1
|
Matsuki H, Goto M, Motohashi M, Kiguchi A, Nakao T, Tamai N. Formation of intermediate gel-liquid crystalline phase on medium-chain phosphatidylcholine bilayers: Phase transitions depending on the bilayer packing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183197. [PMID: 31958435 DOI: 10.1016/j.bbamem.2020.183197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/27/2019] [Accepted: 01/15/2020] [Indexed: 11/28/2022]
Abstract
The bilayer phase transitions of medium-chain phosphatidylcholines with linear saturated acyl chains (Cn = 12, 13 and 14) were measured by high-pressure light-transmittance measurements and differential scanning calorimetry to investigate the formation of intermediate gel-liquid crystalline phase called Lx phase. The constructed phase diagrams showed that there existed a distinct region of the Lx phase between ripple gel (Pβ') and liquid crystalline (Lα) phase for multilamellar vesicle bilayers of C12PC and C13PC. The Lx phase of the C12PC bilayer was metastable at all pressures and disappeared at a higher pressure. In the C13PC bilayer, the Lx phase was stable and also disappeared at a higher pressure but its region markedly shrunk. By contrast, the Lx phase was not detected for the C14PC bilayer. Effects of other factors such as vesicle size and solvent substitution on the Lx phase of the C13PC bilayer were also examined. A decrease in vesicle size and solvent substitution from water to 50 wt% ethylene glycol solution promoted the Lx-phase formation as opposed to the effects of acyl-chain elongation and pressurization. The fluorescence data of the C13PC bilayer with different vesicle sizes showed that the Lx phase is caused by the difference of local packing in the bilayer. Considering these facts, we concluded that the Lx phase is an intermediate gel-Lα phase that has gel-phase monolayers with negative curvature and Lα-phase monolayers with positive curvature. The formation mechanism of the Lx-phase in stacked bilayers and dispersed vesicles is also explainable by this difference in packing state.
Collapse
Affiliation(s)
- Hitoshi Matsuki
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan.
| | - Masaki Goto
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Makiko Motohashi
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Aoi Kiguchi
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Toshiki Nakao
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Nobutake Tamai
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| |
Collapse
|
2
|
Structural Analysis of a Modern o/w-Emulsion Stabilized by a Polyglycerol Ester Emulsifier and Consistency Enhancers. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2010003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Matsuki H, Kato K, Okamoto H, Yoshida S, Goto M, Tamai N, Kaneshina S. Ligand partitioning into lipid bilayer membranes under high pressure: Implication of variation in phase-transition temperatures. Chem Phys Lipids 2017; 209:9-18. [PMID: 29042237 DOI: 10.1016/j.chemphyslip.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/07/2017] [Accepted: 10/08/2017] [Indexed: 11/30/2022]
Abstract
The variation in phase-transition temperatures of dipalmitoylphosphatidylcholine (DPPC) bilayer membrane by adding two membrane-active ligands, a long-chain fatty acid (palmitic acid (PA)) and an inhalation anesthetic (halothane (HAL)), was investigated by light-transmittance measurements and fluorometry. By assuming the thermodynamic colligative property for the bilayer membrane at low ligand concentrations, the partitioning behavior of these ligands into the DPPC bilayer membrane was considered. It was proved from the differential partition coefficients between two phases that PA has strong affinity with the gel (lamellar gel) phase in a micro-molal concentration range and makes the bilayer membrane more ordered, while HAL has strong affinity with the liquid crystalline phase in a milli-molal concentration range and does the bilayer membrane more disordered. The transfer volumes of both ligands from the aqueous solution to each phase of the DPPC bilayer membrane showed that the preferential partitioning of the PA molecule into the gel (lamellar gel) produces about 20% decrease in transfer volume as compared with the liquid crystalline phase, whereas that of the HAL molecule into the liquid crystalline phase does about twice increase in transfer volume as compared with the gel (ripple gel) phase. Furthermore, changes in thermotropic and barotropic phase behavior of the DPPC bilayer membrane by adding the ligand was discussed from the viewpoint of the ligand partitioning. Reflecting the contrastive partitioning of PA and HAL into the pressure-induced interdigitated gel phase among the gel phases, it was revealed that PA suppresses the formation of the interdigitated gel phase under high pressure while HAL promotes it. These results clearly indicate that each phase of the DPPC bilayer membrane has a potential to recognize various ligand molecules.
Collapse
Affiliation(s)
- Hitoshi Matsuki
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan.
| | - Kentaro Kato
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8506, Japan
| | - Hirotsugu Okamoto
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8506, Japan
| | - Shuntaro Yoshida
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8506, Japan
| | - Masaki Goto
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Nobutake Tamai
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Shoji Kaneshina
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8506, Japan
| |
Collapse
|
4
|
Kowalik B, Schlaich A, Kanduč M, Schneck E, Netz RR. Hydration Repulsion Difference between Ordered and Disordered Membranes Due to Cancellation of Membrane-Membrane and Water-Mediated Interactions. J Phys Chem Lett 2017; 8:2869-2874. [PMID: 28590133 DOI: 10.1021/acs.jpclett.7b00977] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydration repulsion acts between all sufficiently polar surfaces in water at small separations and prevents dry adhesion up to kilobar pressures. Yet it remained unclear whether this ubiquitous force depends on surface structure or is a sole water property. We demonstrate that previous deviations among different experimental measurements of hydration pressures in phospholipid bilayer stacks disappear when plotting data consistently as a function of repeat distance or membrane surface distance. The resulting pressure versus distance curves agree quantitatively with our atomistic simulation results and exhibit different decay lengths in the ordered gel and the disordered fluid states. This suggests that hydration forces are not caused by water ordering effects alone. Splitting the simulated total pressure into membrane-membrane and water-mediated parts shows that these contributions are opposite in sign and of similar magnitude, thus they are equally important. The resulting net hydration pressure between membranes is what remains from the near-cancellation of these ambivalent contributions.
Collapse
Affiliation(s)
- Bartosz Kowalik
- Department of Physics, Freie Universität Berlin , 14195 Berlin, Germany
| | | | - Matej Kanduč
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin , 14109 Berlin, Germany
| | - Emanuel Schneck
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
| | - Roland R Netz
- Department of Physics, Freie Universität Berlin , 14195 Berlin, Germany
| |
Collapse
|
5
|
Matsuki H, Endo S, Sueyoshi R, Goto M, Tamai N, Kaneshina S. Thermotropic and barotropic phase transitions on diacylphosphatidylethanolamine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1222-1232. [DOI: 10.1016/j.bbamem.2017.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/03/2017] [Accepted: 03/29/2017] [Indexed: 11/30/2022]
|
6
|
Goto M, Endo T, Yano T, Tamai N, Kohlbrecher J, Matsuki H. Comprehensive characterization of temperature- and pressure-induced bilayer phase transitions for saturated phosphatidylcholines containing longer chain homologs. Colloids Surf B Biointerfaces 2015; 128:389-397. [DOI: 10.1016/j.colsurfb.2015.02.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/06/2015] [Accepted: 02/17/2015] [Indexed: 11/25/2022]
|
7
|
Abstract
Bilayers formed by phospholipids are fundamental structures of biological membranes. The mechanical perturbation brought about by pressure significantly affects the membrane states of phospholipid bilayers. In this chapter, we focus our attention on the pressure responsivity for bilayers of some major phospholipids contained in biological membranes. At first, the membrane states and phase transitions of phospholipid bilayers depending on water content, temperature and pressure are explained by using the bilayer phase diagrams of dipalmitoylphosphatidylcholine (DPPC), which is the most familiar phospholipid in model membrane studies. Subsequently, the thermotropic and barotropic bilayer phase behavior of various kinds of phospholipids with different molecular structures is discussed from the comparison of their temperature--pressure phase diagrams to that of the DPPC bilayer. It turns out that a slight change in the molecular structure of the phospholipids produces a significant difference in the bilayer phase behavior. The systematic pressure studies on the phase behavior of the phospholipid bilayers reveal not only the pressure responsivity for the bilayers but also the role and meaning of several important phospholipids existing in real biological membranes.
Collapse
|
8
|
Matsuki H, Goto M, Tada K, Tamai N. Thermotropic and barotropic phase behavior of phosphatidylcholine bilayers. Int J Mol Sci 2013; 14:2282-302. [PMID: 23348926 PMCID: PMC3587988 DOI: 10.3390/ijms14022282] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 11/17/2022] Open
Abstract
Bilayers formed by phospholipids are frequently used as model biological membranes in various life science studies. A characteristic feature of phospholipid bilayers is to undergo a structural change called a phase transition in response to environmental changes of their surroundings. In this review, we focus our attention on phase transitions of some major phospholipids contained in biological membranes, phosphatidylcholines (PCs), depending on temperature and pressure. Bilayers of dipalmitoylphosphatidylcholine (DPPC), which is the most representative lipid in model membrane studies, will first be explained. Then, the bilayer phase behavior of various kinds of PCs with different molecular structures is revealed from the temperature-pressure phase diagrams, and the difference in phase stability among these PC bilayers is discussed in connection with the molecular structure of the PC molecules. Furthermore, the solvent effect on the phase behavior is also described briefly.
Collapse
Affiliation(s)
- Hitoshi Matsuki
- Department of Life System, Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan; E-Mails: (M.G.); (N.T.)
| | - Masaki Goto
- Department of Life System, Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan; E-Mails: (M.G.); (N.T.)
| | - Kaori Tada
- Department of Material Science and Technology, Kochi National College of Technology, 200-1 Monobe-otsu, Nankoku, Kochi 783-8508, Japan; E-Mail:
| | - Nobutake Tamai
- Department of Life System, Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan; E-Mails: (M.G.); (N.T.)
| |
Collapse
|
9
|
Bista RK, Bruch RF, Covington AM. Infrared spectroscopic study of thermotropic phase behavior of newly developed synthetic biopolymers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 81:583-589. [PMID: 21764360 DOI: 10.1016/j.saa.2011.06.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 05/31/2023]
Abstract
The thermotropic phase behavior of a suite of newly developed self-forming synthetic biopolymers has been investigated by variable-temperature Fourier transform infrared (FT-IR) absorption spectroscopy. The temperature-induced infrared spectra of these artificial biopolymers (lipids) composed of 1,2-dimyristoyl-rac-glycerol-3-dodecaethylene glycol (GDM-12), 1,2-dioleoyl-rac-glycerol-3-dodecaethylene glycol (GDO-12) and 1,2-distearoyl-rac-glycerol-3-triicosaethylene glycol (GDS-23) in the spectral range of 4000-500 cm(-1) have been acquired by using a thin layered FT-IR spectrometer in conjunction with a custom built temperature-controlled demountable liquid cell having a pathlength of ∼15 μm. The lipids under consideration have long hydrophobic acyl chains and contain various units of hydrophilic polyethylene glycol (PEG) headgroups. In contrast to conventional phospholipids, this new kind of lipids forms liposomes or nanovesicles spontaneously upon hydration, without requiring external activation energy. We have found that the thermal stability of the PEGylated lipids differs greatly depending upon the acyl chain-lengths as well as the nature of the associated bonds and the number of PEG headgroup units. In particular, GDM-12 (saturated 14 hydrocarbon chains with 12 units of PEG headgroup) exhibits one sharp order-disorder phase transition over a temperature range increasing from 3°C to 5°C. Similarly, GDS-23 (saturated 18 hydrocarbon chains with 23 units of PEG headgroup) displays comparatively broad order-disorder phase transition profiles between temperature 17°C and 22°C. In contrast, GDO-12 (monounsaturated 18 hydrocarbon chains with 12 units of PEG headgroup) does not reveal any order-disorder transition phenomena demonstrating a highly disordered behavior for the entire temperature range. To confirm these observations, differential scanning calorimetry (DSC) was applied to the samples and revealed good agreement with the infrared spectroscopy results. Finally, the investigation of thermal properties of lipids is extremely critical for numerous purposes and the result obtained in this work may find application in various studies including the development of PEGylated lipid based novel drug and substances delivery vehicles.
Collapse
Affiliation(s)
- Rajan K Bista
- Department of Physics, University of Nevada, Reno, NV 89557, USA.
| | | | | |
Collapse
|
10
|
Goto M, Ishida S, Ito Y, Tamai N, Matsuki H, Kaneshina S. Thermotropic and barotropic phase transitions of dialkyldimethylammonium bromide bilayer membranes: effect of chain length. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5824-5831. [PMID: 21520909 DOI: 10.1021/la200323h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The bilayer phase transitions of dialkyldimethylammonium bromides (2C(n)Br; n = 12, 14, 16) were observed by differential scanning calorimetry and high-pressure light-transmittance measurements. Under atmospheric pressure, the 2C(12)Br bilayer membrane underwent the stable transition from the lamellar crystal (L(c)) phase to the liquid crystalline (L(α)) phase. The 2C(14)Br bilayer underwent the main transition from the metastable lamellar gel (L(β)) phase to the metastable L(α) phase in addition to the stable L(c)/L(α) transition. For the 2C(16)Br bilayer, moreover, three kinds of phase transitions were observed: the metastable main transition, the metastable transition from the metastable lamellar crystal (L(c(2))) phase to the metastable L(α) phase, and the stable lamellar crystal (L(c(1)))/L(α) transition. The temperatures of all the phase transitions elevated almost linearly with increasing pressure. The temperature (T)-pressure (p) phase diagrams of the 2C(12)Br and 2C(14)Br bilayers were simple, but that of the 2C(16)Br bilayer was complex; that is, the T-p curves for the metastable main transition and the L(c(2))/L(α) transition intersect at ca. 25 MPa, which means the inversion of the relative phase stability between the metastable phases of L(β) and L(c(2)) above and below the pressure. Moreover, the T-p curve of the L(c(2))/L(α) transition was separated into two curves under high pressure, and as a result, the pressure-induced L(c(2P)) phase appeared in between. Thermodynamic quantities for phase transitions of the 2C(n)Br bilayers increased with an increase in alkyl-chain length. The chain-length dependence of the phase-transition temperature for all kinds of transitions observed suggests that the stable L(c(1))/L(α) transition incorporates the metastable L(c(2))/L(α) transition in the bilayers of 2C(n)Br with shorter alkyl chains, and the main-transition of the 2C(12)Br bilayer would occur at a temperature below 0 °C.
Collapse
Affiliation(s)
- Masaki Goto
- Department of Life System, Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Goto M, Ito Y, Ishida S, Tamai N, Matsuki H, Kaneshina S. Hydrostatic pressure reveals bilayer phase behavior of dioctadecyldimethylammonium bromide and chloride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1592-1598. [PMID: 21261314 DOI: 10.1021/la104552z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bilayer phase transitions of dioctadecyldimethylammonium bromide (2C(18)Br) and chloride (2C(18)Cl) were observed by differential scanning calorimetry and high-pressure light-transmittance measurements. The 2C(18)Br bilayer membrane showed different kinds of transitions depending on preparation methods of samples under atmospheric pressure. Under certain conditions, the 2C(18)Br bilayer underwent three kinds of transitions, the metastable transition from the metastable lamellar crystal (L(c(2))) phase to the metastable lamellar gel (L(β)) phase at 35.4 °C, the metastable main transition from the metastable L(β) phase to the metastable liquid crystalline (L(α)) phase at 44.5 °C, and the stable transition from the stable lamellar crystal (L(c(1))) phase to the stable L(α) phase at 52.8 °C. On the contrary, the 2C(18)Cl bilayer underwent two kinds of transitions, the stable transition from the stable L(c) phase to the stable L(β) phase at 19.7 °C and the stable main transition from the stable L(β) phase to the stable L(α) phase at 39.9 °C. The temperatures of the phase transitions of the 2C(18)Br and 2C(18)Cl bilayers were almost linearly elevated by applying pressure. It was found from the temperature (T)-pressure (p) phase diagram of the 2C(18)Br bilayer that the T-p curves for the main transition and the L(c(1))/L(α) transition intersect at ca. 130 MPa because of the larger slope of the former transition curve. On the other hand, the T-p phase diagram of the 2C(18)Cl bilayer took a simple shape. The thermodynamic properties for the main transition of the 2C(18)Br and 2C(18)Cl bilayers were comparable to each other, whereas those for the L(c(1))/L(α) transition of the 2C(18)Br bilayer showed considerably high values, signifying that the L(c(1)) phase of the 2C(18)Br bilayer is extremely stable. These differences observed in both bilayers are attributable to the difference in interaction between a surfactant and its counterion.
Collapse
Affiliation(s)
- Masaki Goto
- Department of Life System, Institute of Technology, and Science, University of Tokushima, 2-1 minamijosanjima-cho, Tokushima 770-8506, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Waite GN, Egot-Lemaire SJP, Balcavage WX. A novel view of biologically active electromagnetic fields. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s10669-011-9319-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Tamai N, Goto M, Matsuki H, Kaneshina S. A mechanism of pressure-induced interdigitation of lipid bilayers. ACTA ACUST UNITED AC 2010. [DOI: 10.1088/1742-6596/215/1/012161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Bista RK, Bruch RF, Covington AM. Vibrational spectroscopic studies of newly developed synthetic biopolymers. Biopolymers 2010; 93:403-17. [DOI: 10.1002/bip.21382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Chain asymmetry alters thermotropic and barotropic properties of phospholipid bilayer membranes. Chem Phys Lipids 2009; 161:65-76. [DOI: 10.1016/j.chemphyslip.2009.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 06/26/2009] [Accepted: 07/06/2009] [Indexed: 11/21/2022]
|
16
|
Tada K, Miyazaki E, Goto M, Tamai N, Matsuki H, Kaneshina S. Barotropic and thermotropic bilayer phase behavior of positional isomers of unsaturated mixed-chain phosphatidylcholines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1056-63. [DOI: 10.1016/j.bbamem.2009.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 01/19/2009] [Accepted: 02/11/2009] [Indexed: 10/21/2022]
|
17
|
Nishimoto M, Hata T, Goto M, Tamai N, Kaneshina S, Matsuki H, Ueda I. Interaction modes of long-chain fatty acids in dipalmitoylphosphatidylcholine bilayer membrane: contrast to mode of inhalation anesthetics. Chem Phys Lipids 2009; 158:71-80. [DOI: 10.1016/j.chemphyslip.2009.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/22/2008] [Accepted: 02/06/2009] [Indexed: 10/21/2022]
|
18
|
Calorimetric studies of the effect of cis-carotenoids on the thermotropic phase behavior of phosphatidylcholine bilayers. Biophys Chem 2008; 140:108-14. [PMID: 19126445 DOI: 10.1016/j.bpc.2008.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/11/2008] [Accepted: 12/11/2008] [Indexed: 11/20/2022]
Abstract
Carotenoid geometry is a factor that determines their solubility and orientation in the lipid membrane as well as antioxidant capacities and bioavailability. The effects of the cis-isomers of carotenoids (zeaxanthin and beta-carotene) on the thermotropic properties of lipid membranes formed with dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) were investigated by means of differential scanning calorimetry. The results were compared with the effects caused by the all-trans-isomer. Both the trans and cis isomers of zeaxanthin shifted the main phase transition temperature to lower values and decreased the cooperativity of the phase transition. The effect of all-trans zeaxanthin on the physical properties of the lipid bilayers has been shown to strongly depend on the hydrocarbon chain length of the membrane. In the case of cis-zeaxanthin this relationship is weaker.
Collapse
|
19
|
Bista RK, Bruch RF, Covington AM, Sorger A, Gerstmann T, Otto A. Investigations of thermotropic phase behavior of newly developed synthetic PEGylated lipids using Raman spectro-microscopy. Biopolymers 2008; 89:1012-20. [PMID: 18615661 DOI: 10.1002/bip.21051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this article, a temperature-controlled Raman spectro-microscopic technique has been utilized to detect and analyze the phase behaviors of two newly developed synthetic PEGylated lipids trademarked as QuSomes, which spontaneously form liposomes upon hydration in contrast to conventional lipids. The amphiphiles considered in this study differ in their hydrophobic hydrocarbon chain length and contain different units of polyethylene glycol (PEG) hydrophilic headgroups. Raman spectra of these new artificial lipids have been recorded in the spectral range of 500-3100 cm(-1) by using a Raman microscope system in conjunction with a temperature-controlled sample holder. The gel to liquid phase transitions of the sample lipids composed of pure 1,2-dimyristoyl-rac-glycerol-3-dodecaethylene glycol (GDM-12) and 1,2-distearoyl-rac-glycerol-3-triicosaethylene glycol (GDS-23) have been revealed by plotting peak intensity ratios in the C-H stretching region as a function of temperature. From this study, we have found that the main phase transitions occur at a temperature of approximately 5.2 and 21.2 degrees C for pure GDM-12 and GDS-23, respectively. Furthermore, the lipid GDS-23 also shows a postphase transition temperature at 33.6 degrees C. To verify our results, differential scanning calorimetry (DSC) experiments have been conducted and the results are found to be in an excellent agreement with Raman scattering data. This important information may find application in various studies including the development of lipid-based novel substances and drug delivery systems.
Collapse
Affiliation(s)
- Rajan K Bista
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Krishnamurty S, Stefanov M, Mineva T, Bégu S, Devoisselle JM, Goursot A, Zhu R, Salahub DR. Lipid Thermodynamics: Melting is Molecular. Chemphyschem 2008; 9:2321-4. [DOI: 10.1002/cphc.200800511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
The influence of 1-alkanols and external pressure on the lateral pressure profiles of lipid bilayers. Biophys J 2008; 95:5766-78. [PMID: 18849412 DOI: 10.1529/biophysj.108.142125] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The suggestion by Robert Cantor, that drug-induced pressure changes in lipid bilayers can change the conformational equilibrium between open and closed states of membrane proteins and thereby cause anesthesia, attracted much attention lately. Here, we studied the effect of both large external pressure and of 1-alkanols of different chain lengths--some of them anesthetics, others not--on the lateral pressure profiles across dimyristoylphosphatidylcholine (DMPC) bilayers by molecular dynamics simulations. For a pure DMPC bilayer, high pressure both reduced and broadened the tension at the interface hydrophobic/hydrophilic and diminished the repulsion between the phospholipid headgroups. Whereas the effect of ethanol on the lateral pressure profile was similar to the effect of a large external pressure on a DMPC bilayer, long-chain 1-alkanols significantly amplified local maxima and minima in the lateral pressure profile. For most 1-alkanols, external pressure had moderate effects and did not reverse the changes 1-alkanols exerted on the pressure profile. Nevertheless, assuming the bent helix model as a simple geometric model for the transmembrane region of a membrane protein, protein conformational equilibria were shifted in opposite directions by addition of 1-alkanols and additional application of external pressure.
Collapse
|
22
|
Thermotropic and barotropic phase transitions of dilauroylphosphatidylcholine bilayer. Chem Phys Lipids 2008; 153:138-43. [DOI: 10.1016/j.chemphyslip.2008.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 02/15/2008] [Accepted: 03/03/2008] [Indexed: 11/17/2022]
|
23
|
Tamai N, Uemura M, Takeichi T, Goto M, Matsuki H, Kaneshina S. A new interpretation of eutectic behavior for distearoylphosphatidylcholine–cholesterol binary bilayer membrane. Biophys Chem 2008; 135:95-101. [DOI: 10.1016/j.bpc.2008.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/27/2008] [Accepted: 03/27/2008] [Indexed: 11/26/2022]
|
24
|
Effect of hydrostatic pressure on the bilayer phase behavior of symmetric and asymmetric phospholipids with the same total chain length. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1067-78. [DOI: 10.1016/j.bbamem.2007.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 11/18/2022]
|
25
|
Kusube M, Tamai N, Matsuki H, Kaneshina S. Pressure-induced phase transitions of lipid bilayers observed by fluorescent probes Prodan and Laurdan. Biophys Chem 2008; 117:199-206. [PMID: 15961215 DOI: 10.1016/j.bpc.2005.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 05/24/2005] [Accepted: 05/24/2005] [Indexed: 11/20/2022]
Abstract
The fluorescence spectra of 6-propionyl-2-(dimethylamino)naphthalene (Prodan) and 6-dodecanoyl-2-(dimethylamino)naphthalene (Laurdan) in bilayer membranes of 1,2-distearoylphosphatidylcholine (DSPC) were observed as a function of pressure at constant temperature. The emission spectra of Prodan and Laurdan varied with the pressure-induced states of bilayer membranes. The maximum emission wavelength (lambda(max)) of Prodan characteristic of the liquid crystalline (L(alpha)), lamellar gel (L(beta)') and pressure-induced interdigitated gel (L(beta)I) phases of the DSPC bilayer was 480, 440 and 500 nm, respectively. On the other hand, the lambda(max) of Laurdan characteristic of the L(alpha) and L(beta)' phases was 480 and 440 nm in a similar manner as Prodan probe. However, no change in the lambda(max) was observed in spite of the occurrence of the interdigitation of bilayer. Since the lambda(max) reflects the solvent property around the probe molecules, we could speculate about the location of fluorescent probe in the bilayer membranes. In the L(alpha) phase the same chromophore group of Prodan and Laurdan probes distributes around phosphate group of lipid (i.e., polar region). The transformation of bilayer into the L(beta)' phase causes the Prodan and Laurdan molecules to move into the glycerol backbone (i.e., less polar) region. In the ripple gel (P(beta)') phase, the emission spectrum of Prodan shows a broad peak at about 480 nm and a shoulder around 440 nm, which means that the Prodan molecules are widespread over the wide range from the glycerol backbone to the hydrophilic part of bilayer. The P(beta)'/L(beta)I phase transition causes the Prodan molecule to squeeze out from the glycerol backbone region and to move the hydrophilic region near the bilayer surface. Contrarily, the Laurdan molecule was not squeezed out from the glycerol backbone region because the long acyl chain of Laurdan serves as an anchor in the hydrophobic core of bilayer. The ratio of fluorescence intensity of Prodan at 480 nm to that at 440 nm, F(480)/F(440), is available to observation of bilayer phase transitions. The plot of F(480)/F(440) versus pressure seems to be useful for the recognition of bilayer phase transition, especially the bilayer interdigitation.
Collapse
Affiliation(s)
- Masataka Kusube
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | | | | | | |
Collapse
|
26
|
Matsuki H, Miyazaki E, Sakano F, Tamai N, Kaneshina S. Thermotropic and barotropic phase transitions in bilayer membranes of ether-linked phospholipids with varying alkyl chain lengths. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:479-89. [PMID: 17141731 DOI: 10.1016/j.bbamem.2006.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 09/07/2006] [Accepted: 10/16/2006] [Indexed: 11/22/2022]
Abstract
The bilayer phase transitions of a series of ether-linked phospholipids, 1,2-dialkylphosphatidylcholines containing linear saturated alkyl chain (C(n)=12, 14, 16 and 18), were observed by differential scanning calorimetry (DSC) under ambient pressure and light-transmittance measurements under high pressure. The thermodynamic quantities of the pre- and main-transitions for the ether-linked PC bilayer membranes were calculated and compared with those of a series of ester-linked PCs, 1,2-diacylphosphatidylcholines. The thermodynamic quantities of the main transition for the ether-linked PC bilayers showed distinct dependence on alkyl-chain length and were slightly different from those of the ester-linked PC bilayers. From the comparison of thermodynamic quantities for the main transition between both PC bilayers, we revealed that the attractive interaction in the gel phase for the ether-linked PC bilayers is weaker than that for the ester-linked PC bilayers. Regarding the pretransition, although changes in enthalpy and entropy for both PC bilayers were comparable to each other, the volume changes of the ether-linked PC bilayers roughly doubled those of the ester-linked PC bilayers. The larger volume change results from the smallest partial molar volume of the ether-linked PC molecule in the interdigitated gel phase. Further, we constructed the temperature-pressure phase diagrams for the ether-linked PC bilayers by using the phase-transition data. The region of the interdigitated gel phase in the phase diagrams was extended by applying pressure and by increasing the alkyl-chain length of the molecule. Comparing the phase diagrams with those for the ester-linked PC bilayers, it was proved that the phase behavior of the ester-linked PC bilayers under high temperature and pressure is almost equivalent to that of the ether-linked PC bilayers in the vicinity of ambient pressure.
Collapse
Affiliation(s)
- Hitoshi Matsuki
- Department of Life System, Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan.
| | | | | | | | | |
Collapse
|
27
|
Matsuki H, Okuno H, Sakano F, Kusube M, Kaneshina S. Effect of deuterium oxide on the thermodynamic quantities associated with phase transitions of phosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1712:92-100. [PMID: 15869741 DOI: 10.1016/j.bbamem.2005.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 03/11/2005] [Accepted: 03/12/2005] [Indexed: 11/23/2022]
Abstract
The bilayer phase transitions of three kinds of phospholipids, dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC) and dihexadecylphosphatidylcholine (DHPC), in deuterium oxide (D(2)O) and hydrogen oxide (H(2)O) were observed by differential scanning calorimetry (DSC) under ambient pressure and light-transmittance measurements under high pressure. The DSC measurements showed that the substitution of H(2)O by D(2)O affected the pretransition temperatures and the main-transition enthalpies of all PC bilayers. The temperature-pressure phase diagrams for these PC bilayer membranes in both solvents were constructed by use of the data of light-transmittance measurements. Regarding the main transition of all PC bilayer membranes, there was no appreciable difference between the transition temperatures in D(2)O and H(2)O under high pressure. On the other hand, the phase transitions among the gel phases including the pretransition were significantly affected by the solvent substitution. The thermodynamic quantities of phase transitions for the PC bilayer membranes were evaluated and the differences in thermodynamic properties by the water substitution were considered from the difference of interfacial-free energy per molecule in the bilayer in both solvents. It was proved that the substitution of H(2)O by D(2)O causes shrinkage of the molecular area of phospholipid at bilayer interface due to the difference in bond strength between deuterium and hydrogen bonds and produces the great influence on the bilayer phase with the smaller area. Further, the induction of bilayer interdigitation in D(2)O turned out to need higher pressures than in H(2)O.
Collapse
Affiliation(s)
- Hitoshi Matsuki
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Japan.
| | | | | | | | | |
Collapse
|
28
|
Kusube M, Matsuki H, Kaneshina S. Effect of pressure on the Prodan fluorescence in bilayer membranes of phospholipids with varying acyl chain lengths. Colloids Surf B Biointerfaces 2005; 42:79-88. [PMID: 15784329 DOI: 10.1016/j.colsurfb.2005.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 01/14/2005] [Indexed: 11/28/2022]
Abstract
The fluorescence spectra of 6-propionyl-2-(dimethylamino)naphthalene (Prodan) were observed as a function of pressure for the bilayer membrane systems of dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC). The wavelength of the emission maximum, lambdamax, was found to be 480, 430, and 500 nm for the liquid crystalline (Lalpha), ripple gel (P'beta), and pressure-induced interdigitated gel (LbetaI) phase, respectively. Since the lambdamax reflects the solvent property around the probe molecules, we could speculate on the location of the Prodan molecules in the bilayer membranes; in the Lalpha phase of the lipid bilayer, the Prodan molecules distribute around the phosphate of the lipids (i.e. the polar region). The Lalpha/P'beta phase transition caused the Prodan molecules to move into the less polar region near the glycerol backbone. The fluorescence intensity of the Prodan in the P'beta phase was dependent on the chain length of the lipids and on pressure; the shorter the chain length of the lipid, the stronger the fluorescence intensity of the Prodan. Moreover, for the DLPC bilayer membrane system, the fluorescence intensity at 430 nm increased with increasing pressure, indicating that the partition of Prodan into the DLPC bilayer membrane is promoted by applying pressure. In the case of the DPPC and DSPC bilayers, as the pressure increased further, the pressure-induced interdigitation caused the Prodan molecules to squeeze out of the glycerol backbone region and to move the hydrophilic region near the bilayer surface. The ratio of fluorescence intensity at 480 nm to that at 430 nm, F480/F430, showed a sharp change at the phase-transition pressure. In the case of the DPPC and DSPC bilayers, the values of F480/F430 showed an abrupt increase above a certain pressure higher than the Lalpha/P'beta transition pressure, which corresponds to the interdigitation from the P'beta to the LbetaI phase. The plot of F480/F430 versus pressure is available for recognition of the bilayer phase transitions, especially the bilayer interdigitation.
Collapse
Affiliation(s)
- Masataka Kusube
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | | | | |
Collapse
|
29
|
Matsuki H, Goto M, Kusube M, Tamai N, Kaneshina S. Barotropic Phase Transitions of 1-Palmitoyl-2-stearoylphosphatidylcholine Bilayer Membrane. CHEM LETT 2005. [DOI: 10.1246/cl.2005.270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
YAMASAKI N, MATSUOKA K, NAGAYAMA K, HATA T, MATSUKI H, SATAKE H, KANESHINA S. Observation of Lipid Bilayer Phase Transition Using Ion Sensor. BUNSEKI KAGAKU 2005. [DOI: 10.2116/bunsekikagaku.54.975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Naho YAMASAKI
- Advanced Course in Materials Science and Engineering, Kochi National College of Technology
| | - Kazuhiko MATSUOKA
- Advanced Course in Materials Science and Engineering, Kochi National College of Technology
| | - Kazuhito NAGAYAMA
- Department of Materials Science and Engineering, Kochi National College of Technology
| | - Takashi HATA
- Department of Materials Science and Engineering, Kochi National College of Technology
| | - Hitoshi MATSUKI
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima
| | - Hiromu SATAKE
- Center for Cooperative Research, The University of Tokushima
| | - Shoji KANESHINA
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima
| |
Collapse
|
31
|
Harroun TA, Nieh MP, Watson MJ, Raghunathan VA, Pabst G, Morrow MR, Katsaras J. Relationship between the unbinding and main transition temperatures of phospholipid bilayers under pressure. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 69:031906. [PMID: 15089321 DOI: 10.1103/physreve.69.031906] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Indexed: 05/24/2023]
Abstract
Using neutron diffraction and a specially constructed high pressure cell suitable for aligned multibilayer systems, we have studied, as a function of pressure, the much observed anomalous swelling regime in dimyristoyl- and dilauroyl-phosphatidylcholine bilayers, DMPC and DLPC, respectively. We have also reanalyzed data from a number of previously published experiments and have arrived at the following conclusions. (a). The power law behavior describing anomalous swelling is preserved in all PC bilayers up to a hydrostatic pressure of 240 MPa. (b). As a function of increasing pressure there is a concomitant decrease in the anomalous swelling of DMPC bilayers. (c). For PC lipids with hydrocarbon chains >or=13 carbons the theoretical unbinding transition temperature T small star, filled is coupled to the main gel-to-liquid crystalline transition temperature T(M). (d). DLPC is intrinsically different from the other lipids studied in that its T small star, filled is not coupled to T(M). (e). For DLPC bilayers we predict a hydrostatic pressure (>290 MPa) where unbinding may occur.
Collapse
Affiliation(s)
- T A Harroun
- National Research Council, Steacie Institute for Molecular Sciences, Chalk River, Ontario, Canada K0J 1J0
| | | | | | | | | | | | | |
Collapse
|
32
|
Heimburg T. A model for the lipid pretransition: coupling of ripple formation with the chain-melting transition. Biophys J 2000; 78:1154-65. [PMID: 10692305 PMCID: PMC1300718 DOI: 10.1016/s0006-3495(00)76673-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Below the thermotropic chain-melting transition, lipid membrane c(P) traces display a transition of low enthalpy called the lipid pretransition. It is linked to the formation of periodic membrane ripples. In the literature, these two transitions are usually regarded as independent events. Here, we present a model that is based on the assumption that both pretransition and main transition are caused by the same physical effect, namely chain melting. The splitting of the melting process into two peaks is found to be a consequence of the coupling of structural changes and chain-melting events. On the basis of this concept, we performed Monte Carlo simulations using two coupled monolayer lattices. In this calculation, ripples are considered to be one-dimensional defects of fluid lipid molecules. Because lipids change their area by approximately 24% upon melting, line defects are the only ones that are topologically possible in a triangular lattice. The formation of a fluid line defect on one monolayer leads to a local bending of the membrane. Geometric constraints result in the formation of periodic patterns of gel and fluid domains. This model, for the first time, is able to predict heat capacity profiles, which are comparable to the experimental c(P) traces that we obtained using calorimetry. The basic assumptions are in agreement with a large number of experimental observations.
Collapse
Affiliation(s)
- T Heimburg
- Max-Planck Institut für biophysikalische Chemie, 37070 Göttingen, Germany.
| |
Collapse
|
33
|
Effect of unsaturated acyl chains on the thermotropic and barotropic phase transitions of phospholipid bilayer membranes. Chem Phys Lipids 1999. [DOI: 10.1016/s0009-3084(99)00050-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Ichimori H, Hata T, Matsuki H, Kaneshina S. Barotropic phase transitions and pressure-induced interdigitation on bilayer membranes of phospholipids with varying acyl chain lengths. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1414:165-74. [PMID: 9804942 DOI: 10.1016/s0005-2736(98)00165-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bilayer phase diagrams of a series of 1, 2-diacylphosphatidylcholines containing linear saturated acyl chain (C=13, 14, 15, 16, 17 and 18) were constructed by two kinds of high-pressure optical methods. One is the observation of isothermal barotropic phase transition and the other is the isobaric thermotropic phase transition. The temperature of the main transition from the ripple gel (Pbeta') phase to the liquid crystal (Lalpha) phase for each lipid was elevated by pressure. The slope of the temperature-pressure diagram, dT/dP, was in the range of 0.21-0. 23 K MPa-1 depending on the acyl chain length. The temperature of the pretransition from the lamellar gel (Lbeta') phase to the Pbeta' phase for each lipid was also elevated by pressure. The slope of phase boundary, dT/dP, for the pretransition was in the range of 0. 12-0.14 K MPa-1. Both temperatures of the main and pretransition under ambient pressure increased with an increase in acyl chain length. The chain length dependences of the pretransition and main transition temperatures describe smooth curves with no evidence of odd/even discontinuities. Pressure-induced interdigitated gel (LbetaI) phase was observed beyond 300 MPa for 14:0-PC, 175 MPa for 15:0-PC, 100 MPa for 16:0-PC, 80 MPa for 17:0-PC and 70 MPa for 18:0-PC, respectively. The minimum pressure for the interdigitation of lipid bilayer membranes decreased with an increase in acyl chain length in a manner of non-linear relation. The slopes of phase boundary between Lbeta' and LbetaI phases transformed from the negative slope to the positive slope as the pressure increases.
Collapse
Affiliation(s)
- H Ichimori
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Minamijosanjima, Tokushima 770-8506, Japan
| | | | | | | |
Collapse
|
35
|
Kaneshina S, Ichimori H, Hata T, Matsuki H. Barotropic phase transitions of dioleoylphosphatidylcholine and stearoyl-oleoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1374:1-8. [PMID: 9814847 DOI: 10.1016/s0005-2736(98)00122-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to understand the effect of cis unsaturation on the thermotropic and barotropic phase behavior of phospholipid bilayer membranes, the phase transitions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) bilayer membranes were observed by high-pressure optical method. With respect to DOPC bilayer membrane, the so-called main transition between the liquid crystalline (Lalpha) and the lamellar gel (Lbeta) phases was observed in water at above 0 degrees C under high pressure, in addition to the transition between the Lalpha and the lamellar crystalline (L(C)) phases in 50% aqueous ethylene glycol. The pressure of main transition increased linearly with an increase in temperature. Extrapolation of temperature (T)-pressure (P) phase boundary to ambient pressure suggests the temperature of the main transition to be -40.3 degrees C, which has never been found by the DSC method. On the other hand, the temperature of L(C)/Lalpha phase transition in 50% aqueous ethylene glycol was found to be -12.0 degrees C at ambient pressure. The main transition temperatures for DSPC, SOPC and DOPC are 55.6, 6.7 and -40.3 degrees C, respectively, at ambient pressure. The substitution of cis unsaturated chain for saturated chains of DSPC brings about the depression of the main transition temperature by about 48 (+/-1) degrees C for each chain. The volume changes (deltaV) associated with the transitions were calculated from the transition enthalpy (deltaH) and the slope of T-P diagram (dT/dP) by means of the Clapeyron-Clausius equation. The value of deltaV for the main transition of SOPC bilayer membranes was reduced to half the volume change for DSPC bilayers, which means the introduction of the cis double bond in the acyl chain of lipids brings about the reduction of deltaV because of the disordered packing of unsaturated chains in the gel phase of lipid bilayer membranes.
Collapse
Affiliation(s)
- S Kaneshina
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Japan
| | | | | | | |
Collapse
|