1
|
Rodriguez-Chavez V, Moran J, Molina-Salinas G, Zepeda Ruiz WA, Rodriguez MC, Picazo O, Cerbon M. Participation of Glutamatergic Ionotropic Receptors in Excitotoxicity: The Neuroprotective Role of Prolactin. Neuroscience 2021; 461:180-193. [PMID: 33647379 DOI: 10.1016/j.neuroscience.2021.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023]
Abstract
Glutamate (Glu) is known as the main excitatory neurotransmitter in the central nervous system. It can trigger a series of processes ranging from synaptic plasticity to neurophysiological regulation. To carry out its functions, Glu acts via interaction with its cognate receptors, which are ligand-dependent. Glutamatergic receptors include ionotropic and metabotropic categories. The first allows the passage of ions through the postsynaptic membrane, while the metabotropic subtype activates signaling cascades through second messengers. It is well known that an excess of extracellular Glu concentration induces overstimulation of ionotropic glutamatergic receptors (iGluRs), causing the excitotoxicity phenomenon that leads to neuronal damage and cell death. Excitotoxicity plays a crucial role in different brain pathologies such as brain strokes, epilepsy and neurodegenerative disorders. However, until now, there are no effective neuroprotective compounds to prevent or rescue neurons from excitotoxicity. Thus, the continuous elucidation of the molecular mechanisms underlying excitotoxicity in order to prevent damage or neuronal death is necessary. Therefore, the aim of this review was to summarize the current knowledge regarding iGluRs, while describing their structures and molecular mechanisms of action, including their role in excitotoxicity, as well as the current strategies to reduce excitotoxic damage. Particularly, strategies mediated by prolactin, a somatotropin family-related hormone that displays a significant neuroprotective effect against both Glu and kainic acid-induced excitotoxicity in the hippocampus, are described. Finally, the role of prolactin as a possible molecule in the treatment of excitotoxicity in neurological diseases is discussed.
Collapse
Affiliation(s)
- V Rodriguez-Chavez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico
| | - J Moran
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - G Molina-Salinas
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico
| | - W A Zepeda Ruiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico
| | - M C Rodriguez
- Instituto Nacional de Salud Pública, CISEI, Cuernavaca, Morelos 62100, Mexico
| | - O Picazo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Sto. Tomás, 11340 Ciudad de México, Mexico.
| | - M Cerbon
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico.
| |
Collapse
|
2
|
Johnson AC, Li Z, Orfila JE, Herson PS, Cipolla MJ. Hippocampal network dysfunction as a mechanism of early-onset dementia after preeclampsia and eclampsia. Prog Neurobiol 2020; 199:101938. [PMID: 33130230 DOI: 10.1016/j.pneurobio.2020.101938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Preeclampsia is a hypertensive disorder of pregnancy that can involve dangerous neurological symptoms such as spontaneous seizures (eclampsia). Despite being diseases specific to the pregnant state, preeclampsia and eclampsia have long-lasting neurological consequences later in life, including changes in brain structure and cognitive decline at relatively young ages. However, the effects of preeclampsia on brain regions central to memory and cognition, such as the hippocampus, are unclear. Here, we present a case reporting the progressive and permanent cognitive decline in a woman that had eclamptic seizures in the absence of evidence of brain injury on MRI. We then use rat models of normal pregnancy and preeclampsia to investigate mechanisms by which eclampsia-like seizures may disrupt hippocampal function. We show that experimental preeclampsia causes delayed memory decline in rats and disruption of hippocampal neuroplasticity. Further, seizures in pregnancy and preeclampsia caused acute memory dysfunction and impaired neuroplasticity but did not cause acute neuronal cell death. Importantly, hippocampal dysfunction persisted 5 weeks postpartum, suggesting seizure-induced injury is long lasting and may be permanent. Our data provide the first evidence of a model of preeclampsia that may mimic the cognitive decline of formerly preeclamptic women, and that preeclampsia and eclampsia affect hippocampal network plasticity and impair memory.
Collapse
Affiliation(s)
- Abbie C Johnson
- Dept. of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.
| | - Zhaojin Li
- Dept. of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.
| | - James E Orfila
- Dept. of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Paco S Herson
- Dept. of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Dept. of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Marilyn J Cipolla
- Dept. of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA; Dept. of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA; Dept. of Ob/Gyn & Repro Sciences, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.
| |
Collapse
|
3
|
Cabrera-Reyes EA, Limón-Morales O, Rivero-Segura NA, Camacho-Arroyo I, Cerbón M. Prolactin function and putative expression in the brain. Endocrine 2017. [PMID: 28634745 DOI: 10.1007/s12020-017-1346-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Prolactin is a peptide hormone mainly synthetized and secreted by the anterior pituitary gland, but also by extrapituitary tissues, such as mammary gland, decidua, prostate, skin, and possibly the brain. Similarly, prolactin receptor is expressed in the pituitary gland, many peripheral tissues, and in contrast to prolactin, its receptor has been consistently detected in several brain regions, such as cerebral cortex, olfactory bulb, hypothalamus, hippocampus, amygdala, among others. Classically, prolactin function has been related to the stimulation of lactogenesis and galactopoiesis, however, it is well known that prolactin induces a wide range of functions in different brain areas. PURPOSE The aim of this review is to summarize recent reports on prolactin and prolactin receptor synthesis and localization, as well as recapitulate both the classic functions attributed to this hormone in the brain and the recently described functions such as neurogenesis, neurodevelopment, sleep, learning and memory, and neuroprotection. CONCLUSION The distribution and putative expression of prolactin and its receptors in several neuronal tissues suggests that this hormone has pleiotropic functions in the brain.
Collapse
Affiliation(s)
- Erika Alejandra Cabrera-Reyes
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico
| | - Ofelia Limón-Morales
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico
| | - Nadia Alejandra Rivero-Segura
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico.
| |
Collapse
|
4
|
Abstract
Prolactin (PRL) released from lactotrophs of the anterior pituitary gland in response to the suckling by the offspring is the major hormonal signal responsible for stimulation of milk synthesis in the mammary glands. PRL secretion is under chronic inhibition exerted by dopamine (DA), which is released from neurons of the arcuate nucleus of the hypothalamus into the hypophyseal portal vasculature. Suckling by the young activates ascending systems that decrease the release of DA from this system, resulting in enhanced responsiveness to one or more PRL-releasing hormones, such as thyrotropin-releasing hormone. The neuropeptide oxytocin (OT), synthesized in magnocellular neurons of the hypothalamic supraoptic, paraventricular, and several accessory nuclei, is responsible for contracting the myoepithelial cells of the mammary gland to produce milk ejection. Electrophysiological recordings demonstrate that shortly before each milk ejection, the entire neurosecretory OT population fires a synchronized burst of action potentials (the milk ejection burst), resulting in release of OT from nerve terminals in the neurohypophysis. Both of these neuroendocrine systems undergo alterations in late gestation that prepare them for the secretory demands of lactation, and that reduce their responsiveness to stimuli other than suckling, especially physical stressors. The demands of milk synthesis and release produce a condition of negative energy balance in the suckled mother, and, in laboratory rodents, are accompanied by a dramatic hyperphagia. The reduction in secretion of the adipocyte hormone, leptin, a hallmark of negative energy balance, may be an important endocrine signal to hypothalamic systems that integrate lactation-associated food intake with neuroendocrine systems.
Collapse
Affiliation(s)
- William R Crowley
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
5
|
Abstract
Newborn mammals are totally dependent on maternal milk and care for survival. The mother's brain undergoes different behavioural, physiological and emotional adaptations that make the mother more likely to satisfy the demands of the offspring. Recent reports from our group show that, compared to nulliparous rats, lactation diminishes cell damage induced by excitotoxicity in the dorsal hippocampus of the dam after systemic or i.c. administration of kainic acid (KA) and the resulting motor seizures. Elevated levels of prolactin (PRL), oxytocin, progesterone and glucocorticoids are characteristics of lactation, and the pronounced fluctuation of these hormones occurring in this phase may play a role protecting the hippocampus. Indeed, PRL administration to ovariectomised rats significantly diminishes the deleterious effects of KA in the dorsal hippocampus and reduces the progression of KA-induced seizures. Thus, lactation is a natural model for neuroprotection because it effectively prevents acute and chronic cell damage of the hippocampus induced by excitotoxicity.
Collapse
Affiliation(s)
- T Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.
| |
Collapse
|
6
|
Tejadilla D, Cerbón M, Morales T. Prolactin reduces the damaging effects of excitotoxicity in the dorsal hippocampus of the female rat independently of ovarian hormones. Neuroscience 2010; 169:1178-85. [PMID: 20570717 DOI: 10.1016/j.neuroscience.2010.05.074] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/27/2010] [Accepted: 05/28/2010] [Indexed: 12/29/2022]
Abstract
We reported previously that lactation prevents the cell damage induced by kainic acid (KA) excitotoxicity in the CA1, CA3, and CA4 areas of the dorsal hippocampus compared to rats in diestrus phase, and hypothesize that pronounced fluctuations of hormones, such as ovarian steroids and prolactin (PRL), have a role in the neuroprotection of the dorsal hippocampus during lactation. PRL is thought to be involved in modulating neural excitability and seizure activity. To investigate actions of prolactin that minimize KA-induced cell damage in the hippocampus, female intact and ovariectomized (OVX) rats were treated for 4 days with a daily dose of 100 microg of prolactin or vehicle. On the third day of prolactin treatment, rats received a systemic dose of 7.5 mg/kg of KA and were sacrificed 48 h later. Immunostaining for Neu-N revealed a significant decrease in cell number in the CA1, CA3 and CA4 areas of intact or OVX, vehicle-treated rats after KA, whereas prolactin treatment prevented cell loss in the CA3 area of intact, and in the CA1, CA3, and CA4 of OVX rats. Fluoro-Jade C staining confirmed these observations. Kainate-induced seizure behavior progressed further in OVX rats, but was attenuated in prolactin-treated rats, both intact and OVX, compared to vehicle-treated rats. These data indicate that prolactin diminishes the damaging actions of excitotoxicity in the kainate model of epilepsy.
Collapse
Affiliation(s)
- D Tejadilla
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro 76230, México
| | | | | |
Collapse
|
7
|
Cabrera V, Cantú D, Ramos E, Vanoye-Carlo A, Cerbón M, Morales T. Lactation is a natural model of hippocampus neuroprotection against excitotoxicity. Neurosci Lett 2009; 461:136-9. [PMID: 19539698 DOI: 10.1016/j.neulet.2009.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/02/2009] [Accepted: 06/12/2009] [Indexed: 02/02/2023]
Abstract
Lactation is a temporary but complex physiological condition in which hormones and neurogenic stimulation from suckling cause maternal brain plasticity. It has been shown that lactation prevents cell damage induced by excitotoxicity in the dorsal hippocampus of the dam after peripheral administration of kainic acid (KA). The aim of this study was to determine whether lactation protects the maternal hippocampus against damage induced by intracerebral application (ICV) of KA and if lactation decreases, or only delays, this damaging effect of KA. Cell damage was assessed by Fluoro-Jade C staining in the hippocampus of virgin and lactating rats 24 or 72 h after ICV KA. Lactation prevented cell damage of the pyramidal layers of the hippocampus (CA1, CA3, and CA4), as compared to virgin rats. The longer period of KA exposure increased the difference in cell damage between these two conditions. The present results confirm that lactation is a natural model for neuroprotection, since it effectively prevents acute and chronic cell damage of the hippocampus induced by exposure to KA.
Collapse
Affiliation(s)
- Verónica Cabrera
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | | | | | | | | | | |
Collapse
|
8
|
Vanoye-Carlo A, Morales T, Ramos E, Mendoza-Rodríguez A, Cerbón M. Neuroprotective effects of lactation against kainic acid treatment in the dorsal hippocampus of the rat. Horm Behav 2008; 53:112-23. [PMID: 17963758 DOI: 10.1016/j.yhbeh.2007.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 08/31/2007] [Accepted: 09/04/2007] [Indexed: 01/20/2023]
Abstract
Marked hippocampal changes in response to excitatory amino acid agonists occur during pregnancy (e.g. decreased frequency in spontaneous recurrent seizures in rats with KA lesions of the hippocampus) and lactation (e.g. reduced c-Fos expression in response to N-methyl-d,l-aspartic acid but not to kainic acid). In this study, the possibility that lactation protects against the excitotoxic damage induced by KA in hippocampal areas was explored. We compared cell damage induced 24 h after a single systemic administration of KA (5 or 7.5 mg/kg bw) in regions CA1, CA3, and CA4 of the dorsal hippocampus of rats in the final week of lactation to that in diestrus phase. To determine cellular damage in a rostro-caudal segment of the dorsal hippocampus, we used NISSL and Fluorojade staining, immunohistochemistry for active caspase-3 and TUNEL, and we observed that the KA treatment provoked a significant loss of neurons in diestrus rats, principally in the pyramidal cells of CA1 region. In contrast, in lactating rats, pyramidal neurons from CA1, CA3, and CA4 in the dorsal hippocampus were significantly protected against KA-induced neuronal damage, indicating that lactation may be a natural model of neuroprotection.
Collapse
Affiliation(s)
- América Vanoye-Carlo
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México, D.F., 04510, Mexico
| | | | | | | | | |
Collapse
|