1
|
Zhang C, Ma Y, Zhao Y, Guo N, Han C, Wu Q, Mu C, Zhang Y, Tan S, Zhang J, Liu X. Systematic review of melatonin in cerebral ischemia-reperfusion injury: critical role and therapeutic opportunities. Front Pharmacol 2024; 15:1356112. [PMID: 38375039 PMCID: PMC10875093 DOI: 10.3389/fphar.2024.1356112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Cerebral ischemia-reperfusion (I/R) injury is the predominant causes for the poor prognosis of ischemic stroke patients after reperfusion therapy. Currently, potent therapeutic interventions for cerebral I/R injury are still very limited. Melatonin, an endogenous hormone, was found to be valid in preventing I/R injury in a variety of organs. However, a systematic review covering all neuroprotective effects of melatonin in cerebral I/R injury has not been reported yet. Thus, we perform a comprehensive overview of the influence of melatonin on cerebral I/R injury by collecting all available literature exploring the latent effect of melatonin on cerebral I/R injury as well as ischemic stroke. In this systematic review, we outline the extensive scientific studies and summarize the beneficial functions of melatonin, including reducing infarct volume, decreasing brain edema, improving neurological functions and attenuating blood-brain barrier breakdown, as well as its key protective mechanisms on almost every aspect of cerebral I/R injury, including inhibiting oxidative stress, neuroinflammation, apoptosis, excessive autophagy, glutamate excitotoxicity and mitochondrial dysfunction. Subsequently, we also review the predictive and therapeutic implications of melatonin on ischemic stroke reported in clinical studies. We hope that our systematic review can provide the most comprehensive introduction of current advancements on melatonin in cerebral I/R injury and new insights into personalized diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yumei Ma
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Han
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Changqing Mu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shutong Tan
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Shenyang, Liaoning, China
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Lanigan S, Corcoran AE, Wall A, Mukandala G, O'Connor JJ. Acute hypoxic exposure and prolyl-hydroxylase inhibition improves synaptic transmission recovery time from a subsequent hypoxic insult in rat hippocampus. Brain Res 2018; 1701:212-218. [PMID: 30244114 DOI: 10.1016/j.brainres.2018.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/18/2023]
Abstract
In the CNS short episodes of acute hypoxia can result in a decrease in synaptic transmission which may be fully reversible upon re-oxygenation. Stabilization of hypoxia-inducible factor (HIF) by inhibition of prolyl hydroxylase domain (PHD) enzymes has been shown to regulate the cellular response to hypoxia and confer neuroprotection both in vivo and in vitro. Hypoxic preconditioning has become a novel therapeutic target to induce neuroprotection during hypoxic insults. However, there is little understanding of the effects of repeated hypoxic insults or pharmacological PHD inhibition on synaptic signaling. In this study we have assessed the effects of hypoxic exposure and PHD inhibition on synaptic transmission in the rat CA1 hippocampus. Field excitatory postsynaptic potentials (fEPSPs) were elicited by stimulation of the Schaffer collateral pathway. 30 min hypoxia (gas mixture 95% N2/5% CO2) resulted in a significant and fully reversible decrease in fEPSP slope associated with decreases in partial pressures of tissue oxygen. 15-30 min of hypoxia was sufficient to induce stabilization of HIF in hippocampal slices. Exposure to a second hypoxic insult after 60 min resulted in a similar depression of fEPSP slope but with a significantly greater rate of recovery of the fEPSP. Prior single treatment of slices with the PHD inhibitor, dimethyloxalylglycine (DMOG) also resulted in a significantly greater rate of recovery of fEPSP post hypoxia. These results suggest that hypoxia and 'pseudohypoxia' preconditioning may improve the rate of recovery of hippocampal neurons to a subsequent acute hypoxia.
Collapse
Affiliation(s)
- Sinead Lanigan
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alan E Corcoran
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Audrey Wall
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gatambwa Mukandala
- College of Natural and Applied Sciences, University of Dar-Es-Salaam (UDSM), P.O Box 35064, Dar-Es-Salaam, Tanzania
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, de Los Rios C, Romero A, Egea J. Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med 2017; 104:32-53. [PMID: 28065781 DOI: 10.1016/j.freeradbiomed.2017.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca2+ dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology. University of Texas Health Science Center at San Antonio, USA
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - José Marco-Contelles
- Medicinal Chemistry Laboratory, Institute of General Organic Chemistry (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Esther Parada
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Cristobal de Los Rios
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Egea
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
4
|
Kim JH, Yoo BH, Won SJ, Choi BY, Lee BE, Kim IY, Kho A, Lee SH, Sohn M, Suh SW. Melatonin Reduces Hypoglycemia-Induced Neuronal Death in Rats. Neuroendocrinology 2015; 102:300-310. [PMID: 26065386 DOI: 10.1159/000434722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 06/02/2015] [Indexed: 11/19/2022]
Abstract
Melatonin, N-aceyl-5-methoxytryptamine, is the main secretory product of the pineal gland and has neuroprotective effects on several brain injuries, including ischemic stroke. In the present study, we hypothesized that exogenous melatonin may decrease hypoglycemia-induced neuronal death through the prevention of superoxide generation. To test our hypothesis, hypoglycemia was induced by injecting human insulin (10 U/kg, i.p.) in rats. Melatonin injection was started immediately after hypoglycemia (10 mg/kg, i.p.). The first melatonin injection was performed at the end of a 30-min isoelectric EEG period. The second and third injections were administered at 1 and 3 h after the first injection. Reactive oxygen species generation, as detected by dihydroethidium staining, was significantly reduced by melatonin treatment. Neuronal injury was reduced by the treatment of melatonin in the hippocampal CA1 and dentate granule cells. Microglia activation was robust in the hippocampus after hypoglycemia, which was almost completely prevented by melatonin treatment. Hypoglycemia-induced cognitive impairment was also significantly prevented by melatonin treatment. The present study suggests that melatonin has therapeutic potential to prevent hypoglycemia-induced brain injury.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Neurology, University of California, San Francisco, Calif., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Oxidative stress induced by the Fe/ascorbic acid system or model ischemia in vitro: effect of carvedilol and pyridoindole antioxidant SMe1EC2 in young and adult rat brain tissue. Interdiscip Toxicol 2011; 3:122-6. [PMID: 21331177 PMCID: PMC3035568 DOI: 10.2478/v10102-010-0051-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 01/22/2023] Open
Abstract
New effective strategies and new highly effective neuroprotective agents are being searched for the therapy of human stroke and cerebral ischemia. The compound SMe1EC2 is a new derivative of stobadine, with enhanced antioxidant properties compared to the maternal drug. Carvedilol, a non-selective beta-blocker, possesses besides its cardioprotective and vasculoprotective properties also an antioxidant effect. We compared the effect of carvedilol and SMe1EC2, antioxidants with a similar chemical structure, in two experimental models of oxidative stress in young and adult rat brain tissue. SMe1EC2 was found to improve the resistance of hippocampal neurons to ischemia in vitro in young and even in 18-month-old rats and inhibited formation of protein carbonyl groups induced by the Fe2+/ascorbic acid pro-oxidative system in brain cortex homogenates of young rats. Carvedilol exerted a protective effect only in the hippocampus of 2-month-old rats and that at the concentration 10-times higher than did SMe1EC2. The inhibitory effect of carvedilol on protein carbonyl formation induced by the pro-oxidative system was not proved in the cortex of either young or adult rats. An increased baseline level of the content of protein carbonyl groups in the adult versus young rat brain cortex confirmed age-related changes in neuronal tissue and may be due to increased production of reactive oxygen species and low antioxidant defense mechanisms in the adult rat brain. The results revealed the new pyridoindole SMe1EC2 to be more effective than carvedilol in neuroprotection of rat brain tissue in both experimental models involving oxidative stress.
Collapse
|
6
|
Effect of lipid peroxidation conditions on calcium-dependent activity of phosphodiesterase 3′,5′-cAMP in the rat brain. Biologia (Bratisl) 2006. [DOI: 10.2478/s11756-006-0144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Štolc S, Šnirc V, Májeková M, Gáspárová Z, Gajdošíková A, Štvrtina S. Development of the new group of indole-derived neuroprotective drugs affecting oxidative stress. Cell Mol Neurobiol 2006; 26:1495-504. [PMID: 16705480 PMCID: PMC11520618 DOI: 10.1007/s10571-006-9037-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 12/09/2005] [Indexed: 10/24/2022]
Abstract
1. The role of oxidative stress, and accordingly uncontrolled reactive oxygen species generation/action, have been widely documented in a number of different neuronal pathologies. However, the concept of pharmacological interventions in prevention and therapy of oxidative stress-related diseases has not found adequate application in clinical practice. This may be due to the insufficient efficacy of drugs available, their unsuitable pharmacokinetics, side effects, toxicity, etc. 2. Based on stobadine, (--)-cis-2,8-dimethyl-2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-b]indole, a well-known antioxidant, free radical scavenger, and neuroprotectant, it was attempted to develop new stobadine derivatives with improved pharmacodynamic and toxicity profiles, on applying molecular design, synthesis and adequate tests. Stobadine molecule was modified mostly by electron donating substitution on the benzene ring and by alkoxycarbonyl substitution at N-2 position. A total of >70 derivatives were prepared. 3. In a mice model of head trauma, some of the new stobadine derivatives administered i.v. immediately after the trauma, significantly improved sensomotoric outcome in the animals assessed 1 h later. Accordingly, decrease in brain edema was proved histologically as well as by brain wet weight assessment. 4. Putative neuroprotective action of the compounds was confirmed on rat hippocampal slices exposed to reversible 6 min hypoxia/low glucose by analysis of synaptic transmission in CA1 region neurons. Irreversible impairment of neurotransmission resulting from the hypoxia was significantly reduced by the presence of SMe1EC2, one of the new compounds, in concentration range 0.03-10.0x10(-6) mol l(-1). Both the neuroprotective and antioxidant effect of the compound closely resembled those of stobadine, melatonin, 21-aminosteroids, alpha-phenyl-tert-butylnitrone and others, all well-established antioxidants, except the range of effective concentrations was by 1-2 orders lower in SMe1EC2. 5. A remarkable antioxidant efficacy was observed in the new compounds in rat brain homogenates exposed to iron/ascorbate system by protection of lipids and creatine kinase against the oxidative impairment. A link between the neuroprotective and antioxidant/ scavenger properties in the compounds can be assumed. 6. Acute toxicity of some of the new pyridoindoles was diminished compared to stobadine. That might be due to the virtually full elimination of stobadine's undesired alpha (1)-adrenolytic activity attained by appropriate modifications of its molecule. 7. The new pyridoindoles extend the range of available neuroprotectants interfering with oxidative stress in neuronal tissue.
Collapse
Affiliation(s)
- S. Štolc
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic
| | - V. Šnirc
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic
| | - M. Májeková
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic
| | - Z. Gáspárová
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic
| | - A. Gajdošíková
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic
| | - S. Štvrtina
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
8
|
Uchida K, Samejima M, Okabe A, Fukuda A. Neuroprotective effects of melatonin against anoxia/aglycemia stress, as assessed by synaptic potentials and superoxide production in rat hippocampal slices. J Pineal Res 2004; 37:215-22. [PMID: 15485546 DOI: 10.1111/j.1600-079x.2004.00159.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Melatonin, which plays an important role in circadian rhythm regulation, is highly potent endogenous free radical scavenger and antioxidant. To clarify the neuroprotective effects of melatonin as a free radical scavenger, we recorded changes in synaptic potentials and monitored the generation of superoxide (O)(2)(-) (using hydroethidine) in the CA1 pyramidal layers of rat hippocampal slices exposed to anoxia/aglycemia ('ischemic') stress. Synaptic responses evoked by stimulation of Schaffer collateral/commissural afferents were suppressed by ischemic stress. When the duration of the stress was 8 min, the suppression was reversible, irrespective of the presence or absence of melatonin treatment, while the amount of O(2)(-) generated was reduced by the presence of melatonin. When stress duration was 12 min, the suppression of synaptic responses lasted more than 90 min, but melatonin significantly improved the recovery. The amount of O(2)(-) generated in the 'recirculation' phase after a 12 min ischemic stress was less in the ischemic alone group than in the melatonin-treated group. This probably reflects that the number of viable cells with the ability to generate O(2)(-) had been reduced by the more severe ischemic stress. Other radical scavengers (ascorbic acid and alpha-tocopherol) had similar effects. These results show that melatonin has the potential to protect the functions of neurons against an ischemic insult by reducing O(2)(-) generation.
Collapse
Affiliation(s)
- Katsuhisa Uchida
- Department of Physiology, Hamamatsu University School of Medicine, 20-1 Handayama 1-chrome, Hamamatsu 431-3192, Japan.
| | | | | | | |
Collapse
|
9
|
Peeters C, Hoelen D, Groenendaal F, van Bel F, Bär D. Deferoxamine, allopurinol and oxypurinol are not neuroprotective after oxygen/glucose deprivation in an organotypic hippocampal model, lacking functional endothelial cells. Brain Res 2003; 963:72-80. [PMID: 12560112 DOI: 10.1016/s0006-8993(02)03843-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Reactive oxygen species-induced reperfusion injury of the brain is an important cause of neonatal morbidity and mortality following perinatal hypoxia-ischemia. Deferoxamine, allopurinol and oxypurinol have previously been shown to be neuroprotective in vivo during or directly after hypoxia-ischemia. To further characterize and more precisely elucidate whether the neuroprotective properties of these agents are mediated via neuronal and glial cells, or whether endothelial cells contribute to this effect, we tested their ability to protect CA1 neurons in organotypic hippocampal slices. Hippocampal slices obtained from 8-day-old rats were cultured for 7 days and exposed to oxygen/glucose deprivation for 50 min, or used as control slices. Cell damage was assessed at 48 h after oxygen/glucose deprivation using propidium iodide staining. At different time points following oxygen/glucose deprivation we administered dizocilpine, 6-cyano-7-nitroquinoxaline-2,3-dione, and alpha-phenyl-N-tert-butyl nitrone for validation purposes. Deferoxamine, allopurinol or oxypurinol were used as test substances. As expected, 89% and 98% protection was demonstrated with dizocilpine present during or during/after oxygen/glucose deprivation resp. alpha-Phenyl-N-tert-butyl nitrone administered during/after oxygen/glucose deprivation provided 44% protection. However, iron chelation with deferoxamine and inhibition of xanthine oxidase by allopurinol or oxypurinol did not confer neuroprotection. The neuroprotective effect of deferoxamine, allopurinol or oxypurinol, as seen in vivo, may be obtained via inhibition of the production of damaging factors by blood born substances or endothelial cells.
Collapse
Affiliation(s)
- Cacha Peeters
- Department of Neonatology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Günther A, Manaenko A, Franke H, Dickel T, Berrouschot J, Wagner A, Illes P, Reinhardt R. Early biochemical and histological changes during hyperbaric or normobaric reoxygenation after in vitro ischaemia in primary corticoencephalic cell cultures of rats. Brain Res 2002; 946:130-8. [PMID: 12133602 DOI: 10.1016/s0006-8993(02)02872-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In a first series of experiments, the morphological changes of corticoencephalic cells by ischaemia were determined by staining with celestine blue-acid fuchsin in order to classify cells as intact, dark basophilic (supposedly reversibly injured) and preacidophilic or acidophilic (profoundly injured). Hypoxia and glucose-deprivation (in vitro ischaemia) markedly decreased the number of intact cells and correspondingly increased the number of both reversibly and profoundly damaged cells. The morphological characteristics indicated a partial recovery during reoxygenation either in the absence or presence of glucose and irrespective of whether normobaric or hyperbaric oxygen was used. In a second series of experiments, nucleoside triphosphate and diphosphate levels were determined in corticoencephalic cultures by high-performance liquid chromatography. Hypoxia in combination with glucose-deficiency markedly decreased the ATP:ADP, GTP:GDP and UTP:UDP ratios. A still larger fall of these ratios was observed both after normobaric and hyperbaric reoxygenation. In contrast, both normobaric and hyperbaric reoxygenation in the presence of glucose led to an almost complete recovery near the control normoxic values. In conclusion, the histological changes were not adequately reflected by changes in the nucleoside triphosphate:diphosphate ratios and, in addition, hyperbaric oxygen had neither favourable nor unfavourable effects on the early morphological and functional restitution of ischaemically damaged cells under the conditions of the present study.
Collapse
Affiliation(s)
- A Günther
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, D-04107 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Sulli A, Maestroni GJM, Villaggio B, Hertens E, Craviotto C, Pizzorni C, Briata M, Seriolo B, Cutolo M. Melatonin serum levels in rheumatoid arthritis. Ann N Y Acad Sci 2002; 966:276-83. [PMID: 12114284 DOI: 10.1111/j.1749-6632.2002.tb04227.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pineal hormone melatonin (MLT) exerts a variety of effects on the immune system. MLT activates immune cells and enhances inflammatory cytokine and nitric oxide production. Cytokines are strongly involved in the synovial immune and inflammatory response in rheumatoid arthritis (RA) and reach the peak of concentration in the early morning, when MLT serum level is higher. Nocturnal MLT serum levels were evaluated in 10 RA patients and in 6 healthy controls. Blood samples were obtained at 8 and 12 p.m., as well as at 2, 4, 6, and 8 a.m. MLT serum levels at 8 p.m. and 8 a.m. were found to be higher in RA patients than in controls (p < 0.05). In both RA patients and healthy subjects, MLT progressively increased from 8 p.m. to the first hours of the morning, when the peak level was reached (p < 0.02). However, MLT serum level reached the peak at least two hours before in RA patients than in controls (p < 0.05). Subsequently, in RA patients, MLT concentration showed a plateau level lasting two to three hours, an effect not observed in healthy controls. After 2 a.m., MLT levels decreased similarly in both RA patients and healthy subjects. Several clinical symptoms of RA, such as morning gelling, stiffness, and swelling, which are more evident in the early morning, might be related to the neuroimmunomodulatory effects exerted by MLT on synovitis and might be explained by the imbalance between cortisol serum levels (lower in RA patients) and MLT serum levels (higher in RA patients).
Collapse
Affiliation(s)
- A Sulli
- Laboratory and Division of Rheumatology, Department of Internal Medicine and Medical Specialities, University of Genova, Genova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|