1
|
Acar M, Tatini D, Romani V, Ninham BW, Rossi F, Lo Nostro P. Curious effects of overlooked aspects on urease activity. Colloids Surf B Biointerfaces 2025; 247:114422. [PMID: 39673898 DOI: 10.1016/j.colsurfb.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Intermolecular forces determine complex chemical structures of exquisite intricacy, like proteins. However even the most advanced theories we have so far rely on too drastic approximations to explain them. Some crucial aspects that dictate structure, specific ion and solvent effects are not accommodated. Further the very significant effects of dissolved atmospheric gas are completely ignored and unexplored. Here we examine the effects of cations, dissolved gasses, and heavy water on the pH clock reactions of urease. This enzyme catalyzes the hydrolysis of urea to ammonium and bicarbonate in unbuffered aqueous solutions. In so doing it increases the pH. Circular dichroism and fluorescence experiments are used to assess conformational effects. The results highlight the subtle interplay of different factors that participate in determining the urease activity. The experimental data are correlated with specific ion physicochemical parameters and conformational data. They are explored in the context of specific ion and solvent interactions and hydration.
Collapse
Affiliation(s)
- Mert Acar
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Firenze 50019, Italy
| | - Duccio Tatini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Valentina Romani
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Firenze 50019, Italy
| | - Barry W Ninham
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences-DEEP Sciences, University of Siena, Siena 53100, Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Firenze 50019, Italy.
| |
Collapse
|
2
|
David R, Tuñón I, Laage D. Competing Reaction Mechanisms of Peptide Bond Formation in Water Revealed by Deep Potential Molecular Dynamics and Path Sampling. J Am Chem Soc 2024; 146:14213-14224. [PMID: 38739765 DOI: 10.1021/jacs.4c03445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The formation of an amide bond is an essential step in the synthesis of materials and drugs, and in the assembly of amino acids to form peptides. The mechanism of this reaction has been studied extensively, in particular to understand how it can be catalyzed, but a representation capable of explaining all the experimental data is still lacking. Numerical simulation should provide the necessary molecular description, but the solvent involvement poses a number of challenges. Here, we combine the efficiency and accuracy of neural network potential-based reactive molecular dynamics with the extensive and unbiased exploration of reaction pathways provided by transition path sampling. Using microsecond-scale simulations at the density functional theory level, we show that this method reveals the presence of two competing distinct mechanisms for peptide bond formation between alanine esters in aqueous solution. We describe how both reaction pathways, via a general base catalysis mechanism and via direct cleavage of the tetrahedral intermediate respectively, change with pH. This result contrasts with the conventional mechanism involving a single pathway in which only the barrier heights are affected by pH. We show that this new proposal involving two competing mechanisms is consistent with the experimental data, and we discuss the implications for peptide bond formation under prebiotic conditions and in the ribosome. Our work shows that integrating deep potential molecular dynamics with path sampling provides a powerful approach for exploring complex chemical mechanisms.
Collapse
Affiliation(s)
- Rolf David
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Iñaki Tuñón
- Departamento de Química Física, Universitat de Valencia, Burjassot, 46100 Valencia, Spain
| | - Damien Laage
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
3
|
Yi J, Kaur H, Kazöne W, Rauscher SA, Gravillier L, Muchowska KB, Moran J. A Nonenzymatic Analog of Pyrimidine Nucleobase Biosynthesis. Angew Chem Int Ed Engl 2022; 61:e202117211. [PMID: 35304939 PMCID: PMC9325535 DOI: 10.1002/anie.202117211] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/28/2022]
Abstract
Metabolic theories for the origin of life posit that inorganic catalysts enabled self-organized chemical precursors to the pathways of metabolism, including those that make genetic molecules. Recently, experiments showing nonenzymatic versions of a number of core metabolic pathways have started to support this idea. However, experimental demonstrations of nonenzymatic reaction sequences along the de novo ribonucleotide biosynthesis pathways are limited. Here we show that all three reactions of pyrimidine nucleobase biosynthesis that convert aspartate to orotate proceed at 60 °C without photochemistry under aqueous conditions in the presence of metals such as Cu2+ and Mn4+ . Combining reactions into one-pot variants is also possible. Life may not have invented pyrimidine nucleobase biosynthesis from scratch, but simply refined existing nonenzymatic reaction channels. This work is a first step towards uniting metabolic theories of life's origin with those centered around genetic molecules.
Collapse
Affiliation(s)
- Jing Yi
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Harpreet Kaur
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Wahnyalo Kazöne
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Sophia A. Rauscher
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Louis‐Albin Gravillier
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Kamila B. Muchowska
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
- Institut Universitaire de France (IUF)France
| |
Collapse
|
4
|
Rimola A, Balucani N, Ceccarelli C, Ugliengo P. Tracing the Primordial Chemical Life of Glycine: A Review from Quantum Chemical Simulations. Int J Mol Sci 2022; 23:4252. [PMID: 35457069 PMCID: PMC9030215 DOI: 10.3390/ijms23084252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/28/2022] Open
Abstract
Glycine (Gly), NH2CH2COOH, is the simplest amino acid. Although it has not been directly detected in the interstellar gas-phase medium, it has been identified in comets and meteorites, and its synthesis in these environments has been simulated in terrestrial laboratory experiments. Likewise, condensation of Gly to form peptides in scenarios resembling those present in a primordial Earth has been demonstrated experimentally. Thus, Gly is a paradigmatic system for biomolecular building blocks to investigate how they can be synthesized in astrophysical environments, transported and delivered by fragments of asteroids (meteorites, once they land on Earth) and comets (interplanetary dust particles that land on Earth) to the primitive Earth, and there react to form biopolymers as a step towards the emergence of life. Quantum chemical investigations addressing these Gly-related events have been performed, providing fundamental atomic-scale information and quantitative energetic data. However, they are spread in the literature and difficult to harmonize in a consistent way due to different computational chemistry methodologies and model systems. This review aims to collect the work done so far to characterize, at a quantum mechanical level, the chemical life of Gly, i.e., from its synthesis in the interstellar medium up to its polymerization on Earth.
Collapse
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Catalonia, Spain
| | - Nadia Balucani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy;
- Osservatorio Astrosico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
| | - Cecilia Ceccarelli
- CNRS, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), Université Grenoble Alpes, 38000 Grenoble, France;
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy;
| |
Collapse
|
5
|
Yi J, Kaur H, Kazöne W, Rauscher SA, Gravillier LA, Muchowska KB, Moran J. A Nonenzymatic Analog of Pyrimidine Nucleobase Biosynthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Yi
- University of Strasbourg: Universite de Strasbourg ISIS FRANCE
| | - Harpreet Kaur
- University of Strasbourg: Universite de Strasbourg ISIS FRANCE
| | - Wahnyalo Kazöne
- Université de Strasbourg: Universite de Strasbourg ISIS FRANCE
| | | | | | | | - Joseph Moran
- University of Strasbourg ISIS 8 allée Gaspard MongeBP 70028 67083 Strasbourg FRANCE
| |
Collapse
|
6
|
Frenkel-Pinter M, Sargon AB, Glass JB, Hud NV, Williams LD. Transition metals enhance prebiotic depsipeptide oligomerization reactions involving histidine. RSC Adv 2021; 11:3534-3538. [PMID: 35424306 PMCID: PMC8694183 DOI: 10.1039/d0ra07965k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 11/30/2022] Open
Abstract
Biochemistry exhibits an intense dependence on metals. Here we show that during dry-down reactions, zinc and a few other transition metals increase the yield of long histidine-containing depsipeptides, which contain both ester and amide linkages. Our results suggest that interactions of proto-peptides with metal ions influenced early chemical evolution. Transition metals enhance prebiotic proto-peptide oligomerization reactions through direct association with histidine.![]()
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution USA .,School of Chemistry & Biochemistry, Georgia Institute of Technology Atlanta GA 30332 USA.,NASA Center for the Origins of Life, Georgia Institute of Technology Atlanta GA 30332 USA
| | - Alyssa B Sargon
- NSF/NASA Center for Chemical Evolution USA .,School of Chemistry & Biochemistry, Georgia Institute of Technology Atlanta GA 30332 USA
| | - Jennifer B Glass
- NASA Center for the Origins of Life, Georgia Institute of Technology Atlanta GA 30332 USA.,School of Earth and Atmospheric Science, Georgia Institute of Technology Atlanta GA 30332 USA
| | - Nicholas V Hud
- NSF/NASA Center for Chemical Evolution USA .,School of Chemistry & Biochemistry, Georgia Institute of Technology Atlanta GA 30332 USA.,NASA Center for the Origins of Life, Georgia Institute of Technology Atlanta GA 30332 USA
| | - Loren Dean Williams
- NSF/NASA Center for Chemical Evolution USA .,School of Chemistry & Biochemistry, Georgia Institute of Technology Atlanta GA 30332 USA.,NASA Center for the Origins of Life, Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
7
|
Bayer M, Savelsbergh A, Klinger C, Kaufmann M, König S. Derivatization of the amino acids glycine and valine causes peptide formation-relevance for the analysis of prebiotic oligomerization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8912. [PMID: 32749724 DOI: 10.1002/rcm.8912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Malte Bayer
- IZKF Core Unit Proteomics, University of Münster, Münster, Germany
| | - Andreas Savelsbergh
- Chair of Biochemistry and Molecular Medicine, Division of Functional Genomics, ZBAF, Witten/Herdecke University, Germany
| | - Claudia Klinger
- Chair of Biochemistry and Molecular Medicine, Division of Functional Genomics, ZBAF, Witten/Herdecke University, Germany
| | - Michael Kaufmann
- Chair of Biochemistry and Molecular Medicine, Division of Functional Genomics, ZBAF, Witten/Herdecke University, Germany
| | - Simone König
- IZKF Core Unit Proteomics, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Freza S. Water-assisted peptide bond formation between two double amino acid molecules in the gas phase. J Mol Model 2019; 25:184. [PMID: 31175466 DOI: 10.1007/s00894-019-4081-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/28/2019] [Indexed: 11/27/2022]
Abstract
The gas phase mechanism of the peptide bond formation between two double amino acid (DAA) molecules described by the (NH2)2C(COOH)2 formula is investigated in the presence of a water molecule. Formations of trans and cis DAA-DAA dipeptide products along both concerted and stepwise mechanisms have been studied at the CCSD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ level. The results indicate that the activation energy barriers estimated for the water-assisted mechanisms are significantly reduced in comparison to the corresponding uncatalyzed reactions. The trans DAA-DAA isomer is expected to dominate in the final product due to its larger stability compared to the cis DAA-DAA product.
Collapse
Affiliation(s)
- Sylwia Freza
- Laboratory of Quantum Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
10
|
Galkina PА, Proskurnin МА. Supramolecular interaction of transition metal complexes with albumins and DNA: Spectroscopic methods of estimation of binding parameters. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Polina А. Galkina
- Moscow State M.V. Lomonosov University; Department of Chemistry; Leninskiye Gory 1, bld. 3 119991 Moscow Russia
| | - Мikhail А. Proskurnin
- Moscow State M.V. Lomonosov University; Department of Chemistry; Leninskiye Gory 1, bld. 3 119991 Moscow Russia
| |
Collapse
|
11
|
Fox S, Dalai P, Lambert JF, Strasdeit H. Hypercondensation of an amino acid: synthesis and characterization of a black glycine polymer. Chemistry 2015; 21:8897-904. [PMID: 25933438 DOI: 10.1002/chem.201500820] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Indexed: 12/24/2022]
Abstract
A granular material was obtained by thermal polymerization of glycine at 200 °C. It has been named "thermomelanoid" because of its strikingly deep-black color. The polymerization process is mainly a dehydration condensation leading to conventional amide bonds, and also CC double bonds that are formed from CO and CH2 groups ("hypercondensation"). Spectroscopic data, in particular from (13) C and (15) N solid-state cross-polarization magic angle spinning (CP-MAS) NMR spectra, suggest that the black color is due to (cross-)conjugated CC, CO, and NH groups. Small glycine peptides, especially triglycine, appear to be key intermediates in the formation of the thermomelanoid. This has been concluded by comparing the thermal behavior of glyn homopeptides (n=2-6) and glycine. The glycine polymerization was accompanied by the formation of small amounts of byproducts. Notably, a few percent of alanine and aspartic acid could be detected in the polymer. By using (13) C-labeled glycine, it was shown that these two amino acids formed through a common pathway, namely CαCα bond formation between glycine molecules. The thermomelanoid is hydrolyzed by strong acids and bases at room temperature, forming brown solutions.
Collapse
Affiliation(s)
- Stefan Fox
- Institut für Chemie, Universität Hohenheim, Garbenstr. 30, 70599 Stuttgart (Germany)
| | - Punam Dalai
- Institut für Chemie, Universität Hohenheim, Garbenstr. 30, 70599 Stuttgart (Germany)
| | - Jean-François Lambert
- Laboratoire de Réactivité de Surface, UMR CNRS 7197, Université Pierre et Marie Curie, Paris 6, 4 place Jussieu, 75252 Paris Cedex 05 (France)
| | - Henry Strasdeit
- Institut für Chemie, Universität Hohenheim, Garbenstr. 30, 70599 Stuttgart (Germany).
| |
Collapse
|
12
|
From the RNA world to the RNA/protein world: contribution of some riboswitch-binding species? J Theor Biol 2015; 370:197-201. [PMID: 25571850 DOI: 10.1016/j.jtbi.2014.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022]
Abstract
Some amino acids and their formal derivatives, currently riboswitch-binding species, could have interacted with polyribonucletides in prebiotic environments, leading to the peptide formation. If the resulting compounds had led to a sustainable polymerization of amino acids and the new structures had catalytic activity, such would have been an important contribution to the transition from the RNA world to the RNA/Protein world.
Collapse
|
13
|
Rouis A, Echabaane M, Sakly N, Bonnamour I, Ben Ouada H. Characterization of a sensitive and selective copper optode based on β-ketoimine modified calix[4]arene derivative. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 46:125-31. [DOI: 10.1016/j.msec.2014.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 09/08/2014] [Accepted: 10/08/2014] [Indexed: 11/28/2022]
|
14
|
Lin CJ, Hsu CS, Wang PY, Lin YL, Lo YS, Wu CH. Photochemical Redox Reactions of Copper(II)–Alanine Complexes in Aqueous Solutions. Inorg Chem 2014; 53:4934-43. [DOI: 10.1021/ic4031238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chen-Jui Lin
- Department of Biomedical Engineering and Environmental
Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chao-Sheng Hsu
- Department of Biomedical Engineering and Environmental
Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Yen Wang
- Department of Biomedical Engineering and Environmental
Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-Liang Lin
- Department of Biomedical Engineering and Environmental
Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Shiu Lo
- Department of Biomedical Engineering and Environmental
Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Hou Wu
- Department of Biomedical Engineering and Environmental
Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
15
|
Tolia C, Papadopoulos AN, Raptopoulou CP, Psycharis V, Garino C, Salassa L, Psomas G. Copper(II) interacting with the non-steroidal antiinflammatory drug flufenamic acid: structure, antioxidant activity and binding to DNA and albumins. J Inorg Biochem 2013; 123:53-65. [PMID: 23528572 DOI: 10.1016/j.jinorgbio.2013.02.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/08/2013] [Accepted: 02/20/2013] [Indexed: 12/20/2022]
Abstract
Copper(II) complexes with the non-steroidal antiinflammatory drug flufenamic acid (Hfluf) in the presence of N,N-dimethylformamide (DMF) or nitrogen donor heterocyclic ligands (2,2'-bipyridylamine (bipyam), 1,10-phenanthroline (phen), 2,2'-bipyridine (bipy) or pyridine (py)) have been synthesized and characterized. The crystal structures of [Cu2(fluf)4(DMF)2], 1, and [Cu(fluf)(bipyam)Cl], 2, have been determined by X-ray crystallography. Density functional theory (DFT) (CAM-B3LYP/LANL2DZ/6-31G**) was employed to determine the structure of complex 2 and its analogues (complexes [Cu(fluf)(phen)Cl], 3, [Cu(fluf)(bipy)Cl], 4 and [Cu(fluf)2(py)2], 5). Time-dependent DFT calculations of doublet-doublet transitions show that the lowest-energy band in the absorption spectrum of 2-5 has a mixed d-d/LMCT character. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that the complexes can bind to CT DNA with [Cu(fluf)(bipy)Cl] exhibiting the highest binding constant to CT DNA. The complexes can bind to CT DNA via intercalation as concluded by studying the cyclic voltammograms of the complexes in the presence of CT DNA solution and by DNA solution viscosity measurements. Competitive studies with ethidium bromide (EB) have shown that the complexes can displace the DNA-bound EB suggesting strong competition with EB. Flufenamic acid and its Cu(II) complexes exhibit good binding affinity to human or bovine serum albumin protein with high binding constant values. All compounds have been tested for their antioxidant and free radical scavenging activity as well as for their in vitro inhibitory activity against soybean lipoxygenase showing significant activity with [Cu(fluf)(phen)Cl] being the most active.
Collapse
Affiliation(s)
- Charikleia Tolia
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
16
|
Han Z, Yang Q, Liang L, Zhang X. A New Heptamethine Cyanine-Based Near-Infrared Fluorescent Probe for Divalent Copper Ions with High Selectivity. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ampc.2013.38043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Psomas G, Kessissoglou DP. Quinolones and non-steroidal anti-inflammatory drugs interacting with copper(ii), nickel(ii), cobalt(ii) and zinc(ii): structural features, biological evaluation and perspectives. Dalton Trans 2013; 42:6252-76. [DOI: 10.1039/c3dt50268f] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Coveney PV, Swadling JB, Wattis JAD, Greenwell HC. Theory, modelling and simulation in origins of life studies. Chem Soc Rev 2012; 41:5430-46. [PMID: 22677708 DOI: 10.1039/c2cs35018a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Origins of life studies represent an exciting and highly multidisciplinary research field. In this review we focus on the contributions made by theory, modelling and simulation to addressing fundamental issues in the domain and the advances these approaches have helped to make in the field. Theoretical approaches will continue to make a major impact at the "systems chemistry" level based on the analysis of the remarkable properties of nonlinear catalytic chemical reaction networks, which arise due to the auto-catalytic and cross-catalytic nature of so many of the putative processes associated with self-replication and self-reproduction. In this way, we describe inter alia nonlinear kinetic models of RNA replication within a primordial Darwinian soup, the origins of homochirality and homochiral polymerization. We then discuss state-of-the-art computationally-based molecular modelling techniques that are currently being deployed to investigate various scenarios relevant to the origins of life.
Collapse
Affiliation(s)
- Peter V Coveney
- Centre for Computational Science, Department of Chemistry, UCL, 20 Gordon Street, London, WC1H 0AJ, UK.
| | | | | | | |
Collapse
|
19
|
Dimiza F, Fountoulaki S, Papadopoulos AN, Kontogiorgis CA, Tangoulis V, Raptopoulou CP, Psycharis V, Terzis A, Kessissoglou DP, Psomas G. Non-steroidal antiinflammatory drug-copper(II) complexes: structure and biological perspectives. Dalton Trans 2011; 40:8555-68. [PMID: 21805007 DOI: 10.1039/c1dt10714c] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Copper(II) complexes with the non-steroidal antiinflammatory drug mefenamic acid in the presence of aqua or nitrogen donor heterocyclic ligands (2,2'-bipyridine, 1,10-phenanthroline, 2,2'-bipyridylamine or pyridine) have been synthesized and characterized. The crystal structures of [(2,2'-bipyridine)bis(mefenamato)copper(II)], 2, [(2,2'-bipyridylamine)bis(mefenamato)copper(II)], 4, and [bis(pyridine)bis(methanol)bis(mefenamato)copper(II)], 5, have been determined by X-ray crystallography. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that the complexes can bind to CT DNA and [bis(aqua)tetrakis(mefenamato)dicopper(II)] exhibits the highest binding constant to CT DNA. The cyclic voltammograms of the complexes in the presence of CT DNA solution have shown that the complexes can bind to CT DNA by the intercalative binding mode verified also by DNA solution viscosity measurements. Competitive studies with ethidium bromide (EB) indicate that the complexes can displace the DNA-bound EB suggesting strong competition with EB. Mefenamic acid and its complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. All the compounds have been tested for their antioxidant and free radical scavenging activity as well as for their in vitro inhibitory activity against soybean lipoxygenase showing significant activity.
Collapse
Affiliation(s)
- Filitsa Dimiza
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, P.O. Box 135, GR-54124, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Beck W. Metal Complexes of Biologically Important Ligands, CLXXVI.[1] Formation of Peptides within the Coordination Sphere of Metal Ions and of Classical and Organometallic Complexes and Some Aspects of Prebiotic Chemistry. Z Anorg Allg Chem 2011. [DOI: 10.1002/zaac.201100137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Carny O, Gazit E. Creating prebiotic sanctuary: self-assembling supramolecular Peptide structures bind and stabilize RNA. ORIGINS LIFE EVOL B 2011; 41:121-32. [PMID: 20585856 DOI: 10.1007/s11084-010-9219-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 06/13/2010] [Indexed: 12/15/2022]
Abstract
Any attempt to uncover the origins of life must tackle the known 'blind watchmaker problem'. That is to demonstrate the likelihood of the emergence of a prebiotic system simple enough to be formed spontaneously and yet complex enough to allow natural selection that will lead to Darwinistic evolution. Studies of short aromatic peptides revealed their ability to self-assemble into ordered and stable structures. The unique physical and chemical characteristics of these peptide assemblies point out to their possible role in the origins of life. We have explored mechanisms by which self-assembling short peptides and RNA fragments could interact together and go through a molecular co-evolution, using diphenylalanine supramolecular assemblies as a model system. The spontaneous formation of these self-assembling peptides under prebiotic conditions, through the salt-induced peptide formation (SIPF) pathway was demonstrated. These peptide assemblies possess the ability to bind and stabilize ribonucleotides in a sequence-depended manner, thus increase their relative fitness. The formation of these peptide assemblies is dependent on the homochirality of the peptide monomers: while homochiral peptides (L-Phe-L-Phe and D-Phe-D-Phe) self-assemble rapidly in aqueous environment, heterochiral diastereoisomers (L-Phe-D-Phe and D-Phe-L-Phe) do not tend to self-assemble. This characteristic consists with the homochirality of all living matter. Finally, based on these findings, we propose a model for the role of short self-assembling peptides in the prebiotic molecular evolution and the origin of life.
Collapse
Affiliation(s)
- Ohad Carny
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | | |
Collapse
|
22
|
Smirnov PR, Trostin VN. Structural parameters of Cu2+ aqua complexes in aqueous solutions of its salts. RUSS J GEN CHEM+ 2009. [DOI: 10.1134/s1070363209080015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Bryantsev VS, Diallo MS, Goddard WA. Computational Study of Copper(II) Complexation and Hydrolysis in Aqueous Solutions Using Mixed Cluster/Continuum Models. J Phys Chem A 2009; 113:9559-67. [DOI: 10.1021/jp904816d] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Vyacheslav S. Bryantsev
- Materials and Process Simulation Center, Beckman Institute 139-74, California Institute of Technology, Pasadena, California 91125
| | - Mamadou S. Diallo
- Materials and Process Simulation Center, Beckman Institute 139-74, California Institute of Technology, Pasadena, California 91125
| | - William A. Goddard
- Materials and Process Simulation Center, Beckman Institute 139-74, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
24
|
Yusenko K, Fox S, Guni P, Strasdeit H. Model Studies on the Formation and Reactions of Solid Glycine Complexes at the Coasts of a Primordial Salty Ocean. Z Anorg Allg Chem 2008. [DOI: 10.1002/zaac.200800285] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Fitz D, Jakschitz T, Rode BM. The catalytic effect of L- and D-histidine on alanine and lysine peptide formation. J Inorg Biochem 2008; 102:2097-102. [PMID: 18760483 DOI: 10.1016/j.jinorgbio.2008.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 11/28/2022]
Abstract
A starting phase of chemical evolution on our ancient Earth around 4 billion years ago was the formation of amino acids and their combination to peptides and proteins. The salt-induced peptide formation (SIPF) reaction has been shown to be appropriate for this condensation reaction under moderate and plausible primitive Earth conditions, forming short peptides from amino acids in aqueous solution containing sodium chloride and Cu(II) ions. In this paper we report results about the formation of dialanine and dilysine from their monomers in this reaction. The catalytic influence of l- and d-histidine dramatically increases dialanine yields when starting from lower alanine concentrations, but also dilysine formation is markedly boosted by these catalysts. Attention is paid to measurable preferences for one enantiomeric form of alanine and lysine in the SIPF reaction. Alanine, especially, shows stereospecific behaviour, mostly in favour of the l-form.
Collapse
Affiliation(s)
- Daniel Fitz
- Institute of General, Inorganic and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
26
|
Fishkis M. Steps towards the formation of a protocell: the possible role of short peptides. ORIGINS LIFE EVOL B 2007; 37:537-53. [PMID: 17874202 DOI: 10.1007/s11084-007-9111-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 08/15/2007] [Indexed: 10/22/2022]
Abstract
The paper deals with molecular self-organization leading to formation of a protocell. Plausible steps towards a protocell include: polymerization of peptides and oligonucleotides on mineral surfaces; coevolution of peptides and oligonucleotides with formation of collectively autocatalytic sets; self-organization of short peptides into vesicles; entrapment of the peptide/oligonucleotide systems in mixed peptide and simple amphiphile membranes; and formation of functioning protocells with metabolism and cell division. The established propensity of short peptides to self-ordering and to formation of vesicles makes this sequence plausible. We further suggest that evolution of a protocell produced cellular ancestors of viruses as well as ancestors of cellular organisms.
Collapse
Affiliation(s)
- Maya Fishkis
- Evolving Systems Technology, 95 Hawkfield Crescent NW, Calgary, Alberta, Canada.
| |
Collapse
|
27
|
Rimola A, Rodríguez-Santiago L, Ugliengo P, Sodupe M. Is the Peptide Bond Formation Activated by Cu2+ Interactions? Insights from Density Functional Calculations. J Phys Chem B 2007; 111:5740-7. [PMID: 17469869 DOI: 10.1021/jp071071o] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The catalytic role that Cu(2+) cations play in the peptide bond formation has been addressed by means of density functional calculations. First, the Cu(2+)-(glycine)2 --> Cu(2+)-(glycylglycine) + H2O reaction was investigated since mass spectrometry low collision activated dissociation (CAD) spectra of Cu(2+)-(glycine)2 led to the elimination of a water molecule, which suggested that an intracomplex peptide bond formation might have occurred. Results show that this intracomplex condensation is associated to a very high free energy barrier (97 kcal mol(-1)) and reaction free energy (66 kcal mol(-1)) because of the loss of metal coordination during the reaction. Second, on the basis of the salt-induced peptide formation theory, the condensation reaction between two glycines was studied in aqueous solution using discrete water molecules and the conductor polarized continuum model (CPCM) continuous method. It is found that the synergy between the interaction of glycines with Cu(2+) and the presence of water molecules acting as proton-transfer helpers significantly lower the activation barrier (from 55 kcal/mol for the uncatalyzed system to 20 kcal/mol for the Cu(2+) solvated system) which largely favors the formation of the peptide bond.
Collapse
Affiliation(s)
- A Rimola
- Departament de Química, Universitat Autonoma de Barcelona, Bellaterra 08193, Spain
| | | | | | | |
Collapse
|
28
|
Nanita SC, Cooks RG. Serine octamers: cluster formation, reactions, and implications for biomolecule homochirality. Angew Chem Int Ed Engl 2007; 45:554-69. [PMID: 16404754 DOI: 10.1002/anie.200501328] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The emergence of homochirality continues to be one of the most challenging topics associated with the origin of life. One possible scenario is that aggregates of amino acids might have been involved in a sequence of chemical events that led to chiral biomolecules in self-replicating systems, that is, to homochirogenesis. Serine is the amino acid of principal interest, since it forms "magic-number" ionic clusters composed of eight amino acid units, and the clusters have a remarkable preference for homochirality. These serine octamer clusters (Ser8) can be generated under simulated prebiotic conditions and react selectively with other biomolecules. These observations led to the hypothesis that serine reactions were responsible for the first chiral selection in nature which was then passed through chemical reactions to other amino acids, saccharides, and peptides. This Review evaluates the chemistry of Ser8 clusters and the experimental evidence that supports their possible role in homochirogenesis.
Collapse
Affiliation(s)
- Sergio C Nanita
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, USA
| | | |
Collapse
|
29
|
Luo HY, Zhang XB, Jiang JH, Li CY, Peng J, Shen GL, Yu RQ. An Optode Sensor for Cu2+ with High Selectivity Based on Porphyrin Derivative Appended with Bipyridine. ANAL SCI 2007; 23:551-5. [PMID: 17495400 DOI: 10.2116/analsci.23.551] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A porphyrin derivative (fluorophore) appended with bipyridine (ionophore) has been applied for preparation of a Cu2+-sensitive optical chemical sensor, which is based on fluorescence quenching of porphyrin derivative entrapped in a poly(vinyl chloride) membrane by the energy transfer process. The sensor exhibits a linear response toward Cu2+ in the concentration range 2.0 x 10(-8) - 1.0 x 10(-5) M, with a working pH range from 6.0 to 8.0 and a high selectivity. The detection limit is 5 x 10(-9) M. The response time for Cu2+ is less than 5 min with concentrations lower than 5 x 10(-6) M. The optode can be regenerated using 0.3 M EDTA (pH 9) and acetate buffer solution. The effect of the composition of the sensor membrane was studied, and the experimental conditions were optimized. The sensor has been used for direct determination of Cu2+ in water samples with satisfied results.
Collapse
Affiliation(s)
- Hong-Yuan Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, P. R. China
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Numerous hypotheses about how life on earth could have started can be found in the literature. In this article, we give an overview about the most widespread ones and try to point out which of them might have occurred on the primordial earth with highest probability from a chemical point of view. The idea that a very early stage of life was the "RNA world" encounters crucial problems concerning the formation of its building blocks and their stability in a prebiotic environment. Instead, it seems much more likely that a "peptide world" originated first and that RNA and DNA took up their part at a much later stage. It is shown that amino acids and peptides can be easily formed in a realistic primordial scenario and that these biomolecules can start chemical evolution without the help of RNA. The origin of biohomochirality seems strongly related to the most probable formation of the first peptides via the salt-induced peptide formation (SIPF) reaction.
Collapse
|
31
|
Remias JE, Elia C, Grove LE, Sen A. In vitro condensation of amino acids in aqueous media: A synthesis driven by catalytic carbon monoxide oxidation. Inorganica Chim Acta 2006. [DOI: 10.1016/j.ica.2005.12.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Abstract
Although many potential pathways exist for the prebiotic condensation of amino acids to form simple peptides, minimal conditions for such a reaction in the dry state have yet to be defined. In this work, water was evaporated from a solution of alanine and copper chloride (CuCl2), creating a dry residue. Incubation of this residue at moderate temperatures over 25 days produced even greater amounts of di-alanine, as determined by high performance liquid chromatographic characterization of the re-dissolved residue. Copper(II) and chloride were required for the reaction and di-peptide yields were highest for 1:2 molar ratios of copper:alanine. These results define minimal conditions for a dry-state pathway that plausibly played a role in the prebiotic formation of simple peptides.
Collapse
Affiliation(s)
- Joseph Napier
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706-1607, USA
| | | |
Collapse
|
33
|
Carny O, Gazit E. A model for the role of short self-assembled peptides in the very early stages of the origin of life. FASEB J 2006; 19:1051-5. [PMID: 15985527 DOI: 10.1096/fj.04-3256hyp] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The molecular basis of the origin of life is one of the most fundamental questions in modern biology. While the "RNA world" hypothesis offers a very sensible model for the evolvement of the current biochemical networks, there is a lack of knowledge about the early steps that led to the formation of the first RNA molecules. This issue is essential as it is practically impossible that complex molecules as functional RNA oligonucleotides had evolved spontaneously. It was recently demonstrated that peptide molecules as simple as dipeptides can self-assemble into well-ordered tubular, fibrilar, and closed-cage structures. Other studies have confirmed the ability of dipeptides to act as catalysts and the capability of other peptides, as short as tripeptides, to serve as a template for nucleotide binding and orientation. Unlike complex RNA molecules, the spontaneous formation of functional short peptides in the primordial earth conditions is very likely. We suggest a novel mechanism for the origin of life that is based on the ability of short peptides to form encapsulated structures, catalyst chemical reaction, and serve as highly ordered template for the assembly of nucleotides. This model may explain the early events that led to the formation of the current biochemical machinery that combines the elaborated and coordinated interaction between nucleic acids and proteins to allow the function of living systems.
Collapse
Affiliation(s)
- Ohad Carny
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
34
|
Nanita SC, Cooks RG. Serinoctamere: Clusterbildung, Reaktionen und Auswirkungen auf die Homochiralität von Biomolekülen. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200501328] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Wang KJ, Yao N, Li C. Sodium chloride enhanced oligomerization of L-glutamic acid in aqueous solution. ORIGINS LIFE EVOL B 2005; 35:313-22. [PMID: 16228645 DOI: 10.1007/s11084-005-2041-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 05/25/2004] [Indexed: 10/25/2022]
Abstract
The presence of NaCl was found to significantly enhance the formation of longer peptides in N,N'-carbonyldiimidazole induced oligomerization of L-glutamic acid in homogeneous aqueous solution. The enhancement was detected in the presence of as low as 0.01-M NaCl and the highest yield of longer oligomers was achieved in the presence of 1-M NaCl. The possible prebiotic relevance is discussed.
Collapse
Affiliation(s)
- Kong-Jiang Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | | | | |
Collapse
|
36
|
Wesendrup R, Laerdahl JK, Compton RN, Schwerdtfeger P. Biomolecular Homochirality and Electroweak Interactions. I. The Yamagata Hypothesis. J Phys Chem A 2003. [DOI: 10.1021/jp022568v] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ralf Wesendrup
- Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand, and Department of Physics and Chemistry, The University of Tennessee, Knoxville, Tennessee 37996
| | - Jon K. Laerdahl
- Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand, and Department of Physics and Chemistry, The University of Tennessee, Knoxville, Tennessee 37996
| | - Robert N. Compton
- Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand, and Department of Physics and Chemistry, The University of Tennessee, Knoxville, Tennessee 37996
| | - Peter Schwerdtfeger
- Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand, and Department of Physics and Chemistry, The University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
37
|
Bujdák J, Rode BM. Preferential amino acid sequences in alumina-catalyzed peptide bond formation. J Inorg Biochem 2002; 90:1-7. [PMID: 12009249 DOI: 10.1016/s0162-0134(02)00395-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The catalytic effect of activated alumina on amino acid condensation was investigated. The readiness of amino acids to form peptide sequences was estimated on the basis of the yield of dipeptides and was found to decrease in the order glycine (Gly), alanine (Ala), leucine (Leu), valine (Val), proline (Pro). For example, approximately 15% Gly was converted to the dipeptide (Gly(2)), 5% to cyclic anhydride (cyc(Gly(2))) and small amounts of tri- (Gly(3)) and tetrapeptide (Gly(4)) were formed after 28 days. On the other hand, only trace amounts of Pro(2) were formed from proline under the same conditions. Preferential formation of certain sequences was observed in the mixed reaction systems containing two amino acids. For example, almost ten times more Gly-Val than Val-Gly was formed in the Gly+Val reaction system. The preferred sequences can be explained on the basis of an inductive effect that side groups have on the nucleophilicity and electrophilicity, respectively, of the amino and carboxyl groups. A comparison with published data of amino acid reactions in other reaction systems revealed that the main trends of preferential sequence formation were the same as those described for the salt-induced peptide formation (SIPF) reaction. The results of this work and other previously published papers show that alumina and related mineral surfaces might have played a crucial role in the prebiotic formation of the first peptides on the primitive earth.
Collapse
Affiliation(s)
- J Bujdák
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, 842 36 Bratislava, Slovak Republic.
| | | |
Collapse
|
38
|
Strasdeit H, Büsching I, Behrends S, Saak W, Barklage W. Syntheses and properties of zinc and calcium complexes of valinate and isovalinate: metal alpha-amino acidates as possible constituents of the early Earth's chemical inventory. Chemistry 2001; 7:1133-42. [PMID: 11303873 DOI: 10.1002/1521-3765(20010302)7:5<1133::aid-chem1133>3.0.co;2-t] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have studied the ligand behavior of racemic isovalinate (iva) and valinate (val) towards zinc(II) and calcium(II). The following solid metal amino acidates were obtained from aqueous solutions: Zn3Cl2(iva)4 (1), Zn3Cl2(val)4 (2). Zn(val)2 (3), Zn(iva)2 x 2H2O (4), Zn(iva)2 x 3.25H2O (5), Zn(iva)2 (6), Ca(iva)2x xH2O (7), and Ca(val)2 x H2O (8). Except for complex 3, these were hitherto unknown compounds. The conditions under which they formed, together with current ideas of the conditions on early Earth, support the assumption that alpha-amino acidate complexes of zinc and calcium might have belonged to early Earth's prebiotic chemical inventory. The zinc isovalinates 1, 4, and 5 were characterized by X-ray crystal structure analyses. Complex 1 forms a layer structure containing four- and five-coordinate metal atoms, whereas the zinc atoms in 4 and 5 are five-coordinate. Compound 5 possesses an unprecedented nonpolymeric structure built from cyclic [Zn6(iva)12] complexes, which are separated by water molecules. The thermolyses of solids 1. 3, and 8 at 320 degrees C in an N2 atmosphere yielded numerous organic products, including the cyclic dipeptide of valine from 3 and 8. Condensation, C-C bond breaking and bond formation, aromatization, decarboxylation, and deamination reactions occurred during the thermolyses. Such reactions of metal-bound a-amino acidates that are abiotically formed could already have contributed to an organic-geochemical diversity before life appeared on Earth.
Collapse
Affiliation(s)
- H Strasdeit
- Fachbereich Chemie der Universität, Oldenburg, Germany.
| | | | | | | | | |
Collapse
|
39
|
Severin K. Heiße Steine oder kalte Suppe? Neue Untersuchungen zum endogenen Ursprung von organischen Verbindungen auf der Erde. Angew Chem Int Ed Engl 2000. [DOI: 10.1002/1521-3757(20001016)112:20<3735::aid-ange3735>3.0.co;2-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Severin K. Hot Stones or Cold Soup? New Investigations on the Endogenous Origin of Organic Compounds on Earth. Angew Chem Int Ed Engl 2000; 39:3589-3590. [PMID: 11091407 DOI: 10.1002/1521-3773(20001016)39:20<3589::aid-anie3589>3.0.co;2-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- K Severin
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5-13, 81377 München (Germany)
| |
Collapse
|
41
|
Das Biologische System der Elemente (BSE): Eine modelltheoretische Betrachtung zur Essentialität von chemischen Elementen. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/bf03038171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|