1
|
Fairhurst A, Snyder J, Wang C, Strmcnik D, Stamenkovic VR. Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces. Chem Rev 2025; 125:1332-1419. [PMID: 39873431 PMCID: PMC11826915 DOI: 10.1021/acs.chemrev.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/30/2025]
Abstract
The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface-adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena. To make significant strides in materials design, a structured approach based on well-defined surfaces is necessary to selectively control distinct parameters, while complexity is added sequentially through careful application of nanostructured surfaces. In this review, we cover advances made through this approach for key elements in the field, beginning with the simplest hydrogen oxidation and evolution reactions and concluding with more complex organic molecules. In each case, we offer a unique perspective on the contribution of well-defined systems to our understanding of electrochemical energy conversion technologies and how wider deployment can aid intelligent materials design.
Collapse
Affiliation(s)
- Alasdair
R. Fairhurst
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
| | - Joshua Snyder
- Department
of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chao Wang
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 United States
| | - Dusan Strmcnik
- National
Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Vojislav R. Stamenkovic
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
2
|
Jusys Z, Behm RJ. The Effect of Anions and pH on the Activity and Selectivity of an Annealed Polycrystalline Au Film Electrode in the Oxygen Reduction Reaction-Revisited. Chemphyschem 2019; 20:3276-3288. [PMID: 31705610 PMCID: PMC6973112 DOI: 10.1002/cphc.201900960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/31/2019] [Indexed: 01/06/2023]
Abstract
Aiming at a better understanding of correlations between the activity and selectivity of Au electrodes in the oxygen reduction reaction (ORR) under controlled transport conditions, we have investigated this reaction by combined electrochemical and in situ FTIR measurements, performed in a flow cell set‐up in an attenuated total reflection (ATR) configuration in acid and alkaline electrolytes. The formation of incomplete reduction products (hydrogen peroxyde/peroxyls) was detected by a collector electrode, the onset of OHad formation was probed by bulk CO oxidation. Using an electroless‐deposited, annealed Au film on a Si prism as working electrode and three different electrolytes for comparison (sulfuric acid, perchloric acid, sodium hydroxide solution), we could derive detailed information on the anion adsorption behavior, and could correlate this with the ORR characteristics. The data reveal pronounced effects of the anions and the pH on the ORR characteristics, indicated e. g., by a grossly different activity and selectivity for the 4‐electron pathway to water/hydroxyls, with the onset ranging from ca. 1.0 V in alkaline electrolyte to 0.6 V in sulfuric acid electrolyte, and the selectivity for the 4‐electron pathway ranging from 100 % (alkaline electrolyte, low overpotentials) to 40 % (acidic electrolytes, alkaline electrolyte at high overpotentials). In contrast, the effect of the ORR on the anion adsorption characteristics is small. Anion effects as well as correlations between anion adsorption and ORR are discussed.
Collapse
Affiliation(s)
- Zenonas Jusys
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - R Jürgen Behm
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| |
Collapse
|
3
|
Mondal S, Raj CR. Electrochemical Dealloying-Assisted Surface-Engineered Pd-Based Bifunctional Electrocatalyst for Formic Acid Oxidation and Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14110-14119. [PMID: 30912919 DOI: 10.1021/acsami.9b00589] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Synthesis of non-Pt bifunctional electrocatalyst for the anodic oxidation of liquid fuel and cathodic reduction of oxygen is of great interest in the development of energy conversion devices. We demonstrate a facile room-temperature synthesis of surface-engineered trimetallic alloy nanoelectrocatalyst based on Co, Cu, and Pd by thermodynamically favorable transmetallation reaction and electrochemical dealloying. The quasi-spherical Co xCu yPd z trimetallic catalysts were synthesized by the thermodynamically favorable reaction of K2PdCl4 with sheetlike Co mCu n bimetallic alloy nanostructure. The surface engineering of Co xCu yPd z was achieved by electrochemical dealloying. The surface-engineered alloy electrocatalyst exhibits excellent bifunctional activity toward formic acid oxidation reaction (FAOR) and oxygen reduction reaction (ORR) at same pH. The elemental composition and lattice strain control the electrocatalytic performance. The elemental composition-dependent compressive strain weakens the adsorption of oxygen-containing species and favors the facile electron transfer for FAOR and ORR. The engineered alloy electrocatalyst of Co0.02Cu13.8Pd86.18 composition is highly durable and delivers high mass-specific activity for ORR and FAOR. It delivers mass-specific activities of 1.50 and 0.202 A/mgPd for FAOR and ORR, respectively, in acidic pH. The overall performance is superior to that of as-synthesized Pd and dealloyed bimetallic Co2.7Pd97.3 and Cu5.61Pd94.39 nanoelectrocatalysts.
Collapse
Affiliation(s)
- Siniya Mondal
- Functional Materials and Electrochemistry Lab, Department of Chemistry , Indian Institute of Technology, Kharagpur , Kharagpur 721302 , India
| | - C Retna Raj
- Functional Materials and Electrochemistry Lab, Department of Chemistry , Indian Institute of Technology, Kharagpur , Kharagpur 721302 , India
| |
Collapse
|
4
|
Nishikawa H, Yano H, Inukai J, Tryk DA, Iiyama A, Uchida H. Effects of Sulfate on the Oxygen Reduction Reaction Activity on Stabilized Pt Skin/PtCo Alloy Catalysts from 30 to 80 °C. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13558-13564. [PMID: 30378419 DOI: 10.1021/acs.langmuir.8b02945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effects of the concentration of H2SO4 ([H2SO4]), which is the major decomposition product of polymer electrolyte membranes during the operation of fuel cells, on the performance of stabilized Pt skin/PtCo alloy nanocatalysts supported on high-surface-area carbon (PtxAL-PtCo/C) were investigated. Kinetically controlled activities for the oxygen reduction reaction (ORR) and the H2O2 yields ( P(H2O2)) on the PtxAL-PtCo/C were examined based on hydrodynamic voltammograms in O2-saturated 0.1 M HClO4 + X M H2SO4 ( X = 0 to 5 × 10-2) by use of the channel flow double electrode method at temperatures between 30 and 80 °C. At X ≤ 10-6 (1 μM) and all temperatures examined, the apparent ORR rate constants kapp@0.85 V (per unit electrochemically active surface area) on PtxAL-PtCo/C at 0.85 V vs the reversible hydrogen electrode (RHE) were nearly identical with those in sulfate-free 0.1 M HClO4 and were at least twice as high as those on a commercial Pt/C catalyst (c-Pt/C). The values of kapp@0.85 V on both PtxAL-PtCo/C and c-Pt/C decreased linearly with log[H2SO4] in the concentration range 10-6 < X ≤ 5 × 10-2. The detrimental effect by H2SO4 was less pronounced on PtxAL-PtCo/C than on c-Pt/C at high temperatures; the kapp@0.85 V value at X = 5 × 10-2 on the former at 80 °C was maintained as high as 87%, whereas that of the latter was 66% (34% loss). The values of peroxide production percentage P(H2O2) on PtxAL-PtCo/C at 80 °C were nearly constant (ca. 0.22% at 0.76 V vs RHE) up to X = 5 × 10-2. These superior characteristics are ascribed to weakened adsorption of sulfate on the Pt skin surface, supported by DFT calculations, which provides the great advantage of robustness in the presence of impurities, maintaining active sites for the ORR during the PEFC operation.
Collapse
Affiliation(s)
| | - Hiroshi Yano
- Fuel Cell Nanomaterials Center , University of Yamanashi , 6-43 Miyamae-cho , Kofu 400-0021 , Japan
| | - Junji Inukai
- Fuel Cell Nanomaterials Center , University of Yamanashi , 6-43 Miyamae-cho , Kofu 400-0021 , Japan
| | - Donald A Tryk
- Fuel Cell Nanomaterials Center , University of Yamanashi , 6-43 Miyamae-cho , Kofu 400-0021 , Japan
| | - Akihiro Iiyama
- Fuel Cell Nanomaterials Center , University of Yamanashi , 6-43 Miyamae-cho , Kofu 400-0021 , Japan
| | - Hiroyuki Uchida
- Fuel Cell Nanomaterials Center , University of Yamanashi , 6-43 Miyamae-cho , Kofu 400-0021 , Japan
| |
Collapse
|
5
|
Ghosh S, Manna L. The Many "Facets" of Halide Ions in the Chemistry of Colloidal Inorganic Nanocrystals. Chem Rev 2018; 118:7804-7864. [PMID: 30062881 PMCID: PMC6107855 DOI: 10.1021/acs.chemrev.8b00158] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Over the years, scientists have identified various synthetic "handles" while developing wet chemical protocols for achieving a high level of shape and compositional complexity in colloidal nanomaterials. Halide ions have emerged as one such handle which serve as important surface active species that regulate nanocrystal (NC) growth and concomitant physicochemical properties. Halide ions affect the NC growth kinetics through several means, including selective binding on crystal facets, complexation with the precursors, and oxidative etching. On the other hand, their presence on the surfaces of semiconducting NCs stimulates interesting changes in the intrinsic electronic structure and interparticle communication in the NC solids eventually assembled from them. Then again, halide ions also induce optoelectronic tunability in NCs where they form part of the core, through sheer composition variation. In this review, we describe these roles of halide ions in the growth of nanostructures and the physical changes introduced by them and thereafter demonstrate the commonality of these effects across different classes of nanomaterials.
Collapse
Affiliation(s)
- Sandeep Ghosh
- McKetta
Department of Chemical Engineering, The
University of Texas at Austin, Austin, Texas 78712-1589, United States
| | - Liberato Manna
- Department
of Nanochemistry, Istituto Italiano di Tecnologia
(IIT), via Morego 30, I-16163 Genova, Italy
- Kavli Institute
of Nanoscience and Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
6
|
Effect of tetrabutylammonium cations on lifting of reconstruction and phase transitions within adsorbed adlayers at Au(100) electrode in halide electrolytes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.11.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
The evidence of limitation of oxygen reduction reaction by proton diffusion in low-concentration acid solutions. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2014.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis. ChemCatChem 2010. [DOI: 10.1002/cctc.201000126] [Citation(s) in RCA: 960] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Effect of acid treatment of Corich core–Ptrich shell/C electrocatalyst on oxygen reduction reaction. J Solid State Electrochem 2008. [DOI: 10.1007/s10008-007-0477-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Miah MR, Ohsaka T. Observation of ‘inverted peak’ during molecular oxygen reduction at Au electrode in alkaline media. Electrochim Acta 2007. [DOI: 10.1016/j.electacta.2007.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Kinetics and mechanism of oxygen reduction at hydrous oxide film-covered platinum electrode in alkaline solution. Electrochim Acta 2006. [DOI: 10.1016/j.electacta.2006.05.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
|
13
|
Miah MR, Ohsaka T. Cathodic Detection of H2O2 Using Iodide-Modified Gold Electrode in Alkaline Media. Anal Chem 2006; 78:1200-5. [PMID: 16478112 DOI: 10.1021/ac0515935] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxidative chemisorption and cathodic stripping reductive desorption of iodide have been studied at a smooth polycrystalline gold (Au (poly)) electrode. Potential-dependent surface coverage of iodide has been controlled on the basis of its reductive desoprtion in 0.1 M KOH alkaline media and its quantitative oxidation to aqueous iodates in acidic media. The Au (poly) electrode surface catalyzes the decomposition of H2O2 to O2. Specific adsorption of iodide on the Au electrode inhibits fully the catalytic decomposition and electrochemical oxidation of H2O2 as well as the adsorption of unknown impurities and the oxidative degradation of the electrode surface by H2O2. A quantitative characterization/detection of H2O2 at the iodide-modified Au (poly) electrode in the alkaline media has, thus, been achieved. Performance of the electrode toward the detection of H2O2 with respect to response time and sensitivity as well as operational stability has been evaluated. It has a sensitivity of 0.272 mA cm(-2) mM(-1) in amperometric measurements with a detection limit of 1.0 x 10(-5) M H2O2, and the response time to achieve 95% of the steady-state current is <20 s. The effect of O2 in the air-saturated solution can be minimized by subtracting the additional current for the O2 reduction. Experimental measurements were based upon cyclic voltametric and amperometric techniques.
Collapse
Affiliation(s)
- Md Rezwan Miah
- Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagastuta, Midori-ku, Yokohama 226-8502, Japan
| | | |
Collapse
|
14
|
|
15
|
Pittois D, Kokkinidis G, Buess-Herman C. Effect of the extent and structure of upd adlayers on the reduction of 2-nitroimidazole on Au(111) in acidic solutions. J Electroanal Chem (Lausanne) 2002. [DOI: 10.1016/s0022-0728(02)00939-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Affiliation(s)
- O M Magnussen
- Abteilung Oberflächenchemie und Katalyse, Universität Ulm, 89069 Ulm, Germany
| |
Collapse
|
17
|
Schmidt T, Paulus U, Gasteiger H, Behm R. The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. J Electroanal Chem (Lausanne) 2001. [DOI: 10.1016/s0022-0728(01)00499-5] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|