1
|
Ricciardelli AR, Genet G, Genet N, McClugage ST, Kan PT, Hirschi KK, Fish JE, Wythe JD. From bench to bedside: murine models of inherited and sporadic brain arteriovenous malformations. Angiogenesis 2025; 28:15. [PMID: 39899215 PMCID: PMC11790818 DOI: 10.1007/s10456-024-09953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/06/2024] [Indexed: 02/04/2025]
Abstract
Brain arteriovenous malformations are abnormal vascular structures in which an artery shunts high pressure blood directly to a vein without an intervening capillary bed. These lesions become highly remodeled over time and are prone to rupture. Historically, brain arteriovenous malformations have been challenging to treat, using primarily surgical approaches. Over the past few decades, the genetic causes of these malformations have been uncovered. These can be divided into (1) familial forms, such as loss of function mutations in TGF-β (BMP9/10) components in hereditary hemorrhagic telangiectasia, or (2) sporadic forms, resulting from somatic gain of function mutations in genes involved in the RAS-MAPK signaling pathway. Leveraging these genetic discoveries, preclinical mouse models have been developed to uncover the mechanisms underlying abnormal vessel formation, and thus revealing potential therapeutic targets. Impressively, initial preclinical studies suggest that pharmacological treatments disrupting these aberrant pathways may ameliorate the abnormal pathologic vessel remodeling and inflammatory and hemorrhagic nature of these high-flow vascular anomalies. Intriguingly, these studies also suggest uncontrolled angiogenic signaling may be a major driver in bAVM pathogenesis. This comprehensive review describes the genetics underlying both inherited and sporadic bAVM and details the state of the field regarding murine models of bAVM, highlighting emerging therapeutic targets that may transform our approach to treating these devastating lesions.
Collapse
Affiliation(s)
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nafiisha Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Samuel T McClugage
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, TX, USA
| | - Peter T Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, 77598, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Developmental Genomics Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Joshua D Wythe
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Developmental Genomics Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Brain, Immunology, and Glia Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Genetics and Vascular Biology of Brain Vascular Malformations. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Greenspan LJ, Weinstein BM. To be or not to be: endothelial cell plasticity in development, repair, and disease. Angiogenesis 2021; 24:251-269. [PMID: 33449300 PMCID: PMC8205957 DOI: 10.1007/s10456-020-09761-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Endothelial cells display an extraordinary plasticity both during development and throughout adult life. During early development, endothelial cells assume arterial, venous, or lymphatic identity, while selected endothelial cells undergo additional fate changes to become hematopoietic progenitor, cardiac valve, and other cell types. Adult endothelial cells are some of the longest-lived cells in the body and their participation as stable components of the vascular wall is critical for the proper function of both the circulatory and lymphatic systems, yet these cells also display a remarkable capacity to undergo changes in their differentiated identity during injury, disease, and even normal physiological changes in the vasculature. Here, we discuss how endothelial cells become specified during development as arterial, venous, or lymphatic endothelial cells or convert into hematopoietic stem and progenitor cells or cardiac valve cells. We compare findings from in vitro and in vivo studies with a focus on the zebrafish as a valuable model for exploring the signaling pathways and environmental cues that drive these transitions. We also discuss how endothelial plasticity can aid in revascularization and repair of tissue after damage- but may have detrimental consequences under disease conditions. By better understanding endothelial plasticity and the mechanisms underlying endothelial fate transitions, we can begin to explore new therapeutic avenues.
Collapse
Affiliation(s)
- Leah J Greenspan
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Marziano C, Genet G, Hirschi KK. Vascular endothelial cell specification in health and disease. Angiogenesis 2021; 24:213-236. [PMID: 33844116 PMCID: PMC8205897 DOI: 10.1007/s10456-021-09785-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
There are two vascular networks in mammals that coordinately function as the main supply and drainage systems of the body. The blood vasculature carries oxygen, nutrients, circulating cells, and soluble factors to and from every tissue. The lymphatic vasculature maintains interstitial fluid homeostasis, transports hematopoietic cells for immune surveillance, and absorbs fat from the gastrointestinal tract. These vascular systems consist of highly organized networks of specialized vessels including arteries, veins, capillaries, and lymphatic vessels that exhibit different structures and cellular composition enabling distinct functions. All vessels are composed of an inner layer of endothelial cells that are in direct contact with the circulating fluid; therefore, they are the first responders to circulating factors. However, endothelial cells are not homogenous; rather, they are a heterogenous population of specialized cells perfectly designed for the physiological demands of the vessel they constitute. This review provides an overview of the current knowledge of the specification of arterial, venous, capillary, and lymphatic endothelial cell identities during vascular development. We also discuss how the dysregulation of these processes can lead to vascular malformations, and therapeutic approaches that have been developed for their treatment.
Collapse
Affiliation(s)
- Corina Marziano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Department of Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
5
|
Abstract
The complex development of the brain vascular system can be broken down by embryonic stages and anatomic locations, which are tightly regulated by different factors and pathways in time and spatially. The adult brain is relatively quiescent in angiogenesis. However, under disease conditions, such as trauma, stroke, or tumor, angiogenesis can be activated in the adult brain. Disruption of any of the factors or pathways may lead to malformed vessel development. In this chapter, we will discuss factors and pathways involved in normal brain vasculogenesis and vascular maturation, and the pathogenesis of several brain vascular malformations.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Sonali S Shaligram
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, CA, United States
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
6
|
Potential Second-Hits in Hereditary Hemorrhagic Telangiectasia. J Clin Med 2020; 9:jcm9113571. [PMID: 33167572 PMCID: PMC7694477 DOI: 10.3390/jcm9113571] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder that presents with telangiectases in skin and mucosae, and arteriovenous malformations (AVMs) in internal organs such as lungs, liver, and brain. Mutations in ENG (endoglin), ACVRL1 (ALK1), and MADH4 (Smad4) genes account for over 95% of HHT. Localized telangiectases and AVMs are present in different organs, with frequencies which differ among affected individuals. By itself, HHT gene heterozygosity does not account for the focal nature and varying presentation of the vascular lesions leading to the hypothesis of a “second-hit” that triggers the lesions. Accumulating research has identified a variety of triggers that may synergize with HHT gene heterozygosity to generate the vascular lesions. Among the postulated second-hits are: mechanical trauma, light, inflammation, vascular injury, angiogenic stimuli, shear stress, modifier genes, and somatic mutations in the wildtype HHT gene allele. The aim of this review is to summarize these triggers, as well as the functional mechanisms involved.
Collapse
|
7
|
Marín-Ramos NI, Thein TZ, Ghaghada KB, Chen TC, Giannotta SL, Hofman FM. miR-18a Inhibits BMP4 and HIF-1α Normalizing Brain Arteriovenous Malformations. Circ Res 2020; 127:e210-e231. [PMID: 32755283 DOI: 10.1161/circresaha.119.316317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Brain arteriovenous malformations (AVMs) are abnormal tangles of vessels where arteries and veins directly connect without intervening capillary nets, increasing the risk of intracerebral hemorrhage and stroke. Current treatments are highly invasive and often not feasible. Thus, effective noninvasive treatments are needed. We previously showed that AVM-brain endothelial cells (BECs) secreted higher VEGF (vascular endothelial growth factor) and lower TSP-1 (thrombospondin-1) levels than control BEC; and that microRNA-18a (miR-18a) normalized AVM-BEC function and phenotype, although its mechanism remained unclear. OBJECTIVE To elucidate the mechanism of action and potential clinical application of miR-18a as an effective noninvasive treatment to selectively restore the phenotype and functionality of AVM vasculature. METHODS AND RESULTS The molecular pathways affected by miR-18a in patient-derived BECs and AVM-BECs were determined by Western blot, RT-qPCR (quantitative reverse transcription polymerase chain reaction), ELISA, co-IP, immunostaining, knockdown and overexpression studies, flow cytometry, and luciferase reporter assays. miR-18a was shown to increase TSP-1 and decrease VEGF by reducing PAI-1 (plasminogen activator inhibitor-1/SERPINE1) levels. Furthermore, miR-18a decreased the expression of BMP4 (bone morphogenetic protein 4) and HIF-1α (hypoxia-inducible factor 1α), blocking the BMP4/ALK (activin-like kinase) 2/ALK1/ALK5 and Notch signaling pathways. As determined by Boyden chamber assays, miR-18a also reduced the abnormal AVM-BEC invasiveness, which correlated with a decrease in MMP2 (matrix metalloproteinase 2), MMP9, and ADAM10 (ADAM metallopeptidase domain 10) levels. In vivo pharmacokinetic studies showed that miR-18a reaches the brain following intravenous and intranasal administration. Intranasal co-delivery of miR-18a and NEO100, a good manufacturing practices-quality form of perillyl alcohol, improved the pharmacokinetic profile of miR-18a in the brain without affecting its pharmacological properties. Ultra-high-resolution computed tomography angiography and immunostaining studies in an Mgp-/- AVM mouse model showed that miR-18a decreased abnormal cerebral vasculature and restored the functionality of the bone marrow, lungs, spleen, and liver. CONCLUSIONS miR-18a may have significant clinical value in preventing, reducing, and potentially reversing AVM.
Collapse
Affiliation(s)
- Nagore I Marín-Ramos
- Departments of Neurosurgery (N.I.M.-R., T.Z.T., T.C.C., S.L.G.), Keck School of Medicine, University of Southern California, Los Angeles
| | - Thu Zan Thein
- Departments of Neurosurgery (N.I.M.-R., T.Z.T., T.C.C., S.L.G.), Keck School of Medicine, University of Southern California, Los Angeles
| | - Ketan B Ghaghada
- Department of Pediatric Radiology, Texas Children's Hospital, Houston (K.B.G.)
| | - Thomas C Chen
- Departments of Neurosurgery (N.I.M.-R., T.Z.T., T.C.C., S.L.G.), Keck School of Medicine, University of Southern California, Los Angeles.,Departments of Pathology (T.C.C., F.M.H.), Keck School of Medicine, University of Southern California, Los Angeles
| | - Steven L Giannotta
- Departments of Neurosurgery (N.I.M.-R., T.Z.T., T.C.C., S.L.G.), Keck School of Medicine, University of Southern California, Los Angeles
| | - Florence M Hofman
- Departments of Pathology (T.C.C., F.M.H.), Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
8
|
FRS2α-dependent cell fate transition during endocardial cushion morphogenesis. Dev Biol 2019; 458:88-97. [PMID: 31669335 DOI: 10.1016/j.ydbio.2019.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022]
Abstract
Atrioventricular valve development requires endothelial-to-mesenchymal transition (EndMT) that induces cushion endocardial cells to give rise to mesenchymal cells crucial to valve formation. In the adult endothelium, deletion of the docking protein FRS2α induces EndMT by activating TGFβ signaling in a miRNA let-7-dependent manner. To study the role of endothelial FRS2α during embryonic development, we generated mice with an inducible endothelial-specific deletion of Frs2α (FRS2αiECKO). Analysis of the FRS2αiECKO embryos uncovered a combination of impaired EndMT in AV cushions and defective maturation of AV valves leading to development of thickened, abnormal valves when Frs2α was deleted early (E7.5) in development. At the same time, no AV valve developmental abnormalities were observed after late (E10.5) deletion. These observations identify FRS2α as a pivotal controller of cell fate transition during both EndMT and post-EndMT valvulogenesis.
Collapse
|
9
|
Abstract
Endothelial cells and mesenchymal cells are two different cell types with distinct morphologies, phenotypes, functions, and gene profiles. Accumulating evidence, notably from lineage-tracing studies, indicates that the two cell types convert into each other during cardiovascular development and pathogenesis. During heart development, endothelial cells transdifferentiate into mesenchymal cells in the endocardial cushion through endothelial-to-mesenchymal transition (EndoMT), a process that is critical for the formation of cardiac valves. Studies have also reported that EndoMT contributes to the development of various cardiovascular diseases, including myocardial infarction, cardiac fibrosis, valve calcification, endocardial elastofibrosis, atherosclerosis, and pulmonary arterial hypertension. Conversely, cardiac fibroblasts can transdifferentiate into endothelial cells and contribute to neovascularization after cardiac injury. However, progress in genetic lineage tracing has challenged the role of EndoMT, or its reversed programme, in the development of cardiovascular diseases. In this Review, we discuss the caveats of using genetic lineage-tracing technology to investigate cell-lineage conversion; we also reassess the role of EndoMT in cardiovascular development and diseases and elaborate on the molecular signals that orchestrate EndoMT in pathophysiological processes. Understanding the role and mechanisms of EndoMT in diseases will unravel the therapeutic potential of targeting this process and will provide a new paradigm for the development of regenerative medicine to treat cardiovascular diseases.
Collapse
|
10
|
Abstract
The systemic circulation depends upon a highly organized, hierarchal blood vascular network that requires the successful specification of arterial and venous endothelial cells during development. This process is driven by a cascade of signaling events (including Hedgehog, vascular endothelial growth factor (VEGF), Notch, connexin (Cx), transforming growth factor-beta (TGF- β), and COUP transcription factor 2 (COUP-TFII)) to influence endothelial cell cycle status and expression of arterial or venous genes and is further regulated by hemodynamic flow. Failure of endothelial cells to properly undergo arteriovenous specification may contribute to vascular malformation and dysfunction, such as in hereditary hemorrhagic telangiectasia (HHT) and capillary malformation-arteriovenous malformation (CM-AVM) where abnormal vessel structures, such as large shunts lacking clear arteriovenous identity and function, form and compromise peripheral blood flow. This review provides an overview of recent findings in the field of arteriovenous specification and highlights key regulators of this process.
Collapse
Affiliation(s)
- Jennifer Fang
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Karen Hirschi
- 2Departments of Medicine, Genetics, and Biomedical Engineering, Yale Cardiovascular Research Center, Yale Stem Cell Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
11
|
Hao Q, Wang H, Lu JL, Ma L, Chen XL, Ye X, Zhao YH, Li MT, Chen Y, Zhao YL. Activin Receptor-Like Kinase 1 Combined With VEGF-A Affects Migration and Proliferation of Endothelial Cells From Sporadic Human Cerebral AVMs. Front Cell Neurosci 2019; 12:525. [PMID: 30687014 PMCID: PMC6333867 DOI: 10.3389/fncel.2018.00525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Heterozygous loss of activin receptor-like kinase 1 (Alk1) can lead to hereditary hemorrhagic telangiectasia (HHT), which is a kind of vascular disease characterized by direct connections between arteries and veins with the lacking of capillaries, and develops into arteriovenous malformations (AVMs) in later stage. However, the changes of Alk1 in human sporadic cerebral AVMs (cAVMs) remain unknown. In the present study, we used endothelial cells (ECs) derived from human cAVMs (cAVM-ECs) specimens, to explore the characteristics of cAVM-ECs and the relationship between Alk1 and human sporadic cAVMs. Our data showed that there were obvious morphological changes in cAVM-ECs, and they could trans-differentiate into mesenchyme-like cells easily in a short period. In addition, the abilities of migration of cAVM-ECs were poorer than that in human aortic endothelial cells (HA-ECs). The abilities of proliferation of cAVM-ECs in patients with different ages were lower than HA-ECs. Immunofluorescent staining and Western blot showed that the levels of Alk1 mRNA and protein in the HA-ECs were both higher than that in cAVM-ECs. In addition, the levels of Alk1 mRNA had no significant differences between different ages in cAVM-ECs groups. The levels of VEGF-A mRNA in the cAVM were higher than HA-ECs. Besides, levels of VEGF-A mRNA expression were lower in older cAVM patients. Therefore, we conclude that Alk1 might induce the formation of sporadic human cAVMs through affecting migration and proliferation of endothelial cells combined with VEGF-A.
Collapse
Affiliation(s)
- Qiang Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Hao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun-Lin Lu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Li Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Xiao-Lin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Ya-Hui Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Ming-Tao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Yuan-Li Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Stroke Center, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Basic Medical Science Department, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Duran D, Karschnia P, Gaillard JR, Karimy JK, Youngblood MW, DiLuna ML, Matouk CC, Aagaard-Kienitz B, Smith ER, Orbach DB, Rodesch G, Berenstein A, Gunel M, Kahle KT. Human genetics and molecular mechanisms of vein of Galen malformation. J Neurosurg Pediatr 2018; 21:367-374. [PMID: 29350590 DOI: 10.3171/2017.9.peds17365] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vein of Galen malformations (VOGMs) are rare developmental cerebrovascular lesions characterized by fistulas between the choroidal circulation and the median prosencephalic vein. Although the treatment of VOGMs has greatly benefited from advances in endovascular therapy, including technical innovation in interventional neuroradiology, many patients are recalcitrant to procedural intervention or lack accessibility to specialized care centers, highlighting the need for improved screening, diagnostics, and therapeutics. A fundamental obstacle to identifying novel targets is the limited understanding of VOGM molecular pathophysiology, including its human genetics, and the lack of an adequate VOGM animal model. Herein, the known human mutations associated with VOGMs are reviewed to provide a framework for future gene discovery. Gene mutations have been identified in 2 Mendelian syndromes of which VOGM is an infrequent but associated phenotype: capillary malformation-arteriovenous malformation syndrome ( RASA1) and hereditary hemorrhagic telangiectasia ( ENG and ACVRL1). However, these mutations probably represent only a small fraction of all VOGM cases. Traditional genetic approaches have been limited in their ability to identify additional causative genes for VOGM because kindreds are rare, limited in patient number, and/or seem to have sporadic inheritance patterns, attributable in part to incomplete penetrance and phenotypic variability. The authors hypothesize that the apparent sporadic occurrence of VOGM may frequently be attributable to de novo mutation or incomplete penetrance of rare transmitted variants. Collaboration among treating physicians, patients' families, and investigators using next-generation sequencing could lead to the discovery of novel genes for VOGM. This could improve the understanding of normal vascular biology, elucidate the pathogenesis of VOGM and possibly other more common arteriovenous malformation subtypes, and pave the way for advances in the diagnosis and treatment of patients with VOGM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Beverly Aagaard-Kienitz
- 2Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin; Departments of
| | | | - Darren B Orbach
- 4Neurointerventional Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Georges Rodesch
- 5Service de Neuroradiologie Diagnostique et Thérapeutique, Hôpital Foch, Suresnes, France; and
| | - Alejandro Berenstein
- 6Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Murat Gunel
- 1Department of Neurosurgery.,7Department of Genetics.,8Centers for Mendelian Genomics and Yale Program on Neurogenetics, and
| | - Kristopher T Kahle
- 1Department of Neurosurgery.,8Centers for Mendelian Genomics and Yale Program on Neurogenetics, and.,9Department of Pediatrics and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
13
|
Goumans MJ, Ten Dijke P. TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a022210. [PMID: 28348036 DOI: 10.1101/cshperspect.a022210] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic studies in animals and humans indicate that gene mutations that functionally perturb transforming growth factor β (TGF-β) signaling are linked to specific hereditary vascular syndromes, including Osler-Rendu-Weber disease or hereditary hemorrhagic telangiectasia and Marfan syndrome. Disturbed TGF-β signaling can also cause nonhereditary disorders like atherosclerosis and cardiac fibrosis. Accordingly, cell culture studies using endothelial cells or smooth muscle cells (SMCs), cultured alone or together in two- or three-dimensional cell culture assays, on plastic or embedded in matrix, have shown that TGF-β has a pivotal effect on endothelial and SMC proliferation, differentiation, migration, tube formation, and sprouting. Moreover, TGF-β can stimulate endothelial-to-mesenchymal transition, a process shown to be of key importance in heart valve cushion formation and in various pathological vascular processes. Here, we discuss the roles of TGF-β in vasculogenesis, angiogenesis, and lymphangiogenesis and the deregulation of TGF-β signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
14
|
Roman BL, Hinck AP. ALK1 signaling in development and disease: new paradigms. Cell Mol Life Sci 2017; 74:4539-4560. [PMID: 28871312 PMCID: PMC5687069 DOI: 10.1007/s00018-017-2636-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Activin A receptor like type 1 (ALK1) is a transmembrane serine/threonine receptor kinase in the transforming growth factor-beta receptor family that is expressed on endothelial cells. Defects in ALK1 signaling cause the autosomal dominant vascular disorder, hereditary hemorrhagic telangiectasia (HHT), which is characterized by development of direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although previous studies have implicated ALK1 in various aspects of sprouting angiogenesis, including tip/stalk cell selection, migration, and proliferation, recent work suggests an intriguing role for ALK1 in transducing a flow-based signal that governs directed endothelial cell migration within patent, perfused vessels. In this review, we present an updated view of the mechanism of ALK1 signaling, put forth a unified hypothesis to explain the cellular missteps that lead to AVMs associated with ALK1 deficiency, and discuss emerging roles for ALK1 signaling in diseases beyond HHT.
Collapse
Affiliation(s)
- Beth L Roman
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto St, Pittsburgh, PA, 15261, USA.
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Poduri A, Chang AH, Raftrey B, Rhee S, Van M, Red-Horse K. Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size. Development 2017; 144:3241-3252. [PMID: 28760815 DOI: 10.1242/dev.150904] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/22/2017] [Indexed: 02/01/2023]
Abstract
How mechanotransduction intersects with chemical and transcriptional factors to shape organogenesis is an important question in developmental biology. This is particularly relevant to the cardiovascular system, which uses mechanical signals from flowing blood to stimulate cytoskeletal and transcriptional responses that form a highly efficient vascular network. Using this system, artery size and structure are tightly regulated, but the underlying mechanisms are poorly understood. Here, we demonstrate that deletion of Smad4 increased the diameter of coronary arteries during mouse embryonic development, a phenotype that followed the initiation of blood flow. At the same time, the BMP signal transducers SMAD1/5/8 were activated in developing coronary arteries. In a culture model of blood flow-induced shear stress, human coronary artery endothelial cells failed to align when either BMPs were inhibited or SMAD4 was depleted. In contrast to control cells, SMAD4-deficient cells did not migrate against the direction of shear stress and increased proliferation rates specifically under flow. Similar alterations were seen in coronary arteries in vivo Thus, endothelial cells perceive the direction of blood flow and respond through SMAD signaling to regulate artery size.
Collapse
Affiliation(s)
- Aruna Poduri
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Andrew H Chang
- Department of Biology, Stanford University, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Brian Raftrey
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Siyeon Rhee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Mike Van
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Núñez-Gómez E, Pericacho M, Ollauri-Ibáñez C, Bernabéu C, López-Novoa JM. The role of endoglin in post-ischemic revascularization. Angiogenesis 2016; 20:1-24. [PMID: 27943030 DOI: 10.1007/s10456-016-9535-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
Following arterial occlusion, blood vessels respond by forming a new network of functional capillaries (angiogenesis), by reorganizing preexisting capillaries through the recruitment of smooth muscle cells to generate new arteries (arteriogenesis) and by growing and remodeling preexisting collateral arterioles into physiologically relevant arteries (collateral development). All these processes result in the recovery of organ perfusion. The importance of endoglin in post-occlusion reperfusion is sustained by several observations: (1) endoglin expression is increased in vessels showing active angiogenesis/remodeling; (2) genetic endoglin haploinsufficiency in humans causes deficient angiogenesis; and (3) the reduction of endoglin expression by gene disruption or the administration of endoglin-neutralizing antibodies reduces angiogenesis and revascularization. However, the precise role of endoglin in the several processes associated with revascularization has not been completely elucidated and, in some cases, the function ascribed to endoglin by different authors is controversial. The purpose of this review is to organize in a critical way the information available for the role of endoglin in several phenomena (angiogenesis, arteriogenesis and collateral development) associated with post-ischemic revascularization.
Collapse
Affiliation(s)
- Elena Núñez-Gómez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Claudia Ollauri-Ibáñez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Carmelo Bernabéu
- Centro de Investigaciones Biológicas, Spanish National Research Council (CIB, CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José M López-Novoa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain. .,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
17
|
Beets K, Staring MW, Criem N, Maas E, Schellinx N, de Sousa Lopes SMC, Umans L, Zwijsen A. BMP-SMAD signalling output is highly regionalized in cardiovascular and lymphatic endothelial networks. BMC DEVELOPMENTAL BIOLOGY 2016; 16:34. [PMID: 27724845 PMCID: PMC5057272 DOI: 10.1186/s12861-016-0133-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022]
Abstract
BACKGROUND Bone morphogenetic protein (BMP) signalling has emerged as a fundamental pathway in endothelial cell biology and deregulation of this pathway is implicated in several vascular disorders. BMP signalling output in endothelial cells is highly context- and dose-dependent. Phosphorylation of the BMP intracellular effectors, SMAD1/5/9, is routinely used to monitor BMP signalling activity. To better understand the in vivo context-dependency of BMP-SMAD signalling, we investigated differences in BMP-SMAD transcriptional activity in different vascular beds during mouse embryonic and postnatal stages. For this, we used the BRE::gfp BMP signalling reporter mouse in which the BMP response element (BRE) from the ID1-promotor, a SMAD1/5/9 target gene, drives the expression of GFP. RESULTS A mosaic pattern of GFP was present in various angiogenic sprouting plexuses and in endocardium of cardiac cushions and trabeculae in the heart. High calibre veins seemed to be more BRE::gfp transcriptionally active than arteries, and ubiquitous activity was present in embryonic lymphatic vasculature. Postnatal lymphatic vessels showed however only discrete micro-domains of transcriptional activity. Dynamic shifts in transcriptional activity were also observed in the endocardium of the developing heart, with a general decrease in activity over time. Surprisingly, proliferative endothelial cells were almost never GFP-positive. Patches of transcriptional activity seemed to correlate with vasculature undergoing hemodynamic alterations. CONCLUSION The BRE::gfp mouse allows to investigate selective context-dependent aspects of BMP-SMAD signalling. Our data reveals the highly dynamic nature of BMP-SMAD mediated transcriptional regulation in time and space throughout the vascular tree, supporting that BMP-SMAD signalling can be a source of phenotypic diversity in some, but not all, healthy endothelium. This knowledge can provide insight in vascular bed or organ-specific diseases and phenotypic heterogeneity within an endothelial cell population.
Collapse
Affiliation(s)
- Karen Beets
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Michael W. Staring
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Nathan Criem
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Elke Maas
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Niels Schellinx
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Lieve Umans
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - An Zwijsen
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Baeyens N, Larrivée B, Ola R, Hayward-Piatkowskyi B, Dubrac A, Huang B, Ross TD, Coon BG, Min E, Tsarfati M, Tong H, Eichmann A, Schwartz MA. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J Cell Biol 2016; 214:807-16. [PMID: 27646277 PMCID: PMC5037412 DOI: 10.1083/jcb.201603106] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/30/2016] [Indexed: 11/27/2022] Open
Abstract
Morphogenesis of the vascular system is strongly modulated by mechanical forces from blood flow. Hereditary hemorrhagic telangiectasia (HHT) is an inherited autosomal-dominant disease in which arteriovenous malformations and telangiectasias accumulate with age. Most cases are linked to heterozygous mutations in Alk1 or Endoglin, receptors for bone morphogenetic proteins (BMPs) 9 and 10. Evidence suggests that a second hit results in clonal expansion of endothelial cells to form lesions with poor mural cell coverage that spontaneously rupture and bleed. We now report that fluid shear stress potentiates BMPs to activate Alk1 signaling, which correlates with enhanced association of Alk1 and endoglin. Alk1 is required for BMP9 and flow responses, whereas endoglin is only required for enhancement by flow. This pathway mediates both inhibition of endothelial proliferation and recruitment of mural cells; thus, its loss blocks flow-induced vascular stabilization. Identification of Alk1 signaling as a convergence point for flow and soluble ligands provides a molecular mechanism for development of HHT lesions.
Collapse
Affiliation(s)
- Nicolas Baeyens
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Bruno Larrivée
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511 Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Roxana Ola
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Brielle Hayward-Piatkowskyi
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Alexandre Dubrac
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Billy Huang
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Tyler D Ross
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Brian G Coon
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Elizabeth Min
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Maya Tsarfati
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Haibin Tong
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511 Jilin Provincial Key Laboratory of Molecular Geriatric Medicine, Life Science Research Center, Beihua University, Jilin 132013, China
| | - Anne Eichmann
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Institut National de la Santé et de la Recherche Médicale U970, Paris Center for Cardiovascular Research, 75015 Paris, France
| | - Martin A Schwartz
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Department of Cell Biology, Yale University, New Haven, CT 06510 Department of Biomedical Engineering, Yale University, New Haven, CT 06510
| |
Collapse
|
19
|
Reichman D, Man L, Park L, Lis R, Gerhardt J, Rosenwaks Z, James D. Notch hyper-activation drives trans-differentiation of hESC-derived endothelium. Stem Cell Res 2016; 17:391-400. [PMID: 27643563 DOI: 10.1016/j.scr.2016.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/01/2016] [Accepted: 09/13/2016] [Indexed: 12/28/2022] Open
Abstract
During development, endothelial cells (EC) display tissue-specific attributes that are unique to each vascular bed, as well as generic signaling mechanisms that are broadly applied to create a patent circulatory system. We have previously utilized human embryonic stem cells (hESC) to generate tissue-specific EC sub-types (Rafii et al., 2013) and identify pathways that govern growth and trans-differentiation potential of hESC-derived ECs (James et al., 2010). Here, we elucidate a novel Notch-dependent mechanism that induces endothelial to mesenchymal transition (EndMT) in confluent monolayer cultures of hESC-derived ECs. We demonstrate density-dependent induction of EndMT that can be rescued by the Notch signaling inhibitor DAPT and identify a positive feedback signaling mechanism in hESC-ECs whereby trans-activation of Notch by DLL4 ligand induces elevated expression and surface presentation of DLL4. Increased Notch activation in confluent hESC-EC monolayer cultures induces areas of EndMT containing transitional cells that are marked by increased Jagged1 expression and reduced Notch signal integration. Jagged1 loss of function in monolayer hESC-ECs induces accelerated feedback stimulation of Notch signaling, increased expression of cell-autonomous, cis-inhibitory DLL4, and EndMT. These data elucidate a novel interplay of Notch ligands in modulating pathway activation during both expansion and EndMT of hESC-derived ECs.
Collapse
Affiliation(s)
- David Reichman
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, United States
| | - Limor Man
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, United States
| | - Laura Park
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, United States
| | - Raphael Lis
- Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medical College, New York, NY 10065, United States
| | - Jeannine Gerhardt
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, United States
| | - Zev Rosenwaks
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, United States
| | - Daylon James
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, United States; Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medical College, New York, NY 10065, United States.
| |
Collapse
|
20
|
Abstract
Transforming growth factor β (TGF-β) family members signal via heterotetrameric complexes of type I and type II dual specificity kinase receptors. The activation and stability of the receptors are controlled by posttranslational modifications, such as phosphorylation, ubiquitylation, sumoylation, and neddylation, as well as by interaction with other proteins at the cell surface and in the cytoplasm. Activation of TGF-β receptors induces signaling via formation of Smad complexes that are translocated to the nucleus where they act as transcription factors, as well as via non-Smad pathways, including the Erk1/2, JNK and p38 MAP kinase pathways, and the Src tyrosine kinase, phosphatidylinositol 3'-kinase, and Rho GTPases.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
21
|
Integrin β8 Deletion Enhances Vascular Dysplasia and Hemorrhage in the Brain of Adult Alk1 Heterozygous Mice. Transl Stroke Res 2016; 7:488-496. [PMID: 27352867 DOI: 10.1007/s12975-016-0478-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Brain arteriovenous malformation (bAVM), characterized by tangled dysplastic vessels, is an important cause of intracranial hemorrhage in young adults, and its pathogenesis and progression are not fully understood. Patients with haploinsufficiency of transforming growth factor-β (TGF-β) receptors, activin receptor-like kinase 1 (ALK1) or endoglin (ENG) have a higher incidence of bAVM than the general population. However, bAVM does not develop effectively in mice with the same haploinsufficiency. The expression of integrin β8 subunit (ITGB8), another member in the TGF-β superfamily, is reduced in sporadic human bAVM. Brain angiogenic stimulation results at the capillary level of vascular malformation in adult Alk1 haploinsufficient (Alk1 +/- ) mice. We hypothesized that deletion of Itgb8 enhances bAVM development in adult Alk1 +/- mice. An adenoviral vector expressing Cre recombinase (Ad-Cre) was co-injected with an adeno-associated viral vector expressing vascular endothelial growth factor (AAV-VEGF) into the brain of Alk1 +/-;Itgb8-floxed mice to induce focal Itgb8 gene deletion and angiogenesis. We showed that compared with Alk +/- mice (4.75 ± 1.38/mm2), the Alk1 +/-;Itgb8-deficient mice had more dysplastic vessels in the angiogenic foci (7.14 ± 0.68/mm2, P = 0.003). More severe hemorrhage was associated with dysplastic vessels in the brain of Itgb8-deleted Alk1 +/- , as evidenced by larger Prussian blue-positive areas (1278 ± 373 pixels/mm2 vs. Alk1 +/- : 320 ± 104 pixels/mm2; P = 0.028). These data indicate that both Itgb8 and Alk1 are important in maintaining normal cerebral angiogenesis in response to VEGF. Itgb8 deficiency enhances the formation of dysplastic vessels and hemorrhage in Alk1 +/- mice.
Collapse
|
22
|
Morrell NW, Bloch DB, ten Dijke P, Goumans MJTH, Hata A, Smith J, Yu PB, Bloch KD. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol 2016; 13:106-20. [PMID: 26461965 PMCID: PMC4886232 DOI: 10.1038/nrcardio.2015.156] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies.
Collapse
Affiliation(s)
- Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Donald B Bloch
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Peter ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Marie-Jose T H Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jim Smith
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Paul B Yu
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kenneth D Bloch
- Anaesthesia Centre for Critical Care Research, Department of Anaesthesia, Critical Care and Pain Medicine, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
23
|
Kim H, Pawlikowska L, Su H, Young WL. Genetics and Vascular Biology of Angiogenesis and Vascular Malformations. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00012-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Hazzaa HHA, El-Wakeel NM, Attia EAS, Abo Hager EA. ALK1 expression in oral lichen planus: a possible relation to microvessel density. J Oral Pathol Med 2015; 45:373-80. [PMID: 26662187 DOI: 10.1111/jop.12396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2015] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To assess the expression of activin receptor-like kinase 1 (ALK1) and investigate its possible relationship with microvessel density (MVD) in different forms of oral lichen planus (OLP) compared to controls' biopsies. METHODS Biopsies from 20 reticular/papular OLP (R/PLP), 20 atrophic/erosive OLP (A/ELP) patients, and 20 healthy subjects were immunohistochemically analyzed and statistically compared and correlated for ALK1 expression and MVD as assessed by CD34 expression. RESULTS All OLP specimens revealed the presence of positive cytoplasmic CD34 immunostaining in endothelial cells, with statistically high significant MVD in each of R/PLP (Median; M = 4.40) and A/ELP (M = 7.69) compared to controls (M = 1.16) (P < 0.001). Statistically significant MVD was found in A/ELP compared to R/PLP (P < 0.001). All control specimens revealed negative ALK1 immunostaining of the few inflammatory cells found, while 85% of A/ELP cases and 70% of R/PLP cases showed positively immunostained sections for ALK-1, with statistically significant higher ALK1 expression In A/ELP (M = 1.95) compared to R/PLP (M = 0.86) (P = 0.005). No significant correlation between CD34 and ALK1 was detected in R/PLP (r = 0.081), while a barely moderate positive correlation was found in A/ELP (r = 0.396). CONCLUSIONS ALK1 expression and MVD are increased in OLP, particularly in A/ELP type.
Collapse
Affiliation(s)
- Hala H A Hazzaa
- Oral Medicine, Diagnosis, Periodontology and Radiology, Faculty of Dental Medicine, Al Azhar University (Girls Branch), Cairo, Egypt.,Oral Medicine, Diagnosis, Periodontology and Radiology, Faculty of Dentistry, Nahda University, Beni Swaif, Egypt
| | - Naglaa M El-Wakeel
- Oral Medicine, Diagnosis, Periodontology and Radiology, Faculty of Dental Medicine, Al Azhar University (Girls Branch), Cairo, Egypt
| | - Enas A S Attia
- Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman A Abo Hager
- Oral and Dental patholology, Faculty of Dental Medicine, Al Azhar University (Girls Branch), Cairo, Egypt
| |
Collapse
|
25
|
Peacock HM, Caolo V, Jones EAV. Arteriovenous malformations in hereditary haemorrhagic telangiectasia: looking beyond ALK1-NOTCH interactions. Cardiovasc Res 2015; 109:196-203. [PMID: 26645978 DOI: 10.1093/cvr/cvv264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/29/2015] [Indexed: 12/20/2022] Open
Abstract
Hereditary haemorrhagic telangiectasia (HHT) is characterized by the development of arteriovenous malformations--enlarged shunts allowing arterial flow to bypass capillaries and enter directly into veins. HHT is caused by mutations in ALK1 or Endoglin; however, the majority of arteriovenous malformations are idiopathic and arise spontaneously. Idiopathic arteriovenous malformations differ from those due to loss of ALK1 in terms of both location and disease progression. Furthermore, while arteriovenous malformations in HHT and Alk1 knockout models have decreased NOTCH signalling, some idiopathic arteriovenous malformations have increased NOTCH signalling. The pathogenesis of these lesions also differs, with loss of ALK1 causing expansion of the shunt through proliferation, and NOTCH gain of function inducing initial shunt enlargement by cellular hypertrophy. Hence, we propose that idiopathic arteriovenous malformations are distinct from those of HHT. In this review, we explore the role of ALK1-NOTCH interactions in the development of arteriovenous malformations and examine a possible role of two signalling pathways downstream of ALK1, TMEM100 and IDs, in the development of arteriovenous malformations in HHT. A nuanced understanding of the precise molecular mechanisms underlying idiopathic and HHT-associated arteriovenous malformations will allow for development of targeted treatments for these lesions.
Collapse
Affiliation(s)
- Hanna M Peacock
- Department of Cardiovascular Science, Centre for Molecular and Vascular Biology, KU Leuven, UZ Herestraat 49-Box 911, 3000 Leuven, Belgium
| | - Vincenza Caolo
- Department of Cardiovascular Science, Centre for Molecular and Vascular Biology, KU Leuven, UZ Herestraat 49-Box 911, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Science, Centre for Molecular and Vascular Biology, KU Leuven, UZ Herestraat 49-Box 911, 3000 Leuven, Belgium
| |
Collapse
|
26
|
Fish JE, Wythe JD. The molecular regulation of arteriovenous specification and maintenance. Dev Dyn 2015; 244:391-409. [PMID: 25641373 DOI: 10.1002/dvdy.24252] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 12/21/2022] Open
Abstract
The formation of a hierarchical vascular network, composed of arteries, veins, and capillaries, is essential for embryogenesis and is required for the production of new functional vasculature in the adult. Elucidating the molecular mechanisms that orchestrate the differentiation of vascular endothelial cells into arterial and venous cell fates is requisite for regenerative medicine, as the directed formation of perfused vessels is desirable in a myriad of pathological settings, such as in diabetes and following myocardial infarction. Additionally, this knowledge will enhance our understanding and treatment of vascular anomalies, such as arteriovenous malformations (AVMs). From studies in vertebrate model organisms, such as mouse, zebrafish, and chick, a number of key signaling pathways have been elucidated that are required for the establishment and maintenance of arterial and venous fates. These include the Hedgehog, Vascular Endothelial Growth Factor (VEGF), Transforming Growth Factor-β (TGF-β), Wnt, and Notch signaling pathways. In addition, a variety of transcription factor families acting downstream of, or in concert with, these signaling networks play vital roles in arteriovenous (AV) specification. These include Notch and Notch-regulated transcription factors (e.g., HEY and HES), SOX factors, Forkhead factors, β-Catenin, ETS factors, and COUP-TFII. It is becoming apparent that AV specification is a highly coordinated process that involves the intersection and carefully orchestrated activity of multiple signaling cascades and transcriptional networks. This review will summarize the molecular mechanisms that are involved in the acquisition and maintenance of AV fate, and will highlight some of the limitations in our current knowledge of the molecular machinery that directs AV morphogenesis.
Collapse
Affiliation(s)
- Jason E Fish
- Toronto General Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada
| | | |
Collapse
|
27
|
Butko E, Pouget C, Traver D. Complex regulation of HSC emergence by the Notch signaling pathway. Dev Biol 2015; 409:129-138. [PMID: 26586199 DOI: 10.1016/j.ydbio.2015.11.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 01/13/2023]
Abstract
Hematopoietic stem cells are formed during embryonic development, and serve as the foundation of the definitive blood program for life. Notch signaling has been well established as an essential direct contributor to HSC specification. However, several recent studies have indicated that the contribution of Notch signaling is complex. HSC specification requires multiple Notch signaling inputs, some received directly by hematopoietic precursors, and others that occur indirectly within neighboring somites. Of note, proinflammatory signals provided by primitive myeloid cells are needed for HSC specification via upregulation of the Notch pathway in hemogenic endothelium. In addition to multiple requirements for Notch activation, recent studies indicate that Notch signaling must subsequently be repressed to permit HSC emergence. Finally, Notch must then be reactivated to maintain HSC fate. In this review, we discuss the growing understanding of the dynamic contributions of Notch signaling to the establishment of hematopoiesis during development.
Collapse
Affiliation(s)
- Emerald Butko
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Claire Pouget
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
28
|
Gene expression profiling of changes induced by maternal diabetes in the embryonic heart. Reprod Toxicol 2015; 57:147-56. [DOI: 10.1016/j.reprotox.2015.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/07/2015] [Accepted: 06/03/2015] [Indexed: 01/04/2023]
|
29
|
Young K, Krebs LT, Tweedie E, Conley B, Mancini M, Arthur HM, Liaw L, Gridley T, Vary C. Endoglin is required in Pax3-derived cells for embryonic blood vessel formation. Dev Biol 2015; 409:95-105. [PMID: 26481065 DOI: 10.1016/j.ydbio.2015.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/02/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
Mutations in endoglin, a TGFβ/BMP coreceptor, are causal for hereditary hemorrhagic telangiectasia (HHT). Endoglin-null (Eng-/-) mouse embryos die at embryonic day (E)10.5-11.5 due to defects in angiogenesis. In part, this is due to an absence of vascular smooth muscle cell differentiation and vessel investment. Prior studies from our lab and others have shown the importance of endoglin expression in embryonic development in both endothelial cells and neural crest stem cells. These studies support the hypothesis that endoglin may play cell-autonomous roles in endothelial and vascular smooth muscle cell precursors. However, the requirement for endoglin in vascular cell precursors remains poorly defined. Our objective was to specifically delete endoglin in neural crest- and somite-derived Pax3-positive vascular precursors to understand the impact on somite progenitor cell contribution to embryonic vascular development. Pax3Cre mice were crossed with Eng+/- mice to obtain compound mutant Pax3(Cre/+);Eng+/- mice. These mice were then crossed with homozygous endoglin LoxP-mutated (Eng(LoxP/LoxP)) mice to conditionally delete the endoglin gene in specific lineages that contribute to endothelial and smooth muscle constituents of developing embryonic vessels. Pax3(Cre/+);Eng(LoxP/)(-) mice showed a variety of vascular defects at E10.5, and none of these mice survived past E12.5. Embryos analyzed at E10.5 showed malformations suggestive of misdirection of the intersomitic vessels. The dorsal aorta showed significant dilation with associated vascular smooth muscle cells exhibiting disorganization and enhanced expression of smooth muscle differentiation proteins, including smooth muscle actin. These results demonstrate a requirement for endoglin in descendants of Pax3-expressing vascular cell precursors, and thus provides new insight into the cellular basis underlying adult vascular diseases such as HHT.
Collapse
Affiliation(s)
- K Young
- Maine Medical Center Research Institute, Scarborough, ME, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States; The Jackson Laboratory, Bar Harbor, ME, United States
| | - L T Krebs
- Maine Medical Center Research Institute, Scarborough, ME, United States
| | - E Tweedie
- Maine Medical Center Research Institute, Scarborough, ME, United States
| | - B Conley
- Maine Medical Center Research Institute, Scarborough, ME, United States
| | - M Mancini
- Maine Medical Center Research Institute, Scarborough, ME, United States; Champions Oncology, Baltimore, MD, United States
| | - H M Arthur
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - L Liaw
- Maine Medical Center Research Institute, Scarborough, ME, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - T Gridley
- Maine Medical Center Research Institute, Scarborough, ME, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Cph Vary
- Maine Medical Center Research Institute, Scarborough, ME, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States.
| |
Collapse
|
30
|
Vandersmissen I, Craps S, Depypere M, Coppiello G, van Gastel N, Maes F, Carmeliet G, Schrooten J, Jones EAV, Umans L, Devlieger R, Koole M, Gheysens O, Zwijsen A, Aranguren XL, Luttun A. Endothelial Msx1 transduces hemodynamic changes into an arteriogenic remodeling response. J Cell Biol 2015; 210:1239-56. [PMID: 26391659 PMCID: PMC4586738 DOI: 10.1083/jcb.201502003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/18/2015] [Indexed: 12/25/2022] Open
Abstract
During peripheral arterial disease, MSX1 acts downstream of BMP–SMAD signaling to transduce the arterial shear stimulus into an arteriogenic remodeling response. MSX1 activates collateral endothelium into a proinflammatory state through ICAM1/VCAM1 up-regulation, resulting in increased leukocyte infiltration and collateral remodeling. Collateral remodeling is critical for blood flow restoration in peripheral arterial disease and is triggered by increasing fluid shear stress in preexisting collateral arteries. So far, no arterial-specific mediators of this mechanotransduction response have been identified. We show that muscle segment homeobox 1 (MSX1) acts exclusively in collateral arterial endothelium to transduce the extrinsic shear stimulus into an arteriogenic remodeling response. MSX1 was specifically up-regulated in remodeling collateral arteries. MSX1 induction in collateral endothelial cells (ECs) was shear stress driven and downstream of canonical bone morphogenetic protein–SMAD signaling. Flow recovery and collateral remodeling were significantly blunted in EC-specific Msx1/2 knockout mice. Mechanistically, MSX1 linked the arterial shear stimulus to arteriogenic remodeling by activating the endothelial but not medial layer to a proinflammatory state because EC but not smooth muscle cellMsx1/2 knockout mice had reduced leukocyte recruitment to remodeling collateral arteries. This reduced leukocyte infiltration in EC Msx1/2 knockout mice originated from decreased levels of intercellular adhesion molecule 1 (ICAM1)/vascular cell adhesion molecule 1 (VCAM1), whose expression was also in vitro driven by promoter binding of MSX1.
Collapse
Affiliation(s)
- Ine Vandersmissen
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Sander Craps
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Maarten Depypere
- Department of Electrical Engineering/Processing Speech and Images, Medical Image Computing, KU Leuven, 3000 Leuven, Belgium
| | - Giulia Coppiello
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
| | - Nick van Gastel
- Laboratory of Clinical and Experimental Endocrinology, Division of Skeletal Tissue Engineering, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Frederik Maes
- Department of Electrical Engineering/Processing Speech and Images, Medical Image Computing, KU Leuven, 3000 Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Division of Skeletal Tissue Engineering, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Jan Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium Department of Materials Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Umans
- Laboratory of Developmental Signaling, VIB Center for the Biology of Disease, KU Leuven, 3000 Leuven, Belgium Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Roland Devlieger
- Department of Gynecology and Obstetrics, University Hospital Leuven, 3000 Leuven, Belgium Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Michel Koole
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Olivier Gheysens
- Department of Nuclear Medicine University Hospital Leuven, 3000 Leuven, Belgium Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - An Zwijsen
- Laboratory of Developmental Signaling, VIB Center for the Biology of Disease, KU Leuven, 3000 Leuven, Belgium Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Xabier L Aranguren
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
| | - Aernout Luttun
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
31
|
Abstract
An arteriovenous malformation is a tangle of dysplastic vessels (nidus) fed by arteries and drained by veins without intervening capillaries, forming a high-flow, low-resistance shunt between the arterial and venous systems. Arteriovenous malformations in the brain have a low estimated prevalence but are an important cause of intracerebral haemorrhage in young adults. For previously unruptured malformations, bleeding rates are approximately 1% per year. Once ruptured, the subsequent risk increases fivefold, depending on associated aneurysms, deep locations, deep drainage and increasing age. Recent findings from novel animal models and genetic studies suggest that arteriovenous malformations, which were long considered congenital, arise from aberrant vasculogenesis, genetic mutations and/or angiogenesis after injury. The phenotypical characteristics of arteriovenous malformations differ among age groups, with fistulous lesions in children and nidal lesions in adults. Diagnosis mainly involves imaging techniques, including CT, MRI and angiography. Management includes observation, microsurgical resection, endovascular embolization and stereotactic radiosurgery, alone or in any combination. There is little consensus on how to manage patients with unruptured malformations; recent studies have shown that patients managed medically fared better than those with intervention at short-term follow-up. By contrast, interventional treatment is preferred following a ruptured malformation to prevent rehaemorrhage. Management continues to evolve as new mechanistic discoveries and reliable animal models raise the possibility of developing drugs that might prevent the formation of arteriovenous malformations, induce obliteration and/or stabilize vessels to reduce rupture risk. For an illustrated summary of this Primer, visit: http://go.nature.com/TMoAdn.
Collapse
|
32
|
Teng G, Zhao X, Lees-Miller JP, Belke D, Shi C, Chen Y, O’Brien ER, Fedak PW, Bracey N, Cross JC, Duff HJ. Role of Mutation and Pharmacologic Block of Human KCNH2 in Vasculogenesis and Fetal Mortality. Circ Arrhythm Electrophysiol 2015; 8:420-8. [DOI: 10.1161/circep.114.001837] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 01/20/2015] [Indexed: 11/16/2022]
Abstract
Background—
N629D
KCNH2
is a human missense long-QT2 mutation. Previously, we reported that the N629D/N629D mutation embryos disrupted cardiac looping, right ventricle development, and ablated I
Kr
activity at E9.5. The present study evaluates the role of KCNH2 in vasculogenesis.
Methods and Results—
N629D/N629D yolk sac vessels and aorta consist of sinusoids without normal arborization. Isolated E9.5 +/+ first branchial arches showed normal outgrowth of mouse ERG–positive/α-smooth muscle actin coimmunolocalized cells; however, outgrowth was grossly reduced in N629D/N629D. N629D/N629D aortas showed fewer α-smooth muscle actin positive cells that were not coimmunolocalized with mouse ERG cells. Transforming growth factor-β treatment of isolated N629D/N629D embryoid bodies partially rescued this phenotype. Cultured N629D/N629D embryos recapitulate the same cardiovascular phenotypes as seen in vivo. Transforming growth factor-β treatment significantly rescued these embryonic phenotypes. Both in vivo and in vitro, dofetilide treatment, over a narrow window of time, entirely recapitulated the N629D/N629D fetal phenotypes. Exogenous transforming growth factor-β treatment also rescued the dofetilide-induced phenotype toward normal.
Conclusions—
Loss of function of KCNH2 mutations results in defects in cardiogenesis and vasculogenesis. Because many medications inadvertently block the KCNH2 potassium current, these novel findings seem to have clinical relevance.
Collapse
Affiliation(s)
- Guoqi Teng
- From the Libin Cardiovascular Institute, Faculty of Medicine (G.T., J.P.L.-M., D.B., C.S., Y.C., E.R.O’B., P.W.F., N.B., H.J.D.) and Department of Comparative Biology and Experimental Medicine and Faculty of Veterinary Medicine (X.Z., J.C.C.), University of Calgary, Calgary, Alberta, Canada
| | - Xiang Zhao
- From the Libin Cardiovascular Institute, Faculty of Medicine (G.T., J.P.L.-M., D.B., C.S., Y.C., E.R.O’B., P.W.F., N.B., H.J.D.) and Department of Comparative Biology and Experimental Medicine and Faculty of Veterinary Medicine (X.Z., J.C.C.), University of Calgary, Calgary, Alberta, Canada
| | - James P. Lees-Miller
- From the Libin Cardiovascular Institute, Faculty of Medicine (G.T., J.P.L.-M., D.B., C.S., Y.C., E.R.O’B., P.W.F., N.B., H.J.D.) and Department of Comparative Biology and Experimental Medicine and Faculty of Veterinary Medicine (X.Z., J.C.C.), University of Calgary, Calgary, Alberta, Canada
| | - Darrell Belke
- From the Libin Cardiovascular Institute, Faculty of Medicine (G.T., J.P.L.-M., D.B., C.S., Y.C., E.R.O’B., P.W.F., N.B., H.J.D.) and Department of Comparative Biology and Experimental Medicine and Faculty of Veterinary Medicine (X.Z., J.C.C.), University of Calgary, Calgary, Alberta, Canada
| | - Chunhua Shi
- From the Libin Cardiovascular Institute, Faculty of Medicine (G.T., J.P.L.-M., D.B., C.S., Y.C., E.R.O’B., P.W.F., N.B., H.J.D.) and Department of Comparative Biology and Experimental Medicine and Faculty of Veterinary Medicine (X.Z., J.C.C.), University of Calgary, Calgary, Alberta, Canada
| | - Yongxiang Chen
- From the Libin Cardiovascular Institute, Faculty of Medicine (G.T., J.P.L.-M., D.B., C.S., Y.C., E.R.O’B., P.W.F., N.B., H.J.D.) and Department of Comparative Biology and Experimental Medicine and Faculty of Veterinary Medicine (X.Z., J.C.C.), University of Calgary, Calgary, Alberta, Canada
| | - Edward R. O’Brien
- From the Libin Cardiovascular Institute, Faculty of Medicine (G.T., J.P.L.-M., D.B., C.S., Y.C., E.R.O’B., P.W.F., N.B., H.J.D.) and Department of Comparative Biology and Experimental Medicine and Faculty of Veterinary Medicine (X.Z., J.C.C.), University of Calgary, Calgary, Alberta, Canada
| | - Paul W. Fedak
- From the Libin Cardiovascular Institute, Faculty of Medicine (G.T., J.P.L.-M., D.B., C.S., Y.C., E.R.O’B., P.W.F., N.B., H.J.D.) and Department of Comparative Biology and Experimental Medicine and Faculty of Veterinary Medicine (X.Z., J.C.C.), University of Calgary, Calgary, Alberta, Canada
| | - Nathan Bracey
- From the Libin Cardiovascular Institute, Faculty of Medicine (G.T., J.P.L.-M., D.B., C.S., Y.C., E.R.O’B., P.W.F., N.B., H.J.D.) and Department of Comparative Biology and Experimental Medicine and Faculty of Veterinary Medicine (X.Z., J.C.C.), University of Calgary, Calgary, Alberta, Canada
| | - James C. Cross
- From the Libin Cardiovascular Institute, Faculty of Medicine (G.T., J.P.L.-M., D.B., C.S., Y.C., E.R.O’B., P.W.F., N.B., H.J.D.) and Department of Comparative Biology and Experimental Medicine and Faculty of Veterinary Medicine (X.Z., J.C.C.), University of Calgary, Calgary, Alberta, Canada
| | - Henry J. Duff
- From the Libin Cardiovascular Institute, Faculty of Medicine (G.T., J.P.L.-M., D.B., C.S., Y.C., E.R.O’B., P.W.F., N.B., H.J.D.) and Department of Comparative Biology and Experimental Medicine and Faculty of Veterinary Medicine (X.Z., J.C.C.), University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Dingenouts CKE, Goumans MJ, Bakker W. Mononuclear cells and vascular repair in HHT. Front Genet 2015; 6:114. [PMID: 25852751 PMCID: PMC4369645 DOI: 10.3389/fgene.2015.00114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) or Rendu–Osler–Weber disease is a rare genetic vascular disorder known for its endothelial dysplasia causing arteriovenous malformations and severe bleedings. HHT-1 and HHT-2 are the most prevalent variants and are caused by heterozygous mutations in endoglin and activin receptor-like kinase 1, respectively. An undervalued aspect of the disease is that HHT patients experience persistent inflammation. Although endothelial and mural cells have been the main research focus trying to unravel the mechanism behind the disease, wound healing is a process with a delicate balance between inflammatory and vascular cells. Inflammatory cells are part of the mononuclear cells (MNCs) fraction, and can, next to eliciting an immune response, also have angiogenic potential. This biphasic effect of MNC can hold a promising mechanism to further elucidate treatment strategies for HHT patients. Before MNC are able to contribute to repair, they need to home to and retain in ischemic and damaged tissue. Directed migration (homing) of MNCs following tissue damage is regulated by the stromal cell derived factor 1 (SDF1). MNCs that express the C-X-C chemokine receptor 4 (CXCR4) migrate toward the tightly regulated gradient of SDF1. This directed migration of monocytes and lymphocytes can be inhibited by dipeptidyl peptidase 4 (DPP4). Interestingly, MNC of HHT patients express elevated levels of DPP4 and show impaired homing toward damaged tissue. Impaired homing capacity of the MNCs might therefore contribute to the impaired angiogenesis and tissue repair observed in HHT patients. This review summarizes recent studies regarding the role of MNCs in the etiology of HHT and vascular repair, and evaluates the efficacy of DPP4 inhibition in tissue integrity and repair.
Collapse
Affiliation(s)
- Calinda K E Dingenouts
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| | - Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| | - Wineke Bakker
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| |
Collapse
|
34
|
Ardelean DS, Letarte M. Anti-angiogenic therapeutic strategies in hereditary hemorrhagic telangiectasia. Front Genet 2015; 6:35. [PMID: 25717337 PMCID: PMC4324154 DOI: 10.3389/fgene.2015.00035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/26/2015] [Indexed: 01/22/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular dysplastic disorder, characterized by recurrent nosebleeds (epistaxis), multiple telangiectases and arteriovenous malformations (AVMs) in major organs. Mutations in Endoglin (ENG or CD105) and Activin receptor-like kinase 1 (ACVRL1 or ALK1) genes of the TGF-β superfamily receptors are responsible for HHT1 and HHT2 respectively and account for the majority of HHT cases. Haploinsufficiency in ENG and ALK1 is recognized at the underlying cause of HHT. However, the mechanisms responsible for the predisposition to and generation of AVMs, the hallmark of this disease, are poorly understood. Recent data suggest that dysregulated angiogenesis contributes to the pathogenesis of HHT and that the vascular endothelial growth factor, VEGF, may be implicated in this disease, by modulating the angiogenic–angiostatic balance in the affected tissues. Hence, anti-angiogenic therapies that target the abnormal vessels and restore the angiogenic–angiostatic balance are candidates for treatment of HHT. Here we review the experimental evidence for dysregulated angiogenesis in HHT, the anti-angiogenic therapeutic strategies used in animal models and some patients with HHT and the potential benefit of the anti-angiogenic treatment for ameliorating this severe, progressive vascular disease.
Collapse
Affiliation(s)
- Daniela S Ardelean
- Department of Pediatrics, The Hospital for Sick Children Toronto, ON, Canada
| | - Michelle Letarte
- Molecular Structure and Function Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children Toronto, ON, Canada ; Department of Immunology, University of Toronto Toronto, ON, Canada ; Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto Toronto, ON, Canada
| |
Collapse
|
35
|
Rana AA, Callery EM. Applications of nuclear reprogramming and directed differentiation in vascular regenerative medicine. N Biotechnol 2015; 32:191-8. [PMID: 25064145 DOI: 10.1016/j.nbt.2014.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 11/30/2022]
Abstract
As vertebrates proceed through embryonic development the growing organism cannot survive on diffusion of oxygen and nutrients alone and establishment of vascular system is fundamental for embryonic development to proceed. Dysfunction of the vascular system in adults is at the heart of many disease states such as hypertension and atherosclerosis. In this review we will focus on attempts to generate the key cells of the vascular system, the endothelial and smooth muscle cells, using human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs). Regardless of their origin, be it embryonic or via somatic cell reprogramming, pluripotent stem cells provide limitlessly self-renewing populations of material suitable for the generation of multi-lineage isogenic vascular cells-types that can be used as tools to study normal cell and tissue biology, model disease states and also as tools for drug screening and future cell therapies.
Collapse
Affiliation(s)
- Amer A Rana
- Division of Respiratory Medicine, Department of Medicine, Box 157, 5th Floor, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - Elizabeth M Callery
- Division of Respiratory Medicine, Department of Medicine, Box 157, 5th Floor, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
36
|
Roman BL, Finegold DN. Genetic and Molecular Basis for Hereditary Hemorrhagic Telangiectasia. CURRENT GENETIC MEDICINE REPORTS 2014. [DOI: 10.1007/s40142-014-0061-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Snider P, Simmons O, Wang J, Hoang CQ, Conway SJ. Ectopic Noggin in a Population of Nfatc1 Lineage Endocardial Progenitors Induces Embryonic Lethality. J Cardiovasc Dev Dis 2014; 1:214-236. [PMID: 26090377 PMCID: PMC4469290 DOI: 10.3390/jcdd1030214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The initial heart is composed of a myocardial tube lined by endocardial cells. The TGFβ superfamily is known to play an important role, as BMPs from the myocardium signal to the overlying endocardium to create an environment for EMT. Subsequently, BMP and TGFβ signaling pathways synergize to form primitive valves and regulate myocardial growth. In this study, we investigated the requirement of BMP activity by transgenic over-expression of extracellular BMP antagonist Noggin. Using Nfatc1Cre to drive lineage-restricted Noggin within the endocardium, we show that ectopic Noggin arrests cardiac development in E10.5-11 embryos, resulting in small hearts which beat poorly and die by E12.5. This is coupled with hypoplastic endocardial cushions, reduced trabeculation and fewer mature contractile fibrils in mutant hearts. Moreover, Nfatc1Cre-mediated diphtheria toxin fragment-A expression in the endocardium resulted in genetic ablation and a more severe phenotype with lethality at E11 and abnormal linear hearts. Molecular analysis demonstrated that endocardial Noggin resulted in a specific alteration of TGFβ/BMP-mediated signal transduction, in that, both Endoglin and ALK1 were downregulated in mutant endocardium. Combined, these results demonstrate the cell-autonomous requirement of the endocardial lineage and function of unaltered BMP levels in facilitating endothelium-cardiomyocyte cross-talk and promoting endocardial cushion formation.
Collapse
Affiliation(s)
| | | | | | | | - Simon J. Conway
- Author to whom correspondence should be addressed; ; Tel.: +317-278-8781; Fax: +317-278-0138
| |
Collapse
|
38
|
Mizuta K, Sakabe M, Hashimoto A, Ioka T, Sakai C, Okumura K, Hattammaru M, Fujita M, Araki M, Somekawa S, Saito Y, Nakagawa O. Impairment of endothelial-mesenchymal transformation during atrioventricular cushion formation inTmem100null embryos. Dev Dyn 2014; 244:31-42. [DOI: 10.1002/dvdy.24216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/28/2014] [Accepted: 10/08/2014] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ken Mizuta
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| | - Masahide Sakabe
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| | - Aya Hashimoto
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| | - Tomoko Ioka
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| | - Chihiro Sakai
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| | - Kazuki Okumura
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| | - Miwa Hattammaru
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
- Department of Internal Medicine; Tokyo Women's Medical University Medical Center East; Tokyo Japan
| | - Masahide Fujita
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| | - Mutsumi Araki
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| | - Satoshi Somekawa
- The First Department of Internal Medicine; Nara Medical University; Kashihara Nara Japan
| | - Yoshihiko Saito
- The First Department of Internal Medicine; Nara Medical University; Kashihara Nara Japan
| | - Osamu Nakagawa
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| |
Collapse
|
39
|
Borges L, Iacovino M, Koyano-Nakagawa N, Baik J, Garry DJ, Kyba M, Perlingeiro RCR. Expression levels of endoglin distinctively identify hematopoietic and endothelial progeny at different stages of yolk sac hematopoiesis. Stem Cells 2014; 31:1893-901. [PMID: 23712751 DOI: 10.1002/stem.1434] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 11/11/2022]
Abstract
Endoglin (Eng), an ancillary receptor of the transforming growth factor beta (TGFβ) signaling pathway superfamily, has been well recognized for its important function in vascular development and angiogenesis since its discovery more than a decade ago. Recent studies show that this receptor is also critical for the emergence of blood during embryonic development, and that at E7.5, endoglin together with Flk-1 identifies early mesoderm progenitors that are endowed with hematopoietic and endothelial potential. These two lineages emerge in very close association during embryogenesis, and because they share the expression of the same surface markers, it has been difficult to distinguish the earliest hematopoietic from endothelial cells. Here, we evaluated the function of endoglin in hematopoiesis as development progresses past E7.5, and found that the hematopoietic and endothelial progenitors can be distinguished by the levels of endoglin in E9.5 yolk sacs. Whereas endothelial cells are Eng(bright), hematopoietic activity is primarily restricted to a subset of cells that display dim expression of endoglin (Eng(dim)). Molecular characterization of these subfractions showed that endoglin-mediated induction of hematopoiesis occurs in concert with BMP2/BMP4 signaling. This pathway is highly active in Eng(dim) cells but significantly downregulated in the Eng knockout. Taken together, our findings show an important function for endoglin in mediating BMP2/BMP4 signaling during yolk sac hematopoietic development and suggest that the levels of this receptor modulate TGFβ versus bone morphogenetic protein (BMP) signaling.
Collapse
Affiliation(s)
- Luciene Borges
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Developmental and pathological angiogenesis in the central nervous system. Cell Mol Life Sci 2014; 71:3489-506. [PMID: 24760128 DOI: 10.1007/s00018-014-1625-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 01/24/2023]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vessels, in the central nervous system (CNS) is seen both as a normal physiological response as well as a pathological step in disease progression. Formation of the blood-brain barrier (BBB) is an essential step in physiological CNS angiogenesis. The BBB is regulated by a neurovascular unit (NVU) consisting of endothelial and perivascular cells as well as vascular astrocytes. The NVU plays a critical role in preventing entry of neurotoxic substances and regulation of blood flow in the CNS. In recent years, research on numerous acquired and hereditary disorders of the CNS has increasingly emphasized the role of angiogenesis in disease pathophysiology. Here, we discuss molecular mechanisms of CNS angiogenesis during embryogenesis as well as various pathological states including brain tumor formation, ischemic stroke, arteriovenous malformations, and neurodegenerative diseases.
Collapse
|
41
|
Brain arteriovenous malformation modeling, pathogenesis, and novel therapeutic targets. Transl Stroke Res 2014; 5:316-29. [PMID: 24723256 DOI: 10.1007/s12975-014-0343-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 02/07/2023]
Abstract
Patients harboring brain arteriovenous malformation (bAVM) are at life-threatening risk of rupture and intracranial hemorrhage (ICH). The pathogenesis of bAVM has not been completely understood. Current treatment options are invasive, and ≈ 20 % of patients are not offered interventional therapy because of excessive treatment risk. There are no specific medical therapies to treat bAVMs. The lack of validated animal models has been an obstacle for testing hypotheses of bAVM pathogenesis and testing new therapies. In this review, we summarize bAVM model development and bAVM pathogenesis and potential therapeutic targets that have been identified during model development.
Collapse
|
42
|
Bhatt RS, Atkins MB. Molecular pathways: can activin-like kinase pathway inhibition enhance the limited efficacy of VEGF inhibitors? Clin Cancer Res 2014; 20:2838-45. [PMID: 24714770 DOI: 10.1158/1078-0432.ccr-13-2788] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The vascular endothelial growth factor (VEGF) pathway is critical for tumor angiogenesis. However, VEGF pathway inhibition has been limited by intrinsic and acquired resistance. Simultaneously targeting multiple steps involved in tumor angiogenesis is a potential means of overcoming this resistance. Activin like kinase 1 (ALK1) and endoglin (ENG) have effects on angiogenesis that are distinct from those of VEGF. Whereas VEGF is important for vessel initiation, ALK1 and endoglin are involved in vessel network formation. Thus, ALK1 and endoglin pathway inhibitors are attractive partners for VEGF-based combination antiangiogenic therapy. Genetic evidence supports a role for this receptor family and its ligands, bone morphogenetic proteins (BMP) 9 and 10, in vascular development. Patients with genetic alterations in ALK1 or endoglin develop hereditary hemorrhagic telangiectasia, a disorder characterized by abnormal vessel development. There are several inhibitors of the ALK1 pathway advancing in clinical development for treatment of various tumor types, including renal cell and ovarian carcinomas. Targeting of alternate angiogenic pathways, particularly in combination with VEGF pathway blockade, holds the promise of optimally inhibiting angiogenically driven tumor progression. Clin Cancer Res; 20(11); 2838-45. ©2014 AACR.
Collapse
Affiliation(s)
- Rupal S Bhatt
- Authors' Affiliations: Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts and Departments of Oncology and Medicine, Georgetown-Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Michael B Atkins
- Authors' Affiliations: Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts and Departments of Oncology and Medicine, Georgetown-Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| |
Collapse
|
43
|
Duffau P, Lazarro E, Viallard JF. Maladie de Rendu-Osler. Rev Med Interne 2014; 35:21-7. [DOI: 10.1016/j.revmed.2013.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
|
44
|
Abstract
Brain arteriovenous malformations (bAVM) are tangles of abnormal, dilated vessels that directly shunt blood between the arteries and veins. The pathogenesis of bAVM is currently unknown. Patients with hereditary hemorrhagic telangiectasia (HHT) have a higher prevalence of bAVM than the general population. Animal models are important tools for dissecting the disease etiopathogenesis and for testing new therapies. Here, we introduce a method that induces the bAVM phenotype through regional deletion of activin-like kinase 1 (Alk1, the causal gene for HHT2) and vascular endothelial growth factor (VEGF) stimulation.
Collapse
Affiliation(s)
- Wanqiu Chen
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
45
|
Bigas A, Guiu J, Gama-Norton L. Notch and Wnt signaling in the emergence of hematopoietic stem cells. Blood Cells Mol Dis 2013; 51:264-70. [DOI: 10.1016/j.bcmd.2013.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/28/2013] [Indexed: 10/26/2022]
|
46
|
Atri D, Larrivée B, Eichmann A, Simons M. Endothelial signaling and the molecular basis of arteriovenous malformation. Cell Mol Life Sci 2013; 71:10.1007/s00018-013-1475-1. [PMID: 24077895 PMCID: PMC3969452 DOI: 10.1007/s00018-013-1475-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 12/21/2022]
Abstract
Arteriovenous malformations occur when abnormalities of vascular patterning result in the flow of blood from arteries to veins without an intervening capillary bed. Recent work has revealed the importance of the Notch and TGF-β signaling pathways in vascular patterning. Specifically, Notch signaling has an increasingly apparent role in arterial specification and suppression of branching, whereas TGF-β is implicated in vascular smooth muscle development and remodeling under angiogenic stimuli. These physiologic roles, consequently, have implicated both pathways in the pathogenesis of arteriovenous malformation. In this review, we summarize the studies of endothelial signaling that contribute to arteriovenous malformation and the roles of genes implicated in their pathogenesis. We further discuss how endothelial signaling may contribute to vascular smooth muscle development and how knowledge of signaling pathways may provide us targets for medical therapy in these vascular lesions.
Collapse
Affiliation(s)
- Deepak Atri
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, United States
| | - Bruno Larrivée
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, United States
- Department of Ophthalmology, Hôpital Maisonneuve-Rosemont Research Centre, University of Montreal, Montreal, Canada
| | - Anne Eichmann
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, United States
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
47
|
Hawinkels LJ, Garcia de Vinuesa A, Ten Dijke P. Activin receptor-like kinase 1 as a target for anti-angiogenesis therapy. Expert Opin Investig Drugs 2013; 22:1371-83. [PMID: 24053899 DOI: 10.1517/13543784.2013.837884] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Formation of blood vessels from pre-existing ones, also termed angiogenesis, is of crucial importance for the outgrowth of tumours beyond 1 - 2 mm³. Therefore, anti-angiogenic therapies, mainly focussing on inhibition of vascular endothelial growth factor (VEGF) are used in clinical therapy. However, although initially reducing tumour size, therapy resistance occurs frequently and new targets are needed. A possible target is activin receptor-like kinase (ALK)-1, a transforming growth factor (TGF)-β type-I receptor, which binds bone morphogenetic protein (BMP)-9 and -10 with high affinity and has an important role in regulating angiogenesis. AREAS COVERED Several approaches to interfere with ALK1 signalling have been developed, that is, ALK1 neutralising antibodies and a soluble ALK1 extracellular domain/Fc fusion protein (ALK1-Fc), acting as a ligand trap. In this review, we discuss the involvement of ALK1 in angiogenesis, in a variety of diseases and the current status of the development of ALK1 inhibitors for cancer therapy. EXPERT OPINION Based on current, mainly preclinical studies on inhibition of ALK1 signalling by ligand traps and neutralising antibodies, targeting ALK1 seems very promising. Both ALK1-Fc and neutralising antibodies strongly inhibit angiogenesis in vitro and in vivo. The results from the first Phase I clinical trials are to be reported soon and multiple Phase II studies are ongoing.
Collapse
Affiliation(s)
- Lukas Jac Hawinkels
- Leiden University Medical Centre, Cancer Genomics Centre Netherlands and Centre for BioMedical Genetics, Department of Molecular Cell Biology , Building-2, S1-P, PO box 9600, 2300 RC Leiden , The Netherlands +31 71 526 9272 ; +31 71 526 8270 ;
| | | | | |
Collapse
|
48
|
The ALK-1/Smad1 pathway in cardiovascular physiopathology. A new target for therapy? Biochim Biophys Acta Mol Basis Dis 2013; 1832:1492-510. [PMID: 23707512 DOI: 10.1016/j.bbadis.2013.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/04/2013] [Accepted: 05/13/2013] [Indexed: 01/04/2023]
Abstract
Activin receptor-like kinase-1 or ALK-1 is a type I cell surface receptor for the transforming growth factor-β (TGF-β) family of proteins. The role of ALK-1 in endothelial cells biology and in angiogenesis has been thoroughly studied by many authors. However, it has been recently suggested a possible role of ALK-1 in cardiovascular homeostasis. ALK-1 is not only expressed in endothelial cells but also in smooth muscle cells, myofibroblast, hepatic stellate cells, chondrocytes, monocytes, myoblasts, macrophages or fibroblasts, but its role in these cells have not been deeply analyzed. Due to the function of ALK-1 in these cells, this receptor plays a role in several cardiovascular diseases. Animals with ALK-1 haploinsufficiency and patients with mutations in Acvrl1 (the gene that codifies for ALK-1) develop type-2 Hereditary Hemorrhagic Telangiectasia. Moreover, ALK-1 heterozygous mice develop pulmonary hypertension. Higher levels of ALK-1 have been observed in atherosclerotic plaques, suggesting a possible protector role of this receptor. ALK-1 deficiency is also related to the development of arteriovenous malformations (AVMs). Besides, due to the ability of ALK-1 to regulate cell proliferation and migration, and to modulate extracellular matrix (ECM) protein expression in several cell types, ALK-1 has been now demonstrated to play an important role in cardiovascular remodeling. In this review, we would like to offer a complete vision of the role of ALK-1 in many process related to cardiovascular homeostasis, and the involvement of this protein in the development of cardiovascular diseases, suggesting the possibility of using the ALK-1/smad-1 pathway as a powerful therapeutic target.
Collapse
|
49
|
Whitehead KJ, Smith MCP, Li DY. Arteriovenous malformations and other vascular malformation syndromes. Cold Spring Harb Perspect Med 2013; 3:a006635. [PMID: 23125071 DOI: 10.1101/cshperspect.a006635] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vascular malformations are a disruption of the normal vascular pattern in which it is expected that a capillary network of microscopic vessels lies interposed between high-pressure arteries that deliver blood and thin-walled veins that collect low-pressure blood for return to the heart. In the case of arteriovenous malformations, arteries or arterioles connect directly to the venous collection system, bypassing any capillary bed. Clinical consequences result from rupture and hemorrhage, from dramatically increased blood flow, or from the loss of capillary functions such as nutrient exchange and filtering function. These malformations can occur sporadically or as a component of inherited vascular malformation syndromes. In these and other hereditary vascular malformation syndromes, genetic studies have identified proteins and pathways involved in vascular morphogenesis and development. A common theme observed is that vascular malformations result from disruption in pathways involved in vascular stability. Here we review the vascular malformations and pathways involved in hereditary hemorrhagic telangiectasia, capillary malformation-arteriovenous malformation, cerebral cavernous malformations, and mucocutaneous venous malformations.
Collapse
Affiliation(s)
- Kevin J Whitehead
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | |
Collapse
|
50
|
Nolan-Stevaux O, Zhong W, Culp S, Shaffer K, Hoover J, Wickramasinghe D, Ruefli-Brasse A. Endoglin requirement for BMP9 signaling in endothelial cells reveals new mechanism of action for selective anti-endoglin antibodies. PLoS One 2012; 7:e50920. [PMID: 23300529 PMCID: PMC3531442 DOI: 10.1371/journal.pone.0050920] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/25/2012] [Indexed: 11/18/2022] Open
Abstract
Endoglin (ENG), a co-receptor for several TGFβ-family cytokines, is expressed in dividing endothelial cells alongside ALK1, the ACVRL1 gene product. ENG and ACVRL1 are both required for angiogenesis and mutations in either gene are associated with Hereditary Hemorrhagic Telangectasia, a rare genetic vascular disorder. ENG and ALK1 function in the same genetic pathway but the relative contribution of TGFβ and BMP9 to SMAD1/5/8 activation and the requirement of ENG as a co-mediator of SMAD phosphorylation in endothelial cells remain debated. Here, we show that BMP9 and TGFβ1 induce distinct SMAD phosphorylation responses in primary human endothelial cells and that, unlike BMP9, TGFβ only induces SMAD1/5/8 phosphorylation in a subset of immortalized mouse endothelial cell lines, but not in primary human endothelial cells. We also demonstrate, using siRNA depletion of ENG and novel anti-ENG antibodies, that ENG is required for BMP9/pSMAD1 signaling in all human and mouse endothelial cells tested. Finally, anti-ENG antibodies that interfere with BMP9/pSMAD1 signaling, but not with TGFβ1/pSMAD3 signaling, also decrease in vitro HUVEC endothelial tube formation and inhibit BMP9 binding to recombinant ENG in vitro. Our data demonstrate that BMP9 signaling inhibition is a key and previously unreported mechanism of action of TRC105, an anti-angiogenic anti-Endoglin antibody currently evaluated in clinical trials.
Collapse
MESH Headings
- Animals
- Antibodies, Anti-Idiotypic/pharmacology
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis
- Blotting, Western
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Endoglin
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Flow Cytometry
- Growth Differentiation Factor 2
- Growth Differentiation Factors/genetics
- Growth Differentiation Factors/metabolism
- Humans
- Mice
- Phosphorylation
- Protein Binding
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Rats
- Real-Time Polymerase Chain Reaction
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Smad Proteins/genetics
- Smad Proteins/metabolism
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
|