI: 10.1016/j.heliyon.2024.e38197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Background Cardiovascular disease is the leading cause of death worldwide. As a traditional Chinese treatment method, acupuncture has a unique role in restoring the balance of the human body environment. Due to its safety, non-invasive nature, and effectiveness in treating cardiovascular diseases, acupuncture has been widely welcomed and recognized among the world. A large amount of evidence shows that acupuncture can effectively regulate cardiovascular diseases through the autonomic nervous system. The hypothalamus, as an important component of regulating the autonomic nervous system, plays an important role in regulating the internal environment, maintaining homeostasis, and preserving physiological balance. However, there is currently a scarcity of review articles on acupuncture signal transduction and acupuncture improving cardiovascular disease through the hypothalamus and autonomic nervous system. Objective This review delves into the transduction of acupuncture signals and their neural regulatory mechanisms on the hypothalamus and autonomic nervous system, elucidating their impact on cardiovascular disease. Methods Review the basic and clinical studies on acupuncture signal transduction mechanisms and the role of the hypothalamus and ANS in acupuncture treatment of cardiovascular diseases published in four English databases (PubMed, Web of Science, MEDLINE, and Springer Cochrane Library) and two Chinese databases (Wanfang Database and China National Knowledge Infrastructure Database) over the past 20 years. Results Through sensory stimulation, acupuncture effectively transmits signals from the periphery to the hypothalamus, where they are integrated, and finally regulate the autonomic nervous system to treat cardiovascular diseases. Discussion Acupuncture exhibits significant potential as a therapeutic modality for cardiovascular diseases by orchestrating autonomic nervous system regulation via the hypothalamus, thereby gifting novel perspectives and methodologies for the prevention and treatment of cardiovascular ailments.
Collapse
Affiliation(s)
- Xiang Zhou
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, 230038, Anhui Province, China
- Anhui Wannan Rehabilitation Hospital (The Fifth People's Hospital of Wuhu), Wuhu, 241000, Anhui Province, China
| | - Jie Zhou
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, 230038, Anhui Province, China
| | - Fan Zhang
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, 230038, Anhui Province, China
| | - Qi Shu
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, 230038, Anhui Province, China
| | - Yan Wu
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, 230038, Anhui Province, China
| | - Hui-min Chang
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, 230038, Anhui Province, China
| | - Bin Zhang
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, 230038, Anhui Province, China
| | - Rong-lin Cai
- Institute of Acupuncture and Meridian Research, Anhui Academy of Chinese Medicine, Hefei, 230038, Anhui Province, China
- Anhui Province Key Laboratory of Meridian Viscera Correlationship, Hefei, 230038, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Hefei, 230038, China
| | - Qing Yu
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, 230038, Anhui Province, China
- Institute of Acupuncture and Meridian Research, Anhui Academy of Chinese Medicine, Hefei, 230038, Anhui Province, China
- Anhui Province Key Laboratory of Meridian Viscera Correlationship, Hefei, 230038, China
| |
Collapse
|
4
|
Lusk S, Moushey AM, Iwakoshi N, Wilson CG, Li A, Ray R. Exaggerated postnatal surge of orexin neurons and the effects of elimination of excess orexin on blood pressure and exaggerated chemoreflex in spontaneously hypertensive rats. Front Physiol 2024; 15:1341649. [PMID: 39469444 PMCID: PMC11513569 DOI: 10.3389/fphys.2024.1341649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/26/2024] [Indexed: 10/30/2024] Open
Abstract
An overactive orexin (OX) system is associated with neurogenic hypertension and an exaggerated chemoreflex in spontaneously hypertensive rats (SHRs). However, the chronology and mechanism of this association is unclear. We hypothesized that increased postnatal neurogenesis of OX neurons in SHRs precedes and contributes to the aberrant increase in mean arterial blood pressure (MAP) and the exaggerated response to hypercapnia during postnatal development. Using immunohistochemical methods and bromodeoxyuridine, we mapped the timeline of orexin neuron neurogenesis and maturation during early postnatal development. We then used whole-body plethysmography with EEG and EMG to map the development of mean arterial pressure (MAP) and state regulation. Finally, we used OX-targeted saporin toxin to determine the effects of eliminating excess OX neurons on the elevated MAP and exaggerated chemoreflex in adult SHRs. We found that both SHRs and Wistar-Kyoto (WKY) rats experienced postnatal increases in OX neurons. However, SHRs experienced a greater increase than WKY rats before P15, which led to significantly more OX neurons in SHRs than age-matched WKY controls by P15-16 (3,720 ± 780 vs. 2,406 ± 363, p = 0.005). We found that neurogenesis, as evidenced by BrdU staining in OX-positive neurons, was the primary contributor to the excess OX neurons in SHRs during early postnatal development. While SHRs develop more OX neurons by P15-16, SHRs and normotensive WKY control rats have similar MAP during postnatal development until P25 in wakefulness (81.6 ± 6.6 vs. 67.5 ± 6.8 mmHg, p = 0.006) and sleep (79.3 ± 6.1 vs. 66.6 ± 6.5, p = 0.009), about 10 days after the surge of OX neurons. By selectively eliminating excess (∼30%) OX neurons in SHRs, we saw a significantly lowered MAP and hypercapnic ventilatory chemoreflex compared to non-lesioned SHRs at P40. Additionally, we found unique signatures in state indicative of the attention defecit phenotype commonly associated with this model. We suggest that the postnatal increase of OX neurons, primarily attributed to exaggerated postnatal OX neurogenesis, may be necessary for the development of higher MAP and exaggerated chemoreflex in SHRs, and modulation of the overactive OX system may have a potential therapeutic effect during the pre-hypertensive period.
Collapse
Affiliation(s)
- Savannah Lusk
- Dartmouth College, Department of Molecular and Systems Biology, Hanover, NH, United States
| | - Alexander M. Moushey
- Dartmouth College, Department of Molecular and Systems Biology, Hanover, NH, United States
| | - Nicholas Iwakoshi
- Loma Linda University, Center for Perinatal Biology, Loma Linda, CA, United States
| | | | - Aihua Li
- Dartmouth College, Department of Molecular and Systems Biology, Hanover, NH, United States
| | - Russell Ray
- Baylor College of Medicine, Department of Neuroscience, Houston, TX, United States
| |
Collapse
|
5
|
Stark R. The olfactory bulb: A neuroendocrine spotlight on feeding and metabolism. J Neuroendocrinol 2024; 36:e13382. [PMID: 38468186 DOI: 10.1111/jne.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/13/2024]
Abstract
Olfaction is the most ancient sense and is needed for food-seeking, danger protection, mating and survival. It is often the first sensory modality to perceive changes in the external environment, before sight, taste or sound. Odour molecules activate olfactory sensory neurons that reside on the olfactory epithelium in the nasal cavity, which transmits this odour-specific information to the olfactory bulb (OB), where it is relayed to higher brain regions involved in olfactory perception and behaviour. Besides odour processing, recent studies suggest that the OB extends its function into the regulation of food intake and energy balance. Furthermore, numerous hormone receptors associated with appetite and metabolism are expressed within the OB, suggesting a neuroendocrine role outside the hypothalamus. Olfactory cues are important to promote food preparatory behaviours and consumption, such as enhancing appetite and salivation. In addition, altered metabolism or energy state (fasting, satiety and overnutrition) can change olfactory processing and perception. Similarly, various animal models and human pathologies indicate a strong link between olfactory impairment and metabolic dysfunction. Therefore, understanding the nature of this reciprocal relationship is critical to understand how olfactory or metabolic disorders arise. This present review elaborates on the connection between olfaction, feeding behaviour and metabolism and will shed light on the neuroendocrine role of the OB as an interface between the external and internal environments. Elucidating the specific mechanisms by which olfactory signals are integrated and translated into metabolic responses holds promise for the development of targeted therapeutic strategies and interventions aimed at modulating appetite and promoting metabolic health.
Collapse
Affiliation(s)
- Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Jiao H, Wang Y, Fu K, Xiao X, Jia MQ, Sun J, Wang J, Zhu G, Lyu D, Lu Q, Peng Y, Lv J, Su L, Gao Y. An orexin-receptor-2-mediated heart-brain axis in cardiac pain. iScience 2024; 27:109067. [PMID: 38361621 PMCID: PMC10867640 DOI: 10.1016/j.isci.2024.109067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/24/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Orexin is a neuropeptide released from hypothalamus regulating feeding, sleeping, arousal, and cardiovascular activity. Past research has demonstrated that orexin receptor 2 (OX2R) agonist infusion in the brain results in sympathoexcitatory responses. Here, we found that epicardial administration of OX2R agonism leads to opposite responses. We proved that OX2R is expressed mainly in DRG neurons and transported to sensory nerve endings innervating the heart. In a capsaicin-induced cardiac sympathetic afferent reflex (CSAR) model, we recorded the calcium influx in DRG neurons, measured heart rate variability, and examined the PVN c-Fos activity to prove that epicardial OX2R agonism administration could attenuate capsaicin-induced CSAR. We further showed that OX2R agonism could partially rescue acute myocardial infarction by reducing sympathetic overactivation. Our data indicate that epicardial application of OX2R agonist exerts a cardioprotective effect by attenuating CSAR. This OX2R-mediated heart-brain axis may provide therapeutic targets for acute cardiovascular diseases.
Collapse
Affiliation(s)
- Han Jiao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Yongjin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| | - Kang Fu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| | - Xiaoao Xiao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| | - Mo-Qiu Jia
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| | - Jia Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| | - Jingxiao Wang
- Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| | - Guoqing Zhu
- Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| | - Daying Lyu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| | - Qiulun Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| | - Yu Peng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| |
Collapse
|
7
|
Ouaidat S, Amaral IM, Monteiro DG, Harati H, Hofer A, El Rawas R. Orexins/Hypocretins: Gatekeepers of Social Interaction and Motivation. Int J Mol Sci 2024; 25:2609. [PMID: 38473854 PMCID: PMC10931973 DOI: 10.3390/ijms25052609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Ever since the discovery of the brain's orexin/hypocretin system, most research was directed toward unveiling its contribution to the normal functioning of individuals. The investigation of reward-seeking behaviors then gained a lot of attention once the distribution of orexinergic neurons was revealed. Here, we discuss findings on the involvement of orexins in social interaction, a natural reward type. While some studies have succeeded in defining the relationship between orexin and social interaction, the controversy regarding its nature (direct or inverse relation) raises questions about what aspects have been overlooked until now. Upon examining the literature, we identified a research gap concerning conditions influencing the impact of orexins on social behavior expression. In this review, we introduce a number of factors (e.g., stress, orexin's source) that must be considered while studying the role of orexins in social interaction. Furthermore, we refer to published research to investigate the stage at which orexins affect social interaction and we highlight the nucleus accumbens (NAc) shell's role in social interaction and other rewarding behaviors. Finally, the underlying orexin molecular pathway influencing social motivation in particular illnesses is proposed. We conclude that orexin's impact on social interaction is multifactorial and depends on specific conditions available at a time.
Collapse
Affiliation(s)
- Sara Ouaidat
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut P.O. Box 1533, Lebanon
| | - Inês M. Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Diogo G. Monteiro
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut P.O. Box 1533, Lebanon
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Narai E, Watanabe T, Koba S. Hypothalamic Orexinergic Neurons Projecting to the Mesencephalic Locomotor Region Are Activated by Voluntary Wheel Running Exercise in Rats. Yonago Acta Med 2024; 67:52-60. [PMID: 38371276 PMCID: PMC10867236 DOI: 10.33160/yam.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 02/20/2024]
Abstract
Background Cardiovascular changes during exercise are regulated by a motor volitional signal, called central command, which originates in the rostral portions of the brain and simultaneously regulates somatomotor and autonomic nervous systems. Whereas we recently elucidated mesencephalic locomotor region (MLR) neurons projecting to the rostral ventrolateral medulla as a crucial component of the central circuit responsible for transmitting central command signals, upstream circuits that regulate the MLR neurons remain unknown. Orexinergic neurons, which primarily originate from the perifornical area (PeFA) of the hypothalamus and reportedly play roles in eliciting locomotion and elevating sympathetic activity, send axonal projection to the MLR. The knowledge led us to investigate whether central command signals are relayed through orexinergic neurons projecting to the MLR. Methods We performed anterograde transsynaptic tagging with AAV1 encoding Cre to confirm the presence of MLR neurons postsynaptic to the PeFA in rats. We also conducted retrograde neural tracing with retrograde AAV, combined with immunohistochemical staining, to examine the excitability of MLR-projecting orexinergic neurons in rats that were allowed to freely run on the wheel for 90 min. Results A significant number of MLR neurons were labeled with Cre, indicating that PeFA neurons make synaptic contacts with MLR neurons. Moreover, immunoreactivities of Fos, a marker of neuronal excitation, were found in many MLR-projecting orexinergic neurons by voluntary wheel running exercise, compared to non-exercising control rats, especially in the intermediate-posterior, rather than anterior, and medial, rather than lateral, portions within the orexinergic neuron-distributing domain. Conclusion The findings suggest that specifically located orexinergic neurons transmit central command signals onto the MLR for running exercise. Elucidating the role of these MLR-projecting orexinergic neurons in somatomotor control and autonomic cardiovascular control deserves further study to unveil central circuit mechanisms responsible for central command function.
Collapse
Affiliation(s)
- Emi Narai
- Division of Integrative Physiology, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Tatsuo Watanabe
- Division of Integrative Physiology, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Satoshi Koba
- Division of Integrative Physiology, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
- Division of Veterinary Physiology, Tottori University Faculty of Agriculture, Tottori 680-8550, Japan
| |
Collapse
|
9
|
CO 2 exposure enhances Fos expression in hypothalamic neurons in rats during the light and dark phases of the diurnal cycle. Brain Struct Funct 2022; 227:2667-2679. [PMID: 36109371 DOI: 10.1007/s00429-022-02562-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/29/2022] [Indexed: 12/30/2022]
Abstract
Orexinergic (OX) neurons in the lateral hypothalamus (LH), perifornical area (PFA) and dorsomedial hypothalamus (DMH) play a role in the hypercapnic ventilatory response, presumably through direct inputs to central pattern generator sites and/or through interactions with other chemosensitive regions. OX neurons can produce and release orexins, excitatory neuropeptides involved in many functions, including physiological responses to changes in CO2/pH. Thus, in the present study, we tested the hypothesis that different nuclei (LH, PFA and DMH) where the orexinergic neurons are located, show distinct activation by CO2 during the light-dark cycle phases. For this purpose, we evaluated the Fos and OXA expression by immunohistochemistry to identify neurons that co-localize Fos + OXA in the LH, LPeF, MPeF and DMH in the light-inactive and dark-active phase in Wistar rats subjected to 3 h of normocapnia or hypercapnia (7% CO2). Quantitative analyses of immunoreactive neurons show that hypercapnia caused an increase in the number of neurons expressing Fos in the LH, LPeF, MPeF and DMH in the light and dark phases. In addition, the number of Fos + OXA neurons increased in the LPeF and DMH independently of the phases of the diurnal cycle; whereas in the MPeF, this increase was observed exclusively in the light phase. Thus, we suggest that OX neurons are selectively activated by hypercapnia throughout the diurnal cycle, reinforcing the differential role of nuclei in the hypothalamus during central chemosensitivity.
Collapse
|
10
|
Duriez P, Mastellari T, Viltart O, Gorwood P. Clinical meaning of body temperatures in anorexia nervosa and bulimia nervosa. EUROPEAN EATING DISORDERS REVIEW 2022; 30:124-134. [PMID: 35037343 DOI: 10.1002/erv.2886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Bradycardia is one of the common cardiac abnormalities in patients with eating disorders. It ensues from hypometabolism, which results from reduced caloric intake and consequential weight loss. Hypothermia is another consequence of hypometabolism. While at-rest metabolism and body mass index (BMI) are typically used to assess hypometabolism and estimate potential bradycardia, we hypothesised that body temperature, which is easy to measure, could also capture the presence of this threatening cardiovascular condition. METHOD We monitored heart rate continuously for 72 h, measured resting energy expenditure (REE) and assessed body temperature in 12 body parts for 58 patients with anorexia nervosa (AN) and 29 patients with bulimia nervosa (BN). RESULTS Palm temperature reflects bradycardia in both AN and BN, explaining 18% of its variance (p < 0.001), capturing this aspect even more efficiently than BMI. We also observe different correlations between palm temperature, abdominal temperature, BMI, REE and levels of physical activity. CONCLUSION Palm temperature could be used as a warning of bradycardia, a serious cardiovascular condition which can be difficult to detect in short visits with outpatients. Further studies are needed to determine how useful bradycardia and palm temperature could be to assess severity and prognosis of the disorder.
Collapse
Affiliation(s)
- Philibert Duriez
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Clinique des Maladies Mentales et de l'Encéphale, Paris, France
| | - Tomas Mastellari
- Faculté de Médecine Henri Warembourg, Université de Lille, Lille, France
| | - Odile Viltart
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.,Faculté des Sciences et Technologies, Université de Lille, SCALab UMR, Villeneuve d'Ascq, France
| | - Philip Gorwood
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Clinique des Maladies Mentales et de l'Encéphale, Paris, France
| |
Collapse
|
11
|
Olsen N, Furlong TM, Carrive P. Behavioural and cardiovascular effects of orexin-A infused into the central amygdala under basal and fear conditions in rats. Behav Brain Res 2021; 415:113515. [PMID: 34371088 DOI: 10.1016/j.bbr.2021.113515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The neuropeptide orexin-A (OX-A) has diverse functions, including maintaining arousal, autonomic control, motor activity and stress responses. These functions are regulated at different terminal regions where OX-A is released. The current study examined the physiological and behavioural effects of OX-A microinjections into the central amygdala (CeA) under basal and stressed conditions in rats. When OX-A was microinjected into the CeA and the animals returned to the home-cage, heart rate and mean arterial pressure were increased compared to vehicle-injected controls. General activity of the animal was also increased, indicating that OX-A activity in CeA contributes to increased arousal. This outcome is similar to the effects of central intracerebroventricular infusions of OX-A, as well as the cardiovascular effects previously demonstrated at many of OX's efferent hypothalamic and brainstem structures. In a second study, animals were fear-conditioned to a context by delivery of electric footshocks and then animals were re-exposed to the conditioned context at test. When OX-A was microinjected at test, freezing behaviour was reduced and there was a corresponding increase in the animal's activity but no impact on the pressor and cardiac responses (i.e, blood pressure and heart rate were unchanged). This reduction in freezing suggests that OX-A activates amygdala neurons that inhibit freezing, which is similar to the actions of other neuropeptides in the CeA that modulate the appropriate defence response to fearful stimuli. Overall, these data indicate that the CeA is an important site of OX-A modulation of cardiovascular and motor activity, as well as conditioned freezing responses.
Collapse
Affiliation(s)
- Nick Olsen
- School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Teri M Furlong
- School of Medical Sciences, The University of New South Wales, Sydney, Australia; Neuroscience Research Australia, Randwick, Australia.
| | - Pascal Carrive
- School of Medical Sciences, The University of New South Wales, Sydney, Australia
| |
Collapse
|
12
|
Fan Y, Jiang E, Gao H, Bigalke J, Chen B, Yu C, Chen Q, Shan Z. Activation of Orexin System Stimulates CaMKII Expression. Front Physiol 2021; 12:698185. [PMID: 34276418 PMCID: PMC8282234 DOI: 10.3389/fphys.2021.698185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/08/2021] [Indexed: 11/18/2022] Open
Abstract
Hyperactivity of the orexin system within the paraventricular nucleus (PVN) has been shown to contribute to increased sympathetic nerve activity (SNA) and blood pressure (BP) in rodent animals. However, the underlying molecular mechanisms remain unclear. Here, we test the hypothesis that orexin system activation stimulates calcium/calmodulin-dependent kinase II (CaMKII) expression and activation, and stimulation of CaMKII expressing PVN neurons increases SNA and BP. Real-time PCR and/or western blot were carried out to test the effect of orexin-A administration on CaMKII expression in the PVN of normal Sprague Dawley (SD) rats and orexin receptor 1 (OX1R) expressing PC12 cells. Immunostaining was performed to assess OX1R cellular localization in the PVN of SD rats as well as orexin-A treatment on CaMKII activation in cultured hypothalamic neurons. In vivo sympathetic nerve recordings were employed to test the impact of optogenetic stimulation of CaMKII-expressing PVN neurons on the renal SNA (RSNA) and BP. The results showed that intracerebroventricular injection of orexin-A into the SD rat increases mRNA expression of CaMKII subunits in the PVN. In addition, Orexin-A treatment increases CaMKII expression and its phosphorylation in OX1R-expressing PC12 cells. Furthermore, Orexin-A treatment increases CaMKII activation in cultured hypothalamic neurons from neonatal SD rats. Finally, optogenetic excitation of PVN CaMKII-expressing neurons results in robust increases in RSNA and BP in SD rats. Our results suggest that increased orexin system activity activates CaMKII expression in cardiovascular relevant regions, and this may be relevant to the downstream cardiovascular effects of CaMKII.
Collapse
Affiliation(s)
- Yuanyuan Fan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,School of Life Sciences, Henan University, Kaifeng, China
| | - Enshe Jiang
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Institute of Nursing and Health, Henan University, Kaifeng, China
| | - Huanjia Gao
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jeremy Bigalke
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Bojun Chen
- Department of Emergency, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunxiu Yu
- Health Research Institute, Michigan Technological University, Houghton, MI, United States.,Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Qinghui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Health Research Institute, Michigan Technological University, Houghton, MI, United States
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Health Research Institute, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
13
|
Gao HR, Wu ZJ, Wu SB, Gao HY, Wang J, Zhang JL, Zhou MQ. Roles of central orexinergic system on cardiovascular function and acupuncture on intervention of cardiovascular risk: Orexinergic system mediate the role of acupuncture? Neuropeptides 2021; 87:102132. [PMID: 33636511 DOI: 10.1016/j.npep.2021.102132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/09/2021] [Accepted: 02/11/2021] [Indexed: 12/26/2022]
Abstract
Central orexinergic system contributes to the regulation of cardiovascular function. Orexinergic neurons receiving projections of nerve fibers from multiple structures of brain which involved in control and regulation of cardiovascular function locate in hypothalamus, and their axon terminals widely project to various central structures where orexins receptors are expressed. Here, we summarize the present knowledge that describes the influence of central orexinergic system on cardiovascular activity, the relevance of dysfunction in central orexinergic system with hypertension and psychological stress induced cardiovascular reactivity which are serious risk factors for cardiovascular disease and cardiovascular death. We propose that central orexinergic system may be potentially important targets for the prevention of cardiovascular disease and cardiovascular death, and different orexinergic system involved neuronal circuits may be involved in distinct cardiovascular functions. Acupuncture having bidirectional regulatory ability and a much lower incidence of side effects can prevent disease. We review the improvement of acupuncture on hypertension and psychological stress induced cardiovascular reactivity. We think that acupuncture intervenes hypertension and psychological stress induced cardiovascular reactivity to prevent cardiovascular disease and cardiovascular death. We also summarize relation between acupuncture and central orexinergic system. We propose a hypothesis that acupuncture improve hypertension and psychological stress induced cardiovascular reactivity through regulating central orexinergic system. The knowledge is beneficial for the development of potential therapeutic targets and methods to prevent cardiovascular disease and cardiovascular death.
Collapse
Affiliation(s)
- He-Ren Gao
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Zi-Jian Wu
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Sheng-Bing Wu
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - He-Yuan Gao
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Jie Wang
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jin-Li Zhang
- Anhui Vocational College of Grain Engineering, Hefei, China
| | - Mei-Qi Zhou
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China; Bozhou Institute of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine, Bozhou, China.
| |
Collapse
|
14
|
Orexinergic descending inhibitory pathway mediates linalool odor-induced analgesia in mice. Sci Rep 2021; 11:9224. [PMID: 33927235 PMCID: PMC8085205 DOI: 10.1038/s41598-021-88359-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/12/2021] [Indexed: 11/08/2022] Open
Abstract
Linalool odor exposure induces an analgesic effect in mice. This effect disappeared in the anosmic model mice, indicating that olfactory input evoked by linalool odor triggered this effect. Furthermore, hypothalamic orexinergic neurons play a pivotal role in this effect. However, the neuronal circuit mechanisms underlying this effect have not been fully addressed. In this study, we focused on the descending orexinergic projection to the spinal cord and examined whether this pathway contributes to the effect. We assessed the effect of intrathecal administration of orexin receptor antagonists on linalool odor-induced analgesia in the tail capsaicin test. We found that the selective orexin type 1 receptor antagonist, but not the selective orexin type 2 receptor antagonist, prevented the odor-induced analgesic effect. Furthermore, immunohistochemical analyses of c-Fos expression induced by the capsaicin test revealed that neuronal activity of spinal cord neurons was suppressed by linalool odor exposure, which was prevented by intrathecal administration of the orexin 1 receptor antagonist. These results indicate that linalool odor exposure drives the orexinergic descending pathway and suppresses nociceptive information flow at the spinal level.
Collapse
|
15
|
Regulatory Role of Orexin in the Antistress Effect of "Press Tack Needle" Acupuncture Treatment. Healthcare (Basel) 2021; 9:healthcare9050503. [PMID: 33925438 PMCID: PMC8146164 DOI: 10.3390/healthcare9050503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of this research was to investigate the antistress effect of press tack needle (PTN) acupuncture treatment using rats with social isolation stress (SIS). Rats were divided into non-stress group (Grouped+sham), stress group (SIS+sham), and PTN-treated SIS group (SIS+PTN). Rats in the SIS+PTN and SIS+sham groups were housed alone for eight days. For the SIS+PTN group, a PTN (length, 0.3 or 1.2 mm) was fixed on the GV20 acupoint on day 7. We measured stress behavior based on the time the rats showed aggressive behavior and the levels of plasma corticosterone and orexin A on day 8. In addition, the orexin-1 receptor or orexin-2 receptor antagonist was administered to rats that were exposed to SIS. The duration of aggressive behavior was significantly prolonged in the SIS+sham group, and the prolonged duration was inhibited in the SIS+PTN (1.2 mm) group. The levels of plasma corticosterone and orexin A were significantly increased in the SIS+sham group; however, these increases were inhibited in the SIS+PTN group. The aggressive behavior was significantly reduced after the orexin-2 receptor antagonist was administered. These findings suggest that PTN treatment at GV20 may have an antistress effect, and the control of orexin is a mechanism underlying this phenomenon.
Collapse
|
16
|
Altinbas B, Guvenc-Bayram G, Yalcin M. The mediation of central cyclooxygenase and lipoxygenase pathways in orexin-induced cardiovascular effects. Brain Res 2021; 1754:147239. [PMID: 33412148 DOI: 10.1016/j.brainres.2020.147239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022]
Abstract
Previously it was reported that central orexin (OX) and arachidonic acid (AA) signaling pathways played an active role in the control of the cardiovascular system. It was also reported that they have exhibited their cardiovascular control role by using similar central or peripheral mechanisms. However, there has been no study demonstrating the interaction between OX and AA signaling pathways in terms of cardiovascular control. The current study was designed to investigate the possible mediation of the central cyclooxygenase (COX) and lipoxygenase (LOX) pathways in OX-induced cardiovascular effects in the rats. Intracerebroventricular injection of OX increased blood pressure and heart rate in a dose-dependent manner in normotensive male Sprague Dawley rats. Moreover, the microdialysis study revealed that intracerebroventricular injected OX caused a time-dependent increase in the extracellular total prostaglandin concentrations in the posterior hypothalamus. Interestingly, central pretreatment with a non-selective COX inhibitor, ibuprofen, or a non-selective LOX inhibitor, nordihydroguaiaretic acid, partially reversed pressor and tachycardic cardiovascular responses evoked by central administration of OX. In summary, our findings show that the central treatment with OX causes pressor and tachycardic cardiovascular responses along with an increase in posterior hypothalamic extracellular total prostaglandin concentrations. Furthermore, our results also demonstrate that central COX and LOX pathways mediate, at least in part, centrally administered OX-evoked pressor and tachycardic responses, as well.
Collapse
Affiliation(s)
- Burcin Altinbas
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, 16059, Turkey; Department of Physiology, Faculty of Medicine, SANKO University, Gaziantep, 27090, Turkey.
| | - Gokcen Guvenc-Bayram
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, 16059, Turkey
| | - Murat Yalcin
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, 16059, Turkey
| |
Collapse
|
17
|
Bigalke JA, Gao H, Chen QH, Shan Z. Activation of Orexin 1 Receptors in the Paraventricular Nucleus Contributes to the Development of Deoxycorticosterone Acetate-Salt Hypertension Through Regulation of Vasopressin. Front Physiol 2021; 12:641331. [PMID: 33633591 PMCID: PMC7902066 DOI: 10.3389/fphys.2021.641331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Salt-sensitivity is a major factor in the development of hypertension. The brain orexin system has been observed to play a role in numerous hypertensive animal models. However, orexin’s role in the pathology of salt-sensitive hypertension (SSH) remains to be adequately explored. We assessed the impact of orexin hyperactivity in the pathogenesis of the deoxycorticosterone acetate (DOCA) – salt rat model, specifically through modulation of Arginine Vasopressin (AVP). Adult male rats were separated into three groups: vehicle control, DOCA-salt, and DOCA-salt+OX1R-shRNA. DOCA-salt rats received subcutaneous implantation of a 21-day release, 75 mg DOCA pellet in addition to saline drinking water (1% NaCl and 0.2% KCl). DOCA-salt+OX1R-shRNA rats received bilateral microinjection of AAV2-OX1R-shRNA into the paraventricular nucleus (PVN) to knockdown function of the Orexin 1-Receptor (OX1R) within that area. Following 2-week to allow full transgene expression, a DOCA pellet was administered in addition to saline drinking solution. Vehicle controls received sham DOCA implantation but were given normal water. During the 3-week DOCA-salt or sham treatment period, mean arterial pressure (MAP) and heart rate (HR) were monitored utilizing tail-cuff plethysmography. Following the 3-week period, rat brains were collected for either PCR mRNA analysis, as well as immunostaining. Plasma samples were collected and subjected to ELISA analysis. In line with our hypothesis, OX1R expression was elevated in the PVN of DOCA-salt treated rats when compared to controls. Furthermore, following chronic knockdown of OX1R, the hypertension development normally induced by DOCA-salt treatment was significantly diminished in the DOCA-salt+OX1R-shRNA group. A concurrent reduction in PVN OX1R and AVP mRNA was observed in concert with the reduced blood pressure following AAV2-OX1R-shRNA treatment. Similarly, plasma AVP concentrations appeared to be reduced in the DOCA-salt+OX1R-shRNA group when compared to DOCA-salt rats. These results indicate that orexin signaling, specifically through the OX1R in the PVN are critical for the onset and maintenance of hypertension in the DOCA-salt model. This relationship is mediated, at least in part, through orexin activation of AVP producing neurons, and the subsequent release of AVP into the periphery. Our results outline a promising mechanism underlying the development of SSH through interactions with the brain orexin system.
Collapse
Affiliation(s)
- Jeremy A Bigalke
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Department of Psychology, Montana State University, Bozeman, MT, United States
| | - Huanjia Gao
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Health Research Institute, Michigan Technological University, Houghton, MI, United States
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Health Research Institute, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
18
|
Greene ES, Zampiga M, Sirri F, Ohkubo T, Dridi S. Orexin system is expressed in avian liver and regulates hepatic lipogenesis via ERK1/2 activation. Sci Rep 2020; 10:19191. [PMID: 33154530 PMCID: PMC7645691 DOI: 10.1038/s41598-020-76329-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/22/2020] [Indexed: 12/01/2022] Open
Abstract
Orexins are originally characterized as orexigenic hypothalamic neuropeptides in mammals. Subsequent studies found orexin to be expressed and perform pleiotropic functions in multiple tissues in mammals. In avian (non-mammalian) species, however, orexin seemed to not affect feeding behavior and its physiological roles are poorly understood. Here, we provide evidence that orexin and its related receptors are expressed in chicken hepatocytes. Double immunofluorescence staining showed that orexin is localized in the ER, Golgi, and in the lysosomes in LMH cells. Brefeldin A treatment reduced orexin levels in the culture media, but increased it in the cell lysates. Administration of recombinant orexins upregulated the expression of orexin system in the liver of 9-day old chicks, but did not affect feed intake. Recombinant orexins increased fatty acid synthase (FASN) protein levels in chicken liver, activated acetyl-CoA carboxylase (ACCα), and increased FASN, ATP citrate lyase(ACLY), and malic enzyme (ME) protein expression in LMH cells. Blockade ERK1/2 activation by PD98059 attenuated these stimulating effects of orexin on lipogenic factors. Overexpression of ERK1/2 increased the expression of lipogenic genes, and orexin treatment induced the phosphorylated levels of ERK1/2Thr202/Tyr204, but not that of p38 Thr180/Tyr182 or JNK1/2 Thr183/Tyr185 in chicken liver and LMH cells. Taken together, this is the first report evidencing that orexin is expressed and secreted from chicken hepatocytes, and that orexin induced hepatic lipogenesis via activation of ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- E S Greene
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - M Zampiga
- Dipartimento Di Scienze E Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università Di Bologna, Bologna, Italy
| | - F Sirri
- Dipartimento Di Scienze E Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università Di Bologna, Bologna, Italy
| | - T Ohkubo
- College of Agriculture, Ibaraki University, Ibaraki, 300-0393, Japan
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA.
| |
Collapse
|
19
|
Cui SY, Huang YL, Cui XY, Zhao HL, Hu X, Liu YT, Qin Y, Kurban N, Zhang YH. A common neuronal mechanism of hypertension and sleep disturbances in spontaneously hypertensive rats: Role of orexinergic neurons. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109902. [PMID: 32109507 DOI: 10.1016/j.pnpbp.2020.109902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/31/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
Epidemiologic studies have shown that sleep disorders are associated with the development of hypertension. The present study investigated dynamic changes in sleep patterns during the development of hypertension across the lifespan in spontaneously hypertensive rats (SHRs) and the neural mechanism that underlies these comorbidities, with a focus on the orexinergic system. Blood pressure in rats was measured using a noninvasive blood pressure tail cuff. Sleep was monitored by electroencephalographic and electromyographic recordings. Immunohistochemistry was used to detect the density and activity of orexinergic neurons in the perifornical nucleus. Hcrt2-SAP (400 or 800 ng) was microinjected in the lateral hypothalamus to lesion orexinergic neurons. Compared with Wistar-Kyoto rats, SHRs exhibited various patterns of sleep disturbances. In SHRs, dynamic changes in hypersomnia in the rats' active phase was not synchronized with the development of hypertension, but hyperarousal in the inactive phase and difficulties in falling asleep were observed concurrently with the development of hypertension. Furthermore, the density and activity of orexinergic neurons in the perifornical nucleus were significantly higher in SHRs than in age-matched Wistar-Kyoto rats. The reduction of orexinergic neurons in the lateral hypothalamus partially ameliorated the development of hypertension and prevented difficulties in falling asleep in SHRs. These results indicate that although the correlation between sleep disturbances and hypertension is very complex, common mechanisms may underlie these comorbidities in SHRs. Overactivity of the orexin system may be one such common mechanism.
Collapse
Affiliation(s)
- Su-Ying Cui
- Department of Pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing 100191, China
| | - Yuan-Li Huang
- Department of Pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing 100191, China
| | - Xiang-Yu Cui
- Department of Pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing 100191, China
| | - Hui-Ling Zhao
- Department of Pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing 100191, China
| | - Xiao Hu
- Department of Pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing 100191, China
| | - Yu-Tong Liu
- Department of Pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing 100191, China
| | - Yu Qin
- Department of Pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing 100191, China
| | - Nurhumar Kurban
- Department of Pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing 100191, China
| | - Yong-He Zhang
- Department of Pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
20
|
Barnett S, Li A. Orexin in Respiratory and Autonomic Regulation, Health and Diseases. Compr Physiol 2020; 10:345-363. [DOI: 10.1002/cphy.c190013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Kim JS, Martin-Fardon R. Possible Role of CRF-Hcrt Interaction in the Infralimbic Cortex in the Emergence and Maintenance of Compulsive Alcohol-Seeking Behavior. Alcohol Clin Exp Res 2020; 44:354-367. [PMID: 31840823 PMCID: PMC7018591 DOI: 10.1111/acer.14264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing disorder that is characterized by the compulsive use of alcohol despite numerous health, social, and economic consequences. Initially, the use of alcohol is driven by positive reinforcement. Over time, however, alcohol use can take on a compulsive quality that is driven by the desire to avoid the negative consequences of abstinence, including negative affect and heightened stress/anxiety. This transition from positive reinforcement- to negative reinforcement-driven consumption involves the corticotropin-releasing factor (CRF) system, although mounting evidence now suggests that the CRF system interacts with other neural systems to ultimately produce behaviors that are symptomatic of compulsive alcohol use, such as the hypocretin (Hcrt) system. Hypocretins are produced exclusively in the hypothalamus, but Hcrt neurons project widely throughout the brain and reach regions that perform regulatory functions for numerous behavioral and physiological responses-including the infralimbic cortex (IL) of the medial prefrontal cortex (mPFC). Although the entire mPFC undergoes neuroadaptive changes following prolonged alcohol exposure, the IL appears to undergo more robust changes compared with other mPFC substructures. Evidence to date suggests that the IL is likely involved in EtOH-seeking behavior, but ambiguities with respect to the specific role of the IL in this regard make it difficult to draw definitive conclusions. Furthermore, the manner in which CRF interacts with Hcrt in this region as it pertains to alcohol-seeking behavior is largely unknown, although immunohistochemical and electrophysiological experiments have shown that CRF and Hcrt directly interact in the mPFC, suggesting that the interaction between CRF and Hcrt in the IL may be critically important for the development and subsequent maintenance of compulsive alcohol seeking. This review aims to consolidate recent literature regarding the role of the IL in alcohol-seeking behavior and to discuss evidence that supports a functional interaction between Hcrt and CRF in the IL.
Collapse
Affiliation(s)
- Jung S. Kim
- Department of Molecular Medicine, Scripps Research, La Jolla, USA
| | | |
Collapse
|
22
|
Straat ME, Schinkelshoek MS, Fronczek R, Lammers GJ, Rensen PCN, Boon MR. Role of Brown Adipose Tissue in Adiposity Associated With Narcolepsy Type 1. Front Endocrinol (Lausanne) 2020; 11:145. [PMID: 32373062 PMCID: PMC7176868 DOI: 10.3389/fendo.2020.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/02/2020] [Indexed: 11/23/2022] Open
Abstract
Narcolepsy type 1 is a neurological sleep-wake disorder caused by the destruction of orexin (hypocretin)-producing neurons. These neurons are particularly located in the lateral hypothalamus and have widespread projections throughout the brain, where they are involved, e.g., in the regulation of the sleep-wake cycle and appetite. Interestingly, a higher prevalence of obesity has been reported in patients with narcolepsy type 1 compared to healthy controls, despite a normal to decreased food intake and comparable physical activity. This suggests the involvement of tissues implicated in total energy expenditure, including skeletal muscle, liver, white adipose tissue (WAT), and brown adipose tissue (BAT). Recent evidence from pre-clinical studies with orexin knock-out mice demonstrates a crucial role for the orexin system in the functionality of brown adipose tissue (BAT), probably through multiple pathways. Since BAT is a highly metabolically active organ that combusts fatty acids and glucose toward heat, thereby contributing to energy metabolism, this raises the question of whether BAT plays a role in the development of obesity and related metabolic diseases in narcolepsy type 1. BAT is densely innervated by the sympathetic nervous system that activates BAT, for instance, following cold exposure. The sympathetic outflow toward BAT is mainly mediated by the dorsomedial, ventromedial, arcuate, and paraventricular nuclei in the hypothalamus. This review focuses on the current knowledge on the role of the orexin system in the control of energy balance, with specific focus on BAT metabolism and adiposity in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Maaike E. Straat
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Maaike E. Straat
| | - Mink S. Schinkelshoek
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Gerrit Jan Lammers
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Patrick C. N. Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mariëtte R. Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
23
|
Koob GF, Colrain IM. Alcohol use disorder and sleep disturbances: a feed-forward allostatic framework. Neuropsychopharmacology 2020; 45:141-165. [PMID: 31234199 PMCID: PMC6879503 DOI: 10.1038/s41386-019-0446-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 11/09/2022]
Abstract
The development of alcohol use disorder (AUD) involves binge or heavy drinking to high levels of intoxication that leads to compulsive intake, the loss of control in limiting intake, and a negative emotional state when alcohol is removed. This cascade of events occurs over an extended period within a three-stage cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These three heuristic stages map onto the dysregulation of functional domains of incentive salience/habits, negative emotional states, and executive function, mediated by the basal ganglia, extended amygdala, and frontal cortex, respectively. Sleep disturbances, alterations of sleep architecture, and the development of insomnia are ubiquitous in AUD and also map onto the three stages of the addiction cycle. During the binge/intoxication stage, alcohol intoxication leads to a faster sleep onset, but sleep quality is poor relative to nights when no alcohol is consumed. The reduction of sleep onset latency and increase in wakefulness later in the night may be related to the acute effects of alcohol on GABAergic systems that are associated with sleep regulation and the effects on brain incentive salience systems, such as dopamine. During the withdrawal/negative affect stage, there is a decrease in slow-wave sleep and some limited recovery in REM sleep when individuals with AUD stop drinking. Limited recovery of sleep disturbances is seen in AUD within the first 30 days of abstinence. The effects of withdrawal on sleep may be related to the loss of alcohol as a positive allosteric modulator of GABAA receptors, a decrease in dopamine function, and the overactivation of stress neuromodulators, including hypocretin/orexin, norepinephrine, corticotropin-releasing factor, and cytokines. During the preoccupation/anticipation stage, individuals with AUD who are abstinent long-term present persistent sleep disturbances, including a longer latency to fall asleep, more time awake during the night, a decrease in slow-wave sleep, decreases in delta electroencephalogram power and evoked delta activity, and an increase in REM sleep. Glutamatergic system dysregulation that is observed in AUD is a likely substrate for some of these persistent sleep disturbances. Sleep pathology contributes to AUD pathology, and vice versa, possibly as a feed-forward drive to an unrecognized allostatic load that drives the addiction process.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 6700B Rockledge Drive, Room 1209, MSC 6902, Bethesda, MD, 20892-6902, USA.
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, 20892-6902, USA.
| | - Ian M Colrain
- SRI Biosciences, SRI International, Menlo Park, CA, USA
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
24
|
Martin T, Dauvilliers Y, Koumar OC, Bouet V, Freret T, Besnard S, Dauphin F, Bessot N. Dual orexin receptor antagonist induces changes in core body temperature in rats after exercise. Sci Rep 2019; 9:18432. [PMID: 31804545 PMCID: PMC6895233 DOI: 10.1038/s41598-019-54826-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/14/2019] [Indexed: 02/02/2023] Open
Abstract
Hypothalamic orexin neurons are involved in various physiological functions, including thermoregulation. The orexinergic system has been considered as a potent mediator of the exercise response. The present study describes how the antagonization of the orexinergic system by a dual orexin receptor antagonist (DORA) modifies the thermoregulatory process during exercise. Core Body Temperature (CBT) and Spontaneous Locomotor Activity (SLA) of 12 male Wistar rats were recorded after either oral administration of DORA (30 mg/kg or 60 mg/kg) or placebo solution, both at rest and in exercise conditions with treadmill running. DORA ingestion decreased SLA for 8 hours (p < 0.001) and CBT for 4 hours (p < 0.01). CBT (°C) response was independent of SLA. The CBT level decreased from the beginning to the end of exercise when orexin receptors were antagonized, with a dose-dependent response (39.09 ± 0.36 and 38.88 ± 0.28 for 30 and 60 mg/kg; p < 0.001) compared to placebo (39.29 ± 0.31; p < 0.001). CBT increased during exercise was also blunted after DORA administration, but without dose effects of DORA. In conclusion, our results favor the role of orexin in the thermoregulation under stress related to exercise conditions.
Collapse
Affiliation(s)
- Tristan Martin
- Normandie Univ, Unicaen, INSERM, COMETE, 14000, Caen, France
| | - Yves Dauvilliers
- Reference National Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, University of Montpellier, Montpellier, INSERM U1061, France
| | | | - Valentine Bouet
- Normandie Univ, Unicaen, INSERM, COMETE, 14000, Caen, France
| | - Thomas Freret
- Normandie Univ, Unicaen, INSERM, COMETE, 14000, Caen, France
| | | | | | - Nicolas Bessot
- Normandie Univ, Unicaen, INSERM, COMETE, 14000, Caen, France.
| |
Collapse
|
25
|
Role of Orexin-B/Orexin 2 receptor in myocardial protection. Clin Sci (Lond) 2019; 133:853-857. [DOI: 10.1042/cs20181036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Abstract
Emerging evidence attributes to orexins/hypocretins (ORs) a protective function in the regulation of cardiovascular responses, heart rate, and hypertension. However, little is known about any direct effect of orexins in the heart function. This is of special relevance considering that cardiovascular diseases, including myocardial infarction and heart failure, are one of the major causes of mortality in the world. In the article published in Clinical Science (2018) (vol. 132, 2547–2564), Patel and colleagues investigated the role of orexins in myocardial protection. Intriguingly, they revealed a source of orexin-A (OR-A) and orexin-B (OR-B) in the heart and cardiomyocytes of the rat. More interestingly, these peptides exert a direct effect on the heart rate by acting in an autocrine/paracrine manner on their respective receptors (OXRs). Indeed, OR-B, but not OR-A, by acting through orexin receptor-2 (OX2R), exerts direct cardioprotective effects in heart failure models. OR-B/OX2R signalling enhances myosin light chain (MLC) and troponin-I (TnI) phosphorylation in a dose-dependent manner, leading to an increase in the strength of their twitch contraction. This effect is mediated by extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt phosphorylation, both in the rat myocardial tissue and human heart samples. A negative correlation between OX2R expression and clinical severity of symptoms has been found in patients with heart failure. Thus, in addition to the known central effects of orexins/OX2R, the work of Patel and colleagues (Clinical Science (2018) 132, 2547–2564) reports a direct action of OR-B on the heart rate pinpointing to OX2R as a potential therapeutic target for prevention and treatment of cardiovascular disease.
Collapse
|
26
|
Barateau L, Lopez R, Chenini S, Evangelista E, Benkiran M, Mariano-Goulart D, Jaussent I, Dauvilliers Y. Exploration of cardiac sympathetic adrenergic nerve activity in narcolepsy. Clin Neurophysiol 2019; 130:412-418. [DOI: 10.1016/j.clinph.2018.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
|
27
|
Aslan S, Erbil N, Tezer FI. Heart Rate Variability During Nocturnal Sleep and Daytime Naps in Patients With Narcolepsy Type 1 and Type 2. J Clin Neurophysiol 2019; 36:104-111. [DOI: 10.1097/wnp.0000000000000544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
28
|
Functional cardiac orexin receptors: role of orexin-B/orexin 2 receptor in myocardial protection. Clin Sci (Lond) 2018; 132:2547-2564. [PMID: 30467191 PMCID: PMC6365625 DOI: 10.1042/cs20180150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 01/25/2023]
Abstract
Orexins/hypocretins exert cardiovascular effects which are centrally mediated. In the present study, we tested whether orexins and their receptors may also act in an autocrine/paracrine manner in the heart exerting direct effects. Quantitative reverse transcription-PCR (RT-PCR), immunohistochemical and Western blot analyses revealed that the rat heart expresses orexins and orexin receptors (OXR). In isolated rat cardiomyocytes, only orexin-B (OR-B) caused an increase in contractile shortening, independent of diastolic or systolic calcium levels. A specific orexin receptor-2 (OX2R) agonist ([Ala11, d-Leu15]-Orexin B) exerted similar effects as OR-B, whereas a specific orexin receptor-1 (OX1R) antagonist (SB-408124) did not alter the responsiveness of OR-B. Treatment of the same model with OR-B resulted in a dose-dependent increase in myosin light chain and troponin-I (TnI) phosphorylation. Following ischaemia/reperfusion in the isolated Langendorff perfused rat heart model, OR-B, but not OR-A, exerts a cardioprotective effect; mirrored in an in vivo model as well. Unlike OR-A, OR-B was also able to induce extracellular signal-regulated kinase (ERK) 1/2 (ERK1/2) and Akt phosphorylation in rat myocardial tissue and ERK1/2 phosphorylation in human heart samples. These findings were further corroborated in an in vivo rat model. In human subjects with heart failure, there is a significant negative correlation between the expression of OX2R and the severity of the disease clinical symptoms, as assessed by the New York Heart Association (NYHA) functional classification. Collectively, we provide evidence of a distinct orexin system in the heart that exerts a cardioprotective role via an OR-B/OX2R pathway.
Collapse
|
29
|
Abreu AR, Molosh AI, Johnson PL, Shekhar A. Role of medial hypothalamic orexin system in panic, phobia and hypertension. Brain Res 2018; 1731:145942. [PMID: 30205108 DOI: 10.1016/j.brainres.2018.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Orexin has been implicated in a number of physiological functions, including arousal, regulation of sleep, energy metabolism, appetitive behaviors, stress, anxiety, fear, panic, and cardiovascular control. In this review, we will highlight research focused on orexin system in the medial hypothalamic regions of perifornical (PeF) and dorsomedial hypothalamus (DMH), and describe the role of this hypothalamic neuropeptide in the behavioral expression of panic and consequent fear and avoidance responses, as well as sympathetic regulation and possible development of chronic hypertension. We will also outline recent data highlighting the clinical potential of single and dual orexin receptor antagonists for neuropsychiatric conditions including panic, phobia, and cardiovascular conditions, such as in hypertension.
Collapse
Affiliation(s)
- Aline R Abreu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrei I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Philip L Johnson
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anantha Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
30
|
Fan Y, Jiang E, Hahka T, Chen QH, Yan J, Shan Z. Orexin A increases sympathetic nerve activity through promoting expression of proinflammatory cytokines in Sprague Dawley rats. Acta Physiol (Oxf) 2018; 222:10.1111/apha.12963. [PMID: 28872777 PMCID: PMC6064186 DOI: 10.1111/apha.12963] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022]
Abstract
AIM Accumulating evidence suggests that orexin signalling is involved in the regulation of blood pressure and cardiovascular function. However, the underlying mechanisms are not clear. Here, we test the hypothesis that upregulated orexin A signalling in the paraventricular nucleus (PVN) increases sympathetic nerve activity (SNA) through stimulating expression of proinflammatory cytokines (PICs). METHODS In vivo sympathetic nerve recordings were performed to test the impact of PVN orexin signalling on sympathetic outflow in Sprague Dawley (SD) rats. Real-time PCR was carried out to assess effects of central administration of orexin A on PVN PICs expression in SD rats. To test whether orexin A-induced increases in PICs were exclusively mediated by orexin receptor 1 (OX1R), OX1R-expressing PC12 (PC12-OX1R) cells were incubated with different dose of orexin A, and then, PICs mRNA and immunoreactivity were measured. RESULTS Orexin A microinjection (25 pmol) into the PVN significantly increased splanchnic SNA (93.5%) and renal SNA (83.3%) in SD rats, and these increases were attenuated by OX1R antagonist SB408124. Intracerebroventricular injection of orexin A (0.2 nmol) into SD rats increased mRNA levels of PICs including IL-1-β (2.7-fold), IL-6 (1.7-fold) and TNF-α (1.5-fold), as well as Fra1 (1.6-fold) in the PVN. Orexin A treatment in PC12-OX1R cells resulted in a dose- and time-dependent increase in the expression of PICs and Fra1, a subunit of AP1 transcriptional factor. The increase in the PICs was blocked by AP1 blocker curcumin. CONCLUSION Paraventricular nucleus orexin system activation is involved in SNA regulation maybe through triggering AP1-PICs pathway.
Collapse
Affiliation(s)
- Y Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, USA
| | - E Jiang
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, USA
- College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - T Hahka
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, USA
| | - Q H Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, USA
- Biotech Research Center, Michigan Technological University, Houghton, MI, USA
| | - J Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Z Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, USA
- Biotech Research Center, Michigan Technological University, Houghton, MI, USA
| |
Collapse
|
31
|
Monda V, Salerno M, Sessa F, Bernardini R, Valenzano A, Marsala G, Zammit C, Avola R, Carotenuto M, Messina G, Messina A. Functional Changes of Orexinergic Reaction to Psychoactive Substances. Mol Neurobiol 2018; 55:6362-6368. [PMID: 29307079 DOI: 10.1007/s12035-017-0865-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
Abstract
It is becoming increasingly apparent the importance of the central nervous system (CNS) as the major contributor to the regulation of systemic metabolism. Antipsychotic drugs are used often to treat several psychiatric disorders, including schizophrenia and bipolar disorder However, antipsychotic drugs prescription, particularly the second-generation ones (SGAs), such as clozapine and olanzapine, is related to a considerable weight gain which usually leads to obesity. The aim of this paper is to assess the influence of orexin A on sympathetic and hyperthermic reactions to several neuroleptic drugs. Orexin A is a neuropeptide which effects both body temperature and food intake by increasing sympathetic activity. Orexin A-mediated hyperthermia is reduced by haloperidol and is blocked by clozapine and olanzapine. Orexin A-mediated body temperature elevation is increased by risperidone. These hyperthermic effects are delayed by quietapine. In this paper, it is discussed the orexinergic pathway activation by neuroleptic drugs and its influence on human therapeutic strategies. With the aim to determine that neuroleptic drugs mediate body temperature control through to the orexinergic system, we summarized our previously published data. Psychiatric disorders increase the risk of developing metabolic disorders (e.g., weight gain, increased blood pressure, and glucose or lipid levels). Therefore, the choice of antipsychotic drug to be prescribed, based on the relevant risks and benefits of each individual drug, has an essential role in human health prevention.
Collapse
Affiliation(s)
- Vincenzo Monda
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Monica Salerno
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy
| | - Gabriella Marsala
- Struttura Complessa di Farmacia, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Foggia, Foggia, Italy
| | - Christian Zammit
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Roberto Avola
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy.
| | - Antonietta Messina
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
32
|
Affiliation(s)
- I O Ebrahim
- Department of Psychiatry, Lane Fox Unit, St Thomas' Hospital, Lambeth Palace Road, London SE1 7EH, UK
| | | | | | | | | |
Collapse
|
33
|
Li TL, Chen JYS, Huang SC, Dai YWE, Hwang LL. Cardiovascular pressor effects of orexins in the dorsomedial hypothalamus. Eur J Pharmacol 2017; 818:343-350. [PMID: 29104046 DOI: 10.1016/j.ejphar.2017.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
Abstract
Orexins are important regulators of cardiovascular functions in various physiological and pathological conditions. The dorsomedial hypothalamus (DMH), an essential mediator of cardiovascular responses to stress, contains dense orexinergic innervations and receptors. We examined whether orexins can regulate cardiovascular functions through their actions in the DMH in anesthetized rats. An intra-DMH injection of orexin A (30pmol) produced elevation of arterial pressure and heart rate. Orexin A-sensitive sites were located within or immediately adjacent to the DMH and larger responses were induced at the compact part of the dorsomedial hypothalamic nucleus. Orexin A-induced responses were attenuated by intra-DMH pretreatment with an orexin receptor 1 (OX1R) antagonist, SB-334867 (15nmol) (17.7 ± 2.8 vs. 5.2 ± 1.0mmHg; 54.6 ± 10.0 vs. 22.8 ± 7.4 beats/min). Intra-DMH applied [Ala11,D-Leu15]-orexin B (300 pmol), an orexin receptor 2 (OX2R) agonist, elicited cardiovascular responses mimicking the responses of orexin A, except for a smaller pressor response (7.4 ± 1.7 vs. 16.4 ± 1.8mmHg). In a series of experiment, effects of orexin B (100pmol) and then orexin A (30pmol), were examined at a same site. Two patterns of responses were observed in 12 intra-DMH sites: (1) both orexin A and B (9 sites), and (2) only orexin A (3 sites) induced cardiovascular responses, respectively suggesting OX1R/OX2R-mediated and OX1R-predominant mechanisms. In conclusion, orexins regulated cardiovascular functions through OX1R/OX2R- or OX1R-mediated mechanisms at different locations in the DMH.
Collapse
Affiliation(s)
- Tzu-Ling Li
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| | - Jennifer Y S Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| | - Shang-Cheng Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| | - Yu-Wen E Dai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| | - Ling-Ling Hwang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| |
Collapse
|
34
|
The link between narcolepsy and autonomic cardiovascular dysfunction: a translational perspective. Clin Auton Res 2017; 28:545-555. [DOI: 10.1007/s10286-017-0473-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
|
35
|
Goforth PB, Myers MG. Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism. Curr Top Behav Neurosci 2017; 33:137-156. [PMID: 27909992 DOI: 10.1007/7854_2016_51] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The neuropeptide hypocretin is also commonly referred to as orexin, since its orexigenic action was recognized early. Orexin/hypocretin (OX) neurons project widely throughout the brain and the physiologic and behavioral functions of OX are much more complex than initially conceived based upon the stimulation of feeding. OX most notably controls functions relevant to attention, alertness, and motivation. OX also plays multiple crucial roles in the control of food intake, metabolism, and overall energy balance in mammals. OX signaling not only promotes food-seeking behavior upon short-term fasting to increase food intake and defend body weight, but, conversely, OX signaling also supports energy expenditure to protect against obesity. Furthermore, OX modulates the autonomic nervous system to control glucose metabolism, including during the response to hypoglycemia. Consistently, a variety of nutritional cues (including the hormones leptin and ghrelin) and metabolites (e.g., glucose, amino acids) control OX neurons. In this chapter, we review the control of OX neurons by nutritional/metabolic cues, along with our current understanding of the mechanisms by which OX and OX neurons contribute to the control of energy balance and metabolism.
Collapse
Affiliation(s)
- Paulette B Goforth
- Department of Pharmacology, University of Michigan, 1000 Wall St, 5131 Brehm Tower, Ann Arbor, MI, 48105, USA
| | - Martin G Myers
- Departments of Internal Medicine, and Molecular and Integrative Physiology, University of Michigan, 1000 Wall St, 6317 Brehm Tower, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
36
|
Rani M, Kumar R, Krishan P. Implicating the potential role of orexin in hypertension. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:667-676. [DOI: 10.1007/s00210-017-1378-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
|
37
|
|
38
|
Dergacheva O, Yamanaka A, Schwartz AR, Polotsky VY, Mendelowitz D. Optogenetic identification of hypothalamic orexin neuron projections to paraventricular spinally projecting neurons. Am J Physiol Heart Circ Physiol 2017; 312:H808-H817. [PMID: 28159808 DOI: 10.1152/ajpheart.00572.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
Abstract
Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested (n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function.NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not GABAergic, neurotransmission in these pathways.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia;
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; and
| | - Alan R Schwartz
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| |
Collapse
|
39
|
Toyama S, Shimoyama N, Shimoyama M. The analgesic effect of orexin-A in a murine model of chemotherapy-induced neuropathic pain. Neuropeptides 2017; 61:95-100. [PMID: 28041630 DOI: 10.1016/j.npep.2016.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 11/26/2022]
Abstract
Orexins are neuropeptides that are localized to neurons in the lateral and dorsal hypothalamus but its receptors are distributed to many different regions of the central nervous system. Orexins are implicated in a variety of physiological functions including sleep regulation, energy homeostats, and stress reactions. Furthermore, orexins administered exogenously have been shown to have analgesic effects in animal models. A type of intractable pain in patients is pain due to chemotherapy-induced peripheral neuropathy (CIPN). Several chemotherapeutic agents used for the treatment of malignant diseases induce dose-limiting neuropathic pain that compromises patients' quality of life. Here, we examined the analgesic effect of orexin-A in a murine model of CIPN, and compared it with the effect of duloxetine, the only drug recommended for the treatment of CIPN pain in patients. CIPN was induced in male BALB/c mice by repeated intraperitoneal injection of oxaliplatin, a platinum chemotherapeutic agent used for the treatment of advanced colorectal cancer. Neuropathic mechanical allodynia was assessed by the von Frey test, and the effect on acute thermal pain was assessed by the tail flick test. Intracerebroventricularly administered orexin-A dose-dependently attenuated oxaliplatin-induced mechanical allodynia and increased tail flick latencies. Oxaliplatin-induced mechanical allodynia was completely reversed by orexin-A at a low dose that did not increase tail flick latency. Duloxetine only partially reversed mechanical allodynia and had no effect on tail flick latency. The analgesic effect of orexin-A on oxaliplatin-induced mechanical allodynia was completely antagonized by prior intraperitoneal injection of SB-408124 (orexin type-1 receptor antagonist), but not by prior intraperitoneal injection of TCS-OX2-29 (orexin type-2 receptor antagonist). Our findings suggest that orexin-A is more potent than duloxetine in relieving pain CIPN pain and its analgesic effect is mediated by orexin type-1 receptors. Orexin type-1 receptor agonists may have potential therapeutic roles in the treatment of CIPN pain in patients.
Collapse
Affiliation(s)
- Satoshi Toyama
- Department of Anesthesiology, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, Chiba 299-0111, Japan.
| | - Naohito Shimoyama
- Department of Anesthesiology, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, Chiba 299-0111, Japan.
| | - Megumi Shimoyama
- Department of Anesthesiology, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, Chiba 299-0111, Japan.
| |
Collapse
|
40
|
Carrive P, Kuwaki T. Orexin and Central Modulation of Cardiovascular and Respiratory Function. Curr Top Behav Neurosci 2017; 33:157-196. [PMID: 27909989 DOI: 10.1007/7854_2016_46] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Orexin makes an important contribution to the regulation of cardiorespiratory function. When injected centrally under anesthesia, orexin increases blood pressure, heart rate, sympathetic nerve activity, and the amplitude and frequency of respiration. This is consistent with the location of orexin neurons in the hypothalamus and the distribution of orexin terminals at all levels of the central autonomic and respiratory network. These cardiorespiratory responses are components of arousal and are necessary to allow the expression of motivated behaviors. Thus, orexin contributes to the cardiorespiratory response to acute stressors, especially those of a psychogenic nature. Consequently, upregulation of orexin signaling, whether it is spontaneous or environmentally induced, can increase blood pressure and lead to hypertension, as is the case for the spontaneously hypertensive rat and the hypertensive BPH/2J Schlager mouse. Blockade of orexin receptors will reduce blood pressure in these animals, which could be a new pharmacological approach for the treatment of some forms of hypertension. Orexin can also magnify the respiratory reflex to hypercapnia in order to maintain respiratory homeostasis, and this may be in part why it is upregulated during obstructive sleep apnea. In this pathological condition, blockade of orexin receptors would make the apnea worse. To summarize, orexin is an important modulator of cardiorespiratory function. Acting on orexin signaling may help in the treatment of some cardiovascular and respiratory disorders.
Collapse
Affiliation(s)
- Pascal Carrive
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
41
|
Mikulášková B, Maletínská L, Zicha J, Kuneš J. The role of food intake regulating peptides in cardiovascular regulation. Mol Cell Endocrinol 2016; 436:78-92. [PMID: 27450151 DOI: 10.1016/j.mce.2016.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022]
Abstract
Obesity is a risk factor that worsens cardiovascular events leading to higher morbidity and mortality. However, the exact mechanisms of relation between obesity and cardiovascular events are unclear. Nevertheless, it has been demonstrated that pharmacological therapy for obesity has great potential to improve some cardiovascular problems. Therefore, it is important to determine the common mechanisms regulating both food intake and blood pressure. Several hormones produced by peripheral tissues work together with neuropeptides involved in the regulation of both food intake and blood pressure. Anorexigenic (food intake lowering) hormones such as leptin, glucagon-like peptide-1 and cholecystokinin cooperate with α-melanocyte-stimulating hormone, cocaine- and amphetamine-regulated peptide as well as prolactin-releasing peptide. Curiously their collective actions result in increased sympathetic activity, especially in the kidney, which could be one of the factors responsible for the blood pressure increases seen in obesity. On the other hand, orexigenic (food intake enhancing) peptides, especially ghrelin released from the stomach and acting in the brain, cooperates with orexins, neuropeptide Y, melanin-concentrating hormone and galanin, which leads to decreased sympathetic activity and blood pressure. This paradox should be intensively studied in the future. Moreover, it is important to know that the hypothalamus together with the brainstem seem to be major structures in the regulation of food intake and blood pressure. Thus, the above mentioned regions might be essential brain components in the transmission of peripheral signals to the central effects. In this short review, we summarize the current information on cardiovascular effects of food intake regulating peptides.
Collapse
Affiliation(s)
- B Mikulášková
- Institute of Physiology AS CR, Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - L Maletínská
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - J Zicha
- Institute of Physiology AS CR, Prague, Czech Republic
| | - J Kuneš
- Institute of Physiology AS CR, Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic.
| |
Collapse
|
42
|
Dergacheva O, Yamanaka A, Schwartz AR, Polotsky VY, Mendelowitz D. Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons. Neuroscience 2016; 339:47-53. [PMID: 27693474 DOI: 10.1016/j.neuroscience.2016.09.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 11/29/2022]
Abstract
Orexin neurons are known to augment the sympathetic control of cardiovascular function, however the role of orexin neurons in parasympathetic cardiac regulation remains unclear. To test the hypothesis that orexin neurons contribute to parasympathetic control we selectively expressed channelrhodopsin-2 (ChR2) in orexin neurons in orexin-Cre transgenic rats and examined postsynaptic currents in cardiac vagal neurons (CVNs) in the dorsal motor nucleus of the vagus (DMV). Simultaneous photostimulation and recording in ChR2-expressing orexin neurons in the lateral hypothalamus resulted in reliable action potential firing as well as large whole-cell currents suggesting a strong expression of ChR2 and reliable optogenetic excitation. Photostimulation of ChR2-expressing fibers in the DMV elicited short-latency (ranging from 3.2ms to 8.5ms) postsynaptic currents in 16 out of 44 CVNs tested. These responses were heterogeneous and included excitatory glutamatergic (63%) and inhibitory GABAergic (37%) postsynaptic currents. The results from this study suggest different sub-population of orexin neurons may exert diverse influences on brainstem CVNs and therefore may play distinct functional roles in parasympathetic control of the heart.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA.
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Alan R Schwartz
- Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA
| |
Collapse
|
43
|
Miyata K, Kuwaki T, Ootsuka Y. The integrated ultradian organization of behavior and physiology in mice and the contribution of orexin to the ultradian patterning. Neuroscience 2016; 334:119-133. [PMID: 27491480 DOI: 10.1016/j.neuroscience.2016.07.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 11/15/2022]
Abstract
Our series of rat experiments have shown that locomotor activity, arousal level, body and brown adipose tissue temperatures, heart rate and arterial pressure increase episodically in an integrated manner approximately every 100min (ultradian manner). Although it has been proposed that the integrated ultradian pattern is a fundamental biological rhythm across species, there are no reports of the integrated ultradian pattern in species other than rats. The aim of the present study was to establish a mouse model using simultaneous recording of locomotor activity, eating behavior, body temperature, heart rate and arousal in order to determine whether their behavior and physiology are organized in an ultradian manner in normal (wild-type) mice. We also incorporated the same recording in prepro-orexin knockout (ORX-KO) mice to reveal the role of orexin in the brain mechanisms underlying ultradian patterning. The orexin system is one of the key conductors required for coordinating autonomic functions and behaviors, and thus may contribute to ultradian patterning. In wild-type mice, locomotor activity, arousal level, body temperature and heart rate increased episodically every 93±18min (n=8) during 24h. Eating was integrated into the ultradian pattern, commencing 23±4min (n=8) after the onset of an electroencephalogram (EEG) ultradian episode. The integrated ultradian pattern in wild-type mice is very similar to that observed in rats. In ORX-KO mice, the ultradian episodic changes in locomotor activity, EEG arousal indices and body temperature were significantly attenuated, but the ultradian patterning was preserved. Our findings support the view that the ultradian pattern is common across species. The present results also suggest that orexin contributes to driving ultradian episodic changes, however, this neuropeptide is not essential for the generation of the ultradian pattern.
Collapse
Affiliation(s)
- Kohei Miyata
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Youichirou Ootsuka
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan; Centre for Neuroscience, Department of Human Physiology, School of Medicine, Flinders University, South Australia, Australia.
| |
Collapse
|
44
|
Orexin, Stress and Central Cardiovascular Control. A Link with Hypertension? Neurosci Biobehav Rev 2016; 74:376-392. [PMID: 27477446 DOI: 10.1016/j.neubiorev.2016.06.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/28/2016] [Accepted: 06/13/2016] [Indexed: 01/28/2023]
Abstract
Orexin, the arousal peptide, originates from neurons located in an area of the dorsal hypothalamus well known for integrating defense responses and their cardiovascular component. Orexin neurons, which are driven in large part by the limbic forebrain, send projections to many regions in the brain, including regions involved in cardiovascular control, as far down as sympathetic preganglionic neurons in the spinal cord. Central injections of orexin evoke sympathetically mediated cardiovascular responses. Conversely, blockade of orexin receptors reduce the cardiovascular responses to acute stressors, preferentially of a psychological nature. More importantly, lasting upregulation of orexin signaling can lead to a hypertensive state. This can be observed in rats exposed to chronic stress as well as in strains known to display spontaneous hypertension such as the spontaneously hypertensive rat (SHR) or the hypertensive BPH/2J Schlager mouse. Thus, there is a link between orexin, stress and hypertension, and orexin upregulation could be a factor in the development of essential hypertension. Orexin receptor antagonists have anti-hypertensive effects that could be of clinical use.
Collapse
|
45
|
Göktalay G, Millington WR. Hypovolemic hemorrhage induces Fos expression in the rat hypothalamus: Evidence for involvement of the lateral hypothalamus in the decompensatory phase of hemorrhage. Neuroscience 2016; 322:464-78. [PMID: 26947128 DOI: 10.1016/j.neuroscience.2016.02.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 02/10/2016] [Accepted: 02/27/2016] [Indexed: 01/02/2023]
Abstract
This study tested the hypothesis that the hypothalamus participates in the decompensatory phase of hemorrhage by measuring Fos immunoreactivity and by inhibiting neuronal activity in selected hypothalamic nuclei with lidocaine or cobalt chloride. Previously, we reported that inactivation of the arcuate nucleus inhibited, but did not fully prevent, the fall in arterial pressure evoked by hypotensive hemorrhage. Here, we report that hemorrhage (2.2 ml/100g body weight over 20 min) induced Fos expression in a high percentage of cells in the paraventricular, supraoptic and arcuate nuclei of the hypothalamus as shown previously. Lower densities of Fos immunoreactive cells were also found in the medial preoptic area (mPOA), anterior hypothalamus, lateral hypothalamus (LH), dorsomedial hypothalamus, ventromedial hypothalamus (VMH) and posterior hypothalamus. Bilateral injection of lidocaine (2%; 0.1 μl or 0.3 μl) or cobalt chloride (5mM; 0.3 μl) into the tuberal portion of the LH immediately before hemorrhage was initiated reduced the magnitude of hemorrhagic hypotension and bradycardia significantly. Lidocaine injection into the VMH also attenuated the fall in arterial pressure and heart rate evoked by hemorrhage although inactivation of the mPOA or rostral LH was ineffective. These findings indicate that hemorrhage activates neurons throughout much of the hypothalamus and that a relatively broad area of the hypothalamus, extending from the arcuate nucleus laterally through the caudal VMH and tuberal LH, plays an important role in the decompensatory phase of hemorrhage.
Collapse
Affiliation(s)
- G Göktalay
- Department of Medical Pharmacology, Uludag University, Faculty of Medicine, Bursa, Turkey
| | - W R Millington
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States.
| |
Collapse
|
46
|
Calandra-Buonaura G, Provini F, Guaraldi P, Plazzi G, Cortelli P. Cardiovascular autonomic dysfunctions and sleep disorders. Sleep Med Rev 2016; 26:43-56. [DOI: 10.1016/j.smrv.2015.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/08/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
|
47
|
Dai YWE, Lee YH, Chen JYS, Lin YK, Hwang LL. Expression of the M3 Muscarinic Receptor on Orexin Neurons that Project to the Rostral Ventrolateral Medulla. Anat Rec (Hoboken) 2016; 299:660-8. [PMID: 26910770 DOI: 10.1002/ar.23329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 11/11/2022]
Abstract
Activation of central cholinergic receptors causes a pressor response in rats, and the hypothalamus is important for this response. Projections from hypothalamic orexin neurons to the rostral ventrolateral medulla (RVLM) are involved in sympatho-excitation of the cardiovascular system. A small population of orexin neurons is regulated by cholinergic inputs through M3 muscarinic acetylcholine receptor (M3 R). To elucidate whether the M3 R on orexin neurons is involved in cardiosympathetic regulation through the RVLM, we examined the presence of the M3 R on retrograde-labeled RVLM-projecting orexin neurons. The retrograde tracer was unilaterally injected into the RVLM. Within the hypothalamus, retrograde-labeled neurons were located predominantly ipsilateral to the injection side. In the anterior hypothalamus (-1.5 to -2.3 mm to the bregma), retrograde-labeled neurons were densely distributed in the paraventricular nuclei and scattered in the retrochiasmatic area. At -2.3 to -3.5 mm from the bregma, labeled neurons were located in the regions where orexin neurons were situated, that is, the tuberal lateral hypothalamic area, perifornical area, and dorsomedial nuclei. Very few retrograde-labeled neurons were observed in the hypothalamus at -3.5 to -4.5 mm from the bregma. About 19.5% ± 1.6% of RVLM-projecting neurons in the tuberal hypothalamus were orexinergic. The M3 R was present on 18.7% ± 3.0% of RVLM-projecting orexin neurons. Injection of a muscarinic agonist, oxotremorine, in the perifornical area resulted in a pressor response, which was attenuated by a pretreatment of atropine. We conclude that cholinergic inputs to orexin neurons may be involved in cardiosympathetic regulation through the M3 R on the orexin neurons that directly project to the RVLM.
Collapse
Affiliation(s)
- Yu-Wen E Dai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hsien Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jennifer Y S Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yen-Kuang Lin
- Biostatistic Center, Taipei Medical University, Taipei, Taiwan
| | - Ling-Ling Hwang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
48
|
Federici LM, Caliman IF, Molosh AI, Fitz SD, Truitt WA, Bonaventure P, Carpenter JS, Shekhar A, Johnson PL. Hypothalamic orexin's role in exacerbated cutaneous vasodilation responses to an anxiogenic stimulus in a surgical menopause model. Psychoneuroendocrinology 2016; 65:127-37. [PMID: 26765933 PMCID: PMC4752911 DOI: 10.1016/j.psyneuen.2015.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022]
Abstract
Distressing symptoms such as hot flashes and sleep disturbances affect over 70% of women approaching menopause for an average of 4-7 years, and recent large cohort studies have shown that anxiety and stress are strongly associated with more severe and persistent hot flashes and can induce hot flashes. Although high estrogen doses alleviate symptoms, extended use increases health risks, and current non-hormonal therapies are marginally better than placebo. The lack of effective non-hormonal treatments is largely due to the limited understanding of the mechanisms that underlie menopausal symptoms. One mechanistic pathway that has not been explored is the wake-promoting orexin neuropeptide system. Orexin is exclusively synthesized in the estrogen receptor rich perifornical hypothalamic region, and has an emerging role in anxiety and thermoregulation. In female rodents, estrogens tonically inhibit expression of orexin, and estrogen replacement normalizes severely elevated central orexin levels in postmenopausal women. Using an ovariectomy menopause model, we demonstrated that an anxiogenic compound elicited exacerbated hot flash-associated increases in tail skin temperature (TST, that is blocked with estrogen), and cellular responses in orexin neurons and efferent targets. Furthermore, systemic administration of centrally active, selective orexin 1 or 2 and dual receptor antagonists attenuated or blocked TST responses, respectively. This included the reformulated Suvorexant, which was recently FDA-approved for treating insomnia. Collectively, our data support the hypothesis that dramatic loss of estrogen tone during menopausal states leads to a hyperactive orexin system that contributes to symptoms such as anxiety, insomnia, and more severe hot flashes. Additionally, orexin receptor antagonists may represent a novel non-hormonal therapy for treating menopausal symptoms, with minimal side effects.
Collapse
Affiliation(s)
- Lauren M. Federici
- Department of Anatomy & Cell Biology, USA,Paul and Carole Stark Neurosciences Research Institute, USA,Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, USA
| | - Izabela Facco Caliman
- Department of Anatomy & Cell Biology, USA,Paul and Carole Stark Neurosciences Research Institute, USA
| | - Andrei I. Molosh
- Paul and Carole Stark Neurosciences Research Institute, USA,Department of Psychiatry; Indiana University School of Medicine, USA
| | | | - William A. Truitt
- Department of Anatomy & Cell Biology, USA,Paul and Carole Stark Neurosciences Research Institute, USA
| | | | - Janet S. Carpenter
- Science of Nursing Care Department, Indiana University School of Nursing, Indianapolis, IN 46202, USA
| | - Anantha Shekhar
- Paul and Carole Stark Neurosciences Research Institute, USA,Department of Psychiatry; Indiana University School of Medicine, USA
| | - Philip L. Johnson
- Department of Anatomy & Cell Biology, USA,Paul and Carole Stark Neurosciences Research Institute, USA,Corresponding author at: Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. (P.L. Johnson)
| |
Collapse
|
49
|
Perez MV, Pavlovic A, Shang C, Wheeler MT, Miller CL, Liu J, Dewey FE, Pan S, Thanaporn PK, Absher D, Brandimarto J, Salisbury H, Chan K, Mukherjee R, Konadhode RP, Myers RM, Sedehi D, Scammell TE, Quertermous T, Cappola T, Ashley EA. Systems Genomics Identifies a Key Role for Hypocretin/Orexin Receptor-2 in Human Heart Failure. J Am Coll Cardiol 2015; 66:2522-33. [PMID: 26653627 PMCID: PMC8991813 DOI: 10.1016/j.jacc.2015.09.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/25/2015] [Accepted: 09/14/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND The genetic determinants of heart failure (HF) and response to medical therapy remain unknown. We hypothesized that identifying genetic variants of HF that associate with response to medical therapy would elucidate the genetic basis of cardiac function. OBJECTIVES This study sought to identify genetic variations associated with response to HF therapy. METHODS This study compared extremes of response to medical therapy in 866 HF patients using a genome-wide approach that informed the systems-based design of a customized single nucleotide variant array. The effect of genotype on gene expression was measured using allele-specific luciferase reporter assays. Candidate gene transcription-deficient mice underwent echocardiography and treadmill exercise. The ability of the target gene agonist to rescue mice from chemically-induced HF was assessed with echocardiography. RESULTS Of 866 HF patients, 136 had an ejection fraction improvement of 20% attributed to resynchronization (n = 83), revascularization (n = 7), tachycardia resolution (n = 2), alcohol cessation (n = 1), or medications (n = 43). Those with the minor allele for rs7767652, upstream of hypocretin (orexin) receptor-2 (HCRTR2), were less likely to have improved left ventricular function (odds ratio: 0.40 per minor allele; p = 3.29 × 10(-5)). In a replication cohort of 798 patients, those with a minor allele for rs7767652 had a lower prevalence of ejection fraction >35% (odds ratio: 0.769 per minor allele; p = 0.021). In an HF model, HCRTR2-deficient mice exhibited poorer cardiac function, worse treadmill exercise capacity, and greater myocardial scarring. Orexin, an HCRTR2 agonist, rescued function in this HF mouse model. CONCLUSIONS A systems approach identified a novel genetic contribution to human HF and a promising therapeutic agent efficacious in an HF model.
Collapse
Affiliation(s)
- Marco V Perez
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Aleksandra Pavlovic
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Ching Shang
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Matthew T Wheeler
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Clint L Miller
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Jing Liu
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Frederick E Dewey
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Stephen Pan
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Porama K Thanaporn
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Devin Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama
| | - Jeffrey Brandimarto
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Heidi Salisbury
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Khin Chan
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Roda P Konadhode
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Richard M Myers
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama
| | - Daniel Sedehi
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Thomas Quertermous
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Thomas Cappola
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Euan A Ashley
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University, Stanford, California.
| |
Collapse
|
50
|
Takahashi K, Ohba K, Kaneko K. Ubiquitous expression and multiple functions of biologically active peptides. Peptides 2015; 72:184-91. [PMID: 25868673 DOI: 10.1016/j.peptides.2015.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
Abstract
Biologically active peptides are widely expressed throughout in human bodies. For example, endothelin-1 and adrenomedullin are expressed in almost all types of cells, including neurons, glial cells, fibroblasts, macrophages, cardiomyocytes, vascular endothelial cells, epithelial cells and cancer cells of various origins. Expression of both these peptides is induced by stimuli, such as hypoxia and inflammatory cytokines. They have a variety of biological functions, such as effects on brain function, hormone secretion, the cardiovascular system and cell proliferation. By contrast, orexins (hypocretins) and melanin-concentrating hormone (MCH) are specifically expressed in the hypothalamus, particularly in the lateral hypothalamus, although very low concentrations of these peptides are found in the peripheral tissues. Orexins and MCH play coordinated, but distinct physiological roles in the regulation of sleep-wake cycle, appetite, emotion and other brain functions. The cardiovascular system is regulated by cardiovascular peptides, such as natriuretic peptides, endothelins and angiotensin II. The renin-angiotensin system (RAS) is one of the most classical regulatory systems on blood pressure, electrolytes and kidney. (Pro)renin receptor is a novel member of the RAS and may be related to the pathophysiology of microvascular complications of hypertension and diabetes mellitus. Moreover, (pro)renin receptor forms a functional complex with vacuolar-type H(+)-ATPase, which plays an important physiological role in maintaining the acidic environment of intracellular compartments including secretory vesicles. Perhaps, the complex of (pro)renin receptor and vacuolar-type H(+)-ATPase may be important for the post-translational processing and secretion of many biologically active peptides.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Koji Ohba
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kiriko Kaneko
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Molecular Medical Chemistry, Iwate Medical University School of Medicine, Morioka, Iwate 020-8505, Japan
| |
Collapse
|