1
|
|
2
|
Gütlich P, Gaspar AB, Garcia Y. Spin state switching in iron coordination compounds. Beilstein J Org Chem 2013; 9:342-91. [PMID: 23504535 PMCID: PMC3596041 DOI: 10.3762/bjoc.9.39] [Citation(s) in RCA: 502] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/18/2013] [Indexed: 11/29/2022] Open
Abstract
The article deals with coordination compounds of iron(II) that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices. The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST) and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II), with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligo- and polynuclear iron(II) complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property.
Collapse
Affiliation(s)
- Philipp Gütlich
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Staudingerweg 9, 55099 Mainz, Germany
| | - Ana B Gaspar
- Institut de Ciència Molecular (ICMOL)/Departament de Química Inorgànica, Universitat de València, Edifici de Instituts de Paterna, Apartat de Correus 22085, 46071 València, Spain
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, MOST – Inorganic Chemistry, Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain la Neuve, Belgium
| |
Collapse
|
3
|
Halcrow MA. Structure:function relationships in molecular spin-crossover complexes. Chem Soc Rev 2011; 40:4119-42. [PMID: 21483934 DOI: 10.1039/c1cs15046d] [Citation(s) in RCA: 684] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin-crossover compounds are becoming increasingly popular for device and sensor applications, and in soft materials, that make use of their switchable colour, paramagnetism and conductivity. The de novo design of new solid spin-crossover compounds with pre-defined switching properties is desirable for application purposes. This challenging problem of crystal engineering requires an understanding of how the temperature and cooperativity of a spin-transition are influenced by the structure of the bulk material. Towards that end, this critical review presents a survey of molecular spin-crossover compounds with good availability of crystallographic data. A picture is emerging that changes in molecular shape between the high- and low-spin states, and the ability of a lattice to accommodate such changes, can play an important role in determining the existence and the cooperativity of a thermal spin-transition in the solid state (198 references).
Collapse
Affiliation(s)
- Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT. m.a.halcrow@ leeds.ac.uk
| |
Collapse
|
4
|
Faulmann C, Dorbes S, Lampert S, Jacob K, Garreau de Bonneval B, Molnár G, Bousseksou A, Real JA, Valade L. Crystal structure, magnetic properties and Mössbauer studies of [Fe(qsal)2][Ni(dmit)2]. Inorganica Chim Acta 2007. [DOI: 10.1016/j.ica.2007.03.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Nasser J, Topçu S, Chassagne L, Bousseksou A, Guillon T, Alayli Y. 3d Electrons-molecular vibrations coupling in spin conversion compounds molecules: A quantitative study for the [Fe(phen)2(NCS)2] molecules. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2007.07.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Lemercier G, Bréfuel N, Shova S, Wolny JA, Dahan F, Verelst M, Paulsen H, Trautwein AX, Tuchagues JP. A Range of Spin-Crossover TemperatureT1/2>300 K Results from Out-of-Sphere Anion Exchange in a Series of Ferrous Materials Based on the 4-(4-Imidazolylmethyl)-2-(2-imidazolylmethyl)imidazole (trim) Ligand, [Fe(trim)2]X2 (X=F, Cl, Br, I): Comparison of Experimental Results with Those Derived from Density Functional Theory Calculations. Chemistry 2006; 12:7421-32. [PMID: 16874821 DOI: 10.1002/chem.200501249] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The synthesis and characterization of [FeII(trim)2]Cl2 (2), [FeII(trim)2]Br2MeOH (3), and [FeII(trim)2]I2MeOH (4), including the X-ray crystal structure determinations of 2 (50 and 293 K) and 4 (293 K), have been performed and their properties have been examined. In agreement with the magnetic susceptibility results, the Mössbauer data show the presence of high-spin (HS) to low-spin (LS) crossover with a range of T1/2 larger than 300 K (from approximately 20 K for [FeII(trim)2]F2 (1) to approximately 380 K for 4). All complexes in this series include the same [Fe(trim)2]2+ complex cation: the ligand field comprises a constant contribution from the trim ligands and a variable one originating from the out-of-sphere anions, which is transmitted to the metal center by the connecting imidazole rings and hydrogen bonds. The impressive variation in the intrinsic characteristics of the spin-crossover (SCO) phenomenon in this series is then interpreted as an inductive effect of the anions transmitted to the nitrogen donors through the hydrogen bonds. Based on this qualitative analysis, an increased inductive effect of the out-of-sphere anion corresponds to a decreased SCO temperature T1/2, in agreement with the experimental results. Electronic structure calculations with periodic boundary conditions have been performed that show the importance of intermolecular effects in tuning the ligand field, and thus in determining the transition temperature. Starting with the geometries obtained from the X-ray studies, the [FeII(trim)2]X2 complex molecules 1-4 have been investigated both for the single molecules and the crystal lattices with the local density approximation of density functional theory. The bulk geometries of the complex cations deduced from the X-ray studies and those calculated are in fair agreement for both approaches. However, the trend observed for the transition temperatures of 1-4 disagrees with the trend for the spin-state splittings ES (difference EHS-ELS between the energy of the HS and LS isomers) calculated for the isolated molecules, whereas it agrees with the trend for ES calculated with periodic boundary conditions. The latter calculations predict the strongest stabilization of the HS state for the fluoride complex, which actually is essentially HS above T=50 K, while the most pronounced stabilization of the LS state is predicted for 4, in line with the experimental results.
Collapse
Affiliation(s)
- Gilles Lemercier
- Laboratoire de Chimie de Coordination du CNRS, UPR 8241 205 route de Narbonne, 31077 Toulouse Cédex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Salmon L, Bousseksou A, Donnadieu B, Tuchagues JP. Two Novel Iron(II) Materials Based on Dianionic N4O2 Schiff Bases: Structural Properties and Spin-Crossover Characteristics in the Series [Fe(3-X,5-NO2-sal-N(1,4,7,10)] (X = H, 3-MeO, 3-EtO). Inorg Chem 2005; 44:1763-73. [PMID: 15762703 DOI: 10.1021/ic048387k] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two spin-crossover (SCO) complexes [Fe(II)(3-MeO,5-NO2-sal-N(1,4,7,10)] (1) and [Fe(II)(3-EtO,5-NO2-sal-N(1,4,7,10)] (2) have been prepared and studied (3-MeO,5-NO2-sal-N(1,4,7,10) and 3-EtO,5-NO2-sal-N(1,4,7,10) are deprotonated 2-[12-(hydroxy-3-methoxy-5-nitrophenyl)-2,5,8,11-tetraazadodeca-1,11-dien-1-yl]-2-methoxy-4-nitrophenol and 2-[12-(hydroxy-3-ethoxy-5-nitrophenyl)-2,5,8,11-tetraazadodeca-1,11-dien-1-yl]-2-ethoxy-4-nitrophenol, respectively). The X-ray diffraction analysis of complex 1 (C22H26N6O8Fe) evidenced the same Pbnb orthorhombic system at 160 K (high-spin (HS) state) and 100 K (low-spin (LS) state). At 160 K, a = 8.4810(9) A, b = 14.7704(14) A, c = 18.769(2) A, V = 2351.2(4) A3, and Z = 4. At 100 K, a = 8.5317(8) A, b = 14.4674(15) A, c = 18.814(2) A, and V = 2322.2(4) A3. Complex 2 (C28H38N6O9Fe) crystallizes in the P1 triclinic system. At 160 K (HS state), a = 10.265(4) A, b = 10.861(4) A, c = 14.181(5) A, alpha = 84.18(4) degrees, beta = 70.53(5) degrees, gamma = 88.95(5) degrees, V = 1482.6(10) A3, and Z = 2. The iron(II) coordination sphere is distorted octahedral in 1 and 2 with a cis-alpha arrangement of the N4O2 donor set of the hexadentate ligand. The molecules are connected into 1D infinite chains through hydrogen contacts involving the secondary amine functions and O(nitro) atoms of the ligands in adjacent molecules. Investigation of their magnetic properties and Mossbauer spectra has revealed very different SCO behaviors: complex 1 exhibits a cooperative SCO without residual LS or HS fraction; complex 2 shows a LS <--> HS SCO involving approximately 5% of the Fe(II) ions in the 30-150 K range. The phenomenological cooperative interaction parameter J = 138 K evaluated from the area of the hysteresis loop indicates a cooperative effect weaker in 1 than in [Fe(II)(5NO2-sal-N(1,4,7,10))]. The theoretical approach to the SCO in 2 indicates a HS ground state and a LS first excited level 53 K above: the thermal dependence of the system occurs through population of vibrational states. Comparison of the structural and electronic properties of the ferrous SCO materials with parent N4O2 ligands shows that the properties of SCO are closely related to intermolecular interactions and crystal packing.
Collapse
Affiliation(s)
- Lionel Salmon
- Laboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
| | | | | | | |
Collapse
|
8
|
Bousseksou A, Molnár G, Matouzenko G. Switching of Molecular Spin States in Inorganic Complexes by Temperature, Pressure, Magnetic Field and Light: Towards Molecular Devices. Eur J Inorg Chem 2004. [DOI: 10.1002/ejic.200400571] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Azzedine Bousseksou
- Laboratoire de Chimie de Coordination, UPR 8241 CNRS, 205 route de Narbonne, 31077 Toulouse, France
| | - Gábor Molnár
- Laboratoire de Chimie de Coordination, UPR 8241 CNRS, 205 route de Narbonne, 31077 Toulouse, France
| | - Galina Matouzenko
- Laboratoire de Chimie (UMR CNRS and ENS‐Lyon No. 5182), Ecole Normale Supérieure de Lyon, 46, allée d’Italie, 69364 Lyon, France
| |
Collapse
|
9
|
Yamada M, Ooidemizu M, Ikuta Y, Osa S, Matsumoto N, Iijima S, Kojima M, Dahan F, Tuchagues JP. Interlayer Interaction of Two-Dimensional Layered Spin Crossover Complexes [FeIIH3LMe][FeIILMe]X (X- = ClO4-, BF4-, PF6-, AsF6-, and SbF6-; H3LMe = Tris[2-(((2-methylimidazol-4-yl)methylidene)amino)ethyl]amine). Inorg Chem 2003; 42:8406-16. [PMID: 14658894 DOI: 10.1021/ic034439e] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of two-dimensional (2D) spin crossover complexes, [FeIIH3L(Me)][FeIIL(Me)]X (X-=ClO4-, BF4-, PF6-, AsF6-, SbF6-) 1-5, have been synthesized, where H3L(Me) denotes an hexadentate N6 tripodlike ligand containing three imidazole groups, tris[2-(((2-methylimidazol-4-yl)methylidene)amino)ethyl]amine. Compounds 1-5 exhibit a two-step (HS-[FeIIH3L(Me)](2+) + HS-[FeIIL(Me)]-) <--> (HS-[FeIIH3L(Me)](2+) + LS-[FeIIL(Me)]-) <--> (LS-[FeIIH3L(Me)](2+) + LS-[FeIIL(Me)]-) spin-transition. The crystal structure of [FeIIH3L(Me)][FeIIL(Me)]PF6 (3) was determined at 295, 200, and 100 K. The structure consists of homochiral extended 2D puckered sheets, in which the complementary [FeIIH3L(Me)](2+) and [FeIIL(Me)]- capped tripodlike components, linked together by imidazole-imidazolate hydrogen bonds, are alternately arrayed in an up-and-down mode. The Fe-N bond distances and angles revealed that the FeII sites of both constituting units are in the high-spin (HS) state at 295 K; at 200 K, the FeII sites of [FeIIH3L(Me)](2+) and [FeIIL(Me)]- are in the HS and low-spin (LS) states, respectively. The FeII sites of both constituting units are in the LS state at 100 K. The size of the counteranion affects significantly the intra- and interlayer interactions leading to modifications of the spin crossover behavior. The onset of the second spin-transition of the ClO4- (1) and BF4- (2) salts adjoins the first spin-transition, while a mixed (HS-[FeIIH3L(Me)](2+) + LS-[FeIIL(Me)]-) spin-state spans a temperature range as wide as 70 K for salts 3-5 with larger counteranions, PF6-, AsF6-, and SbF6-, respectively. Compounds 1 and 2 showed remarkable LIESST (light induced excited spin state trapping) and reverse-LIESST effects, whereas 3-5 showed no remarkable LIESST effect. The interlayer interaction due to the size of the counteranion is an important factor governing the spin crossover behavior and LIESST effect.
Collapse
Affiliation(s)
- Masahiro Yamada
- Department of Chemistry, Faculty of Science, Kumamoto University, Kurokami 2-39-1, Kumamoto 860-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ikuta Y, Ooidemizu M, Yamahata Y, Yamada M, Osa S, Matsumoto N, Iijima S, Sunatsuki Y, Kojima M, Dahan F, Tuchagues JP. A New Family of Spin Crossover Complexes with a Tripod Ligand Containing Three Imidazoles: Synthesis, Characterization, and Magnetic Properties of [FeIIH3LMe](NO3)2·1.5H2O, [FeIIILMe]·3.5H2O, [FeIIH3LMe][FeIILMe]NO3, and [FeIIH3LMe][FeIIILMe](NO3)2 (H3LMe = Tris[2-(((2-methylimidazol-4-yl)methylidene)amino)ethyl]amine). Inorg Chem 2003; 42:7001-17. [PMID: 14577766 DOI: 10.1021/ic034495f] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new family of spin crossover complexes, [Fe(II)H(3)L(Me)](NO(3))(2).1.5H(2)O (1), [Fe(III)L(Me)].3.5H(2)O (2), [Fe(II)H(3)L(Me)][Fe(II)L(Me)]NO(3) (3), and [Fe(II)H(3)L(Me)][Fe(III)L(Me)](NO(3))(2) (4), has been synthesized and characterized, where H(3)L(Me) denotes a hexadentate N(6) tripod ligand containing three imidazole groups, tris[2-(((2-methylimidazol-4-yl)methylidene)amino)ethyl]amine. It was found that the spin and oxidation states of the iron complexes with this tripod ligand are tuned by the degree of deprotonation of the imidazole groups and by the 2-methyl imidazole substituent. Magnetic susceptibility and Mössbauer studies revealed that 1 is an HS-Fe(II) complex, 2 exhibits a spin equilibrium between HS and LS-Fe(III), 3 exhibits a two-step spin transition, where the component [Fe(II)L(Me)](-) with the deprotonated ligand participates in the spin transition process in the higher temperature range and the component [Fe(II)H(3)L(Me)](2+) with the neutral ligand participates in the spin transition process in the lower temperature range, and 4 exhibits spin transition of both the Fe(II) and Fe(III) sites. The crystal structure of 3 consists of homochiral extended 2D puckered sheets, in which the capped tripodlike components [Fe(II)H(3)L(Me)](2+) and [Fe(II)L(Me)](-) are alternately arrayed in an up-and-down mode and are linked by the imidazole-imidazolate hydrogen bonds. Furthermore, the adjacent 2D homochiral sheets are stacked in the crystal lattice yielding a conglomerate as confirmed by the enantiomeric circular dichorism spectra. Compounds 3 and 4 showed the LIESST (light induced excited spin state trapping) and reverse-LIESST effects upon irradiation with green and red light, respectively.
Collapse
Affiliation(s)
- Yuichi Ikuta
- Department of Chemistry, Faculty of Science, Kumamoto University, Kurokami 2-39-1, Kumamoto 860-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Boča R, Boča M, Ehrenberg H, Fuess H, Linert W, Renz F, Svoboda I. Spin crossover in iron(II) tris(2-(2′-pyridyl)benzimidazole) complex monitored by variable temperature methods: synchrotron powder diffraction, DSC, IR spectra, Mössbauer spectra, and magnetic susceptibility. Chem Phys 2003. [DOI: 10.1016/s0301-0104(03)00375-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Boca R, Boca M, Dlhán L, Falk K, Fuess H, Haase W, Jarosciak R, Papánková B, Renz F, Vrbová M, Werner R. Strong cooperativeness in the mononuclear iron(II) derivative exhibiting an abrupt spin transition above 400 K. Inorg Chem 2001; 40:3025-33. [PMID: 11399169 DOI: 10.1021/ic000807s] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spin crossover system, [Fe(bzimpy)(2)](ClO(4))(2).0.25H(2)O, was reinvestigated above room temperature (bzimpy = 2,6-bis(benzimidazol-2-yl)pyridine). The system exhibits an abrupt low-spin to high-spin transition at T(c) = 403 K. Liberation of a fractional amount of water does not affect the spin crossover: the system is perfectly reversible with a hysteresis width of DeltaT = 12 K. The existence of the hysteresis at such high temperature determines that the lowest limit of the solid-state cooperativity parameter is J/k > 403 K despite long iron(II) separations (10 A). The high cooperativeness has been assigned to a perfect pi-stacking of the benzimidazole rings in the crystal lattice at a distance as short as 3.6 A. Variable-temperature IR data and the heat capacity measurements match well the magnetic data. The thermodynamic properties are DeltaH = 17 kJ mol(-)(1), DeltaS = 43 J K(-)(1) mol(-)(1), so that the entropy of the spin transition shows a considerable contribution from the molecular vibrations. A theoretical model has been applied in fitting the magnetic data along the whole hysteresis path. A statistical distribution of the cooperativity parameter led to the feature that angled walls of the hysteresis loop are well reproduced.
Collapse
Affiliation(s)
- R Boca
- Department of Inorganic Chemistry, Slovak Technical University, SK-812 37 Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|