1
|
Kulasingham JP, Brodbeck C, Khan S, Marsh EB, Simon JZ. Bilaterally Reduced Rolandic Beta Band Activity in Minor Stroke Patients. Front Neurol 2022; 13:819603. [PMID: 35418932 PMCID: PMC8996122 DOI: 10.3389/fneur.2022.819603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Stroke patients with hemiparesis display decreased beta band (13-25 Hz) rolandic activity, correlating to impaired motor function. However, clinically, patients without significant weakness, with small lesions far from sensorimotor cortex, exhibit bilateral decreased motor dexterity and slowed reaction times. We investigate whether these minor stroke patients also display abnormal beta band activity. Magnetoencephalographic (MEG) data were collected from nine minor stroke patients (NIHSS < 4) without significant hemiparesis, at ~1 and ~6 months postinfarct, and eight age-similar controls. Rolandic relative beta power during matching tasks and resting state, and Beta Event Related (De)Synchronization (ERD/ERS) during button press responses were analyzed. Regardless of lesion location, patients had significantly reduced relative beta power and ERS compared to controls. Abnormalities persisted over visits, and were present in both ipsi- and contra-lesional hemispheres, consistent with bilateral impairments in motor dexterity and speed. Minor stroke patients without severe weakness display reduced rolandic beta band activity in both hemispheres, which may be linked to bilaterally impaired dexterity and processing speed, implicating global connectivity dysfunction affecting sensorimotor cortex independent of lesion location. Findings not only illustrate global network disruption after minor stroke, but suggest rolandic beta band activity may be a potential biomarker and treatment target, even for minor stroke patients with small lesions far from sensorimotor areas.
Collapse
Affiliation(s)
- Joshua P. Kulasingham
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States
| | - Christian Brodbeck
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Sheena Khan
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Elisabeth B. Marsh
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Jonathan Z. Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States
- Department of Biology, University of Maryland, College Park, MD, United States
- Institute for Systems Research, University of Maryland, College Park, MD, United States
| |
Collapse
|
2
|
Chiarelli AM, Croce P, Assenza G, Merla A, Granata G, Giannantoni NM, Pizzella V, Tecchio F, Zappasodi F. Electroencephalography-Derived Prognosis of Functional Recovery in Acute Stroke Through Machine Learning Approaches. Int J Neural Syst 2020; 30:2050067. [PMID: 33236654 DOI: 10.1142/s0129065720500677] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Stroke, if not lethal, is a primary cause of disability. Early assessment of markers of recovery can allow personalized interventions; however, it is difficult to deliver indexes in the acute phase able to predict recovery. In this perspective, evaluation of electrical brain activity may provide useful information. A machine learning approach was explored here to predict post-stroke recovery relying on multi-channel electroencephalographic (EEG) recordings of few minutes performed at rest. A data-driven model, based on partial least square (PLS) regression, was trained on 19-channel EEG recordings performed within 10 days after mono-hemispheric stroke in 101 patients. The band-wise (delta: 1-4[Formula: see text]Hz, theta: 4-7[Formula: see text]Hz, alpha: 8-14[Formula: see text]Hz and beta: 15-30[Formula: see text]Hz) EEG effective powers were used as features to predict the recovery at 6 months (based on clinical status evaluated through the NIH Stroke Scale, NIHSS) in an optimized and cross-validated framework. In order to exploit the multimodal contribution to prognosis, the EEG-based prediction of recovery was combined with NIHSS scores in the acute phase and both were fed to a nonlinear support vector regressor (SVR). The prediction performance of EEG was at least as good as that of the acute clinical status scores. A posteriori evaluation of the features exploited by the analysis highlighted a lower delta and higher alpha activity in patients showing a positive outcome, independently of the affected hemisphere. The multimodal approach showed better prediction capabilities compared to the acute NIHSS scores alone ([Formula: see text] versus [Formula: see text], AUC = 0.80 versus AUC = 0.70, [Formula: see text]). The multimodal and multivariate model can be used in acute phase to infer recovery relying on standard EEG recordings of few minutes performed at rest together with clinical assessment, to be exploited for early and personalized therapies. The easiness of performing EEG may allow such an approach to become a standard-of-care and, thanks to the increasing number of labeled samples, further improving the model predictive power.
Collapse
Affiliation(s)
- Antonio Maria Chiarelli
- Department of Neuroscience, Imaging and Clinical Sciences and the Institute for Advanced Biomedical Technologies, Università G. d'Annunzio, Chieti, 66100, Italy
| | - Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences and the Institute for Advanced Biomedical Technologies, Università G. d'Annunzio, Chieti, 66100, Italy
| | - Giovanni Assenza
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Arcangelo Merla
- Department of Neuroscience, Imaging and Clinical Sciences and the Institute for Advanced Biomedical Technologies, Università G. d'Annunzio, Chieti, 66100, Italy
| | - Giuseppe Granata
- Fondazione Policlinico A. Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | | | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences and the Institute for Advanced Biomedical Technologies, Università G. d'Annunzio, Chieti, 66100, Italy
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), Istituto di Scienze e Teconologie della Cognizione (ISTC) - Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences and the Institute for Advanced Biomedical Technologies, Università G. d'Annunzio, Chieti, 66100, Italy
| |
Collapse
|
3
|
Gaebler AJ, Zweerings J, Koten JW, König AA, Turetsky BI, Zvyagintsev M, Mathiak K. Impaired Subcortical Detection of Auditory Changes in Schizophrenia but Not in Major Depression. Schizophr Bull 2020; 46:193-201. [PMID: 31220318 PMCID: PMC6942154 DOI: 10.1093/schbul/sbz027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mismatch negativity is a cortical response to auditory changes and its reduction is a consistent finding in schizophrenia. Recent evidence revealed that the human brain detects auditory changes already at subcortical stages of the auditory pathway. This finding, however, raises the question where in the auditory hierarchy the schizophrenic deficit first evolves and whether the well-known cortical deficit may be a consequence of dysfunction at lower hierarchical levels. Finally, it should be resolved whether mismatch profiles differ between schizophrenia and affective disorders which exhibit auditory processing deficits as well. We used functional magnetic resonance imaging to assess auditory mismatch processing in 29 patients with schizophrenia, 27 patients with major depression, and 31 healthy control subjects. Analysis included whole-brain activation, region of interest, path and connectivity analysis. In schizophrenia, mismatch deficits emerged at all stages of the auditory pathway including the inferior colliculus, thalamus, auditory, and prefrontal cortex. In depression, deficits were observed in the prefrontal cortex only. Path analysis revealed that activation deficits propagated from subcortical to cortical nodes in a feed-forward mechanism. Finally, both patient groups exhibited reduced connectivity along this processing stream. Auditory mismatch impairments in schizophrenia already manifest at the subcortical level. Moreover, subcortical deficits contribute to the well-known cortical deficits and show specificity for schizophrenia. In contrast, depression is associated with cortical dysfunction only. Hence, schizophrenia and major depression exhibit different neural profiles of sensory processing deficits. Our findings add to a converging body of evidence for brainstem and thalamic dysfunction as a hallmark of schizophrenia.
Collapse
Affiliation(s)
- Arnim Johannes Gaebler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany
- JARA (Translational Brain Medicine), Aachen, Germany
- To whom correspondence should be addressed; Pauwels str. 30, 52074 Aachen, Germany; tel: +49-241-8088650, fax: +49-241-8082401: e-mail:
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany
- JARA (Translational Brain Medicine), Aachen, Germany
| | | | - Andrea Anna König
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany
- JARA (Translational Brain Medicine), Aachen, Germany
| | - Bruce I Turetsky
- Neuropsychiatry Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mikhail Zvyagintsev
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany
- JARA (Translational Brain Medicine), Aachen, Germany
- Brain Imaging Facility, Interdisciplinary Centre for Clinical Studies (IZKF), Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany
- JARA (Translational Brain Medicine), Aachen, Germany
| |
Collapse
|
4
|
Jodo E, Inaba H, Narihara I, Sotoyama H, Kitayama E, Yabe H, Namba H, Eifuku S, Nawa H. Neonatal exposure to an inflammatory cytokine, epidermal growth factor, results in the deficits of mismatch negativity in rats. Sci Rep 2019; 9:7503. [PMID: 31097747 PMCID: PMC6522493 DOI: 10.1038/s41598-019-43923-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/30/2019] [Indexed: 01/12/2023] Open
Abstract
Perinatal exposure to epidermal growth factor (EGF) induces various cognitive and behavioral abnormalities after maturation in non-human animals, and is used for animal models of schizophrenia. Patients with schizophrenia often display a reduction of mismatch negativity (MMN), which is a stimulus-change specific event-related brain potential. Do the EGF model animals also exhibit the MMN reduction as schizophrenic patients do? This study addressed this question to verify the pathophysiological validity of this model. Neonatal rats received repeated administration of EGF or saline and were grown until adulthood. Employing the odd-ball paradigm of distinct tone pitches, tone-evoked electroencephalogram (EEG) components were recorded from electrodes on the auditory and frontal cortices of awake rats, referencing an electrode on the frontal sinus. The amplitude of the MMN-like potential was significantly reduced in EGF-treated rats compared with saline-injected control rats. The wavelet analysis of the EEG during a near period of tone stimulation revealed that synchronization of EEG activity, especially with beta and gamma bands, was reduced in EGF-treated rats. Results suggest that animals exposed to EGF during a perinatal period serve as a promising neurodevelopmental model of schizophrenia.
Collapse
Affiliation(s)
- Eiichi Jodo
- Department of Systems Neuroscience, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| | - Hiroyoshi Inaba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Itaru Narihara
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Eiko Kitayama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Satoshi Eifuku
- Department of Systems Neuroscience, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| |
Collapse
|
5
|
Zappasodi F, Tecchio F, Marzetti L, Pizzella V, Di Lazzaro V, Assenza G. Longitudinal quantitative electroencephalographic study in mono-hemispheric stroke patients. Neural Regen Res 2019; 14:1237-1246. [PMID: 30804255 PMCID: PMC6425833 DOI: 10.4103/1673-5374.251331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The identification of individual factors modulating clinical recovery after a stroke is fundamental to personalize the therapeutic intervention to enhance the final clinical outcome. In this framework, electrophysiological factors are promising since are more directly related to neuroplasticity, which supports recovery in stroke patients, than neurovascular factors. In this retrospective observational study, we investigated brain neuronal activity assessed via spectral features and Higuchi’s fractal dimension (HFD) of electroencephalographic signals in acute phase (2–10 days from symptom onset, T0) and sub-acute phase (2.5 months, T1) in 24 patients affected by unilateral middle cerebral artery stroke. Longitudinal assessment of the clinical deficits was performed using the National Institutes of Health Stroke Scale (NIHSS), together with the effective recovery calculated as the ratio between difference of NIHSS at T0 and T1 over the NIHSS value at T0. We observed that delta and alpha band electroencephalographic signal power changed between the two phases in both the hemispheres ipsilateral (ILH) and contralateral (CHL) to the lesion. Moreover, at T0, bilateral higher delta band power correlated with worse clinical conditions (Spearman’s rs = 0.460, P = 0.027 for ILH and rs = 0.508, P = 0.013 for CLH), whereas at T1 this occurred only for delta power in ILH (rs = 0.411, P = 0.046) and not for CHL. Inter-hemispheric difference (ILH vs. CLH) of alpha power in patients was lower at T0 than at T1 (P = 0.020). HFD at T0 was lower than at T1 (P = 0.005), and at both phases, ILH HFD was lower than CLH HFD (P = 0.020). These data suggest that inter-hemispheric low band asymmetry and fractal dimension changes from the acute to the sub-acute phase are sensitive to neuroplasticity processes which subtend clinical recovery. The study protocol was approved by the Bioethical Committee of Ospedale San Giovanni Calibita Fatebenefretelli (No. 40/2011) on July 14, 2011.
Collapse
Affiliation(s)
- Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences and Institute for Advanced Biomedical Imaging, "G. D'Annunzio" University, Chieti, Italy
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), ISTC-CNR, and Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Laura Marzetti
- Department of Neuroscience, Imaging and Clinical Sciences and Institute for Advanced Biomedical Imaging, "G. D'Annunzio" University, Chieti, Italy
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences and Institute for Advanced Biomedical Imaging, "G. D'Annunzio" University, Chieti, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giovanni Assenza
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
6
|
Knyazeva MG, Barzegaran E, Vildavski VY, Demonet JF. Aging of human alpha rhythm. Neurobiol Aging 2018; 69:261-273. [DOI: 10.1016/j.neurobiolaging.2018.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 11/28/2022]
|
7
|
Abstract
Strokes have been shown to result in psychiatric phenomena that can range from mood disorders to psychosis. Ablative neurosurgeries have been performed with the goal of reducing the burden of psychiatric symptoms following such cerebrovascular accidents. In this report, we review poststroke psychiatric manifestations, and then present the case of a woman with schizophrenia whose thought disorder improved following a hemorrhagic stroke. Not only did she require less medication, but her remaining symptoms were significantly less impairing than they had previously been. We then compare and contrast the effects of this stroke with ablative neurosurgery.
Collapse
|
8
|
Salmela E, Renvall H, Kujala J, Hakosalo O, Illman M, Vihla M, Leinonen E, Salmelin R, Kere J. Evidence for genetic regulation of the human parieto-occipital 10-Hz rhythmic activity. Eur J Neurosci 2016; 44:1963-71. [PMID: 27306141 PMCID: PMC5113795 DOI: 10.1111/ejn.13300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 01/23/2023]
Abstract
Several functional and morphological brain measures are partly under genetic control. The identification of direct links between neuroimaging signals and corresponding genetic factors can reveal cellular-level mechanisms behind the measured macroscopic signals and contribute to the use of imaging signals as probes of genetic function. To uncover possible genetic determinants of the most prominent brain signal oscillation, the parieto-occipital 10-Hz alpha rhythm, we measured spontaneous brain activity with magnetoencephalography in 210 healthy siblings while the subjects were resting, with eyes closed and open. The reactivity of the alpha rhythm was quantified from the difference spectra between the two conditions. We focused on three measures: peak frequency, peak amplitude and the width of the main spectral peak. In accordance with earlier electroencephalography studies, spectral peak amplitude was highly heritable (h(2) > 0.75). Variance component-based analysis of 28 000 single-nucleotide polymorphism markers revealed linkage for both the width and the amplitude of the spectral peak. The strongest linkage was detected for the width of the spectral peak over the left parieto-occipital cortex on chromosome 10 (LOD = 2.814, nominal P < 0.03). This genomic region contains several functionally plausible genes, including GRID1 and ATAD1 that regulate glutamate receptor channels mediating synaptic transmission, NRG3 with functions in brain development and HRT7 involved in the serotonergic system and circadian rhythm. Our data suggest that the alpha oscillation is in part genetically regulated, and that it may be possible to identify its regulators by genetic analyses on a realistically modest number of samples.
Collapse
Affiliation(s)
- Elina Salmela
- Molecular Neurology Research ProgramResearch Programs UnitUniversity of HelsinkiPO Box 63FI‐00014HelsinkiFinland
- Folkhälsan Institute of GeneticsBiomedicum HelsinkiHelsinkiFinland
| | - Hanna Renvall
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Aalto NeuroimagingMEG CoreAalto UniversityEspooFinland
- Clinical Neurosciences, NeurologyUniversity of Helsinki and Department of NeurologyHelsinki University HospitalHelsinkiFinland
| | - Jan Kujala
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Aalto NeuroimagingMEG CoreAalto UniversityEspooFinland
| | - Osmo Hakosalo
- Molecular Neurology Research ProgramResearch Programs UnitUniversity of HelsinkiPO Box 63FI‐00014HelsinkiFinland
| | - Mia Illman
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Aalto NeuroimagingMEG CoreAalto UniversityEspooFinland
| | - Minna Vihla
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Aalto NeuroimagingMEG CoreAalto UniversityEspooFinland
- City of Helsinki Health CentreHelsinkiFinland
| | - Eira Leinonen
- Molecular Neurology Research ProgramResearch Programs UnitUniversity of HelsinkiPO Box 63FI‐00014HelsinkiFinland
- Folkhälsan Institute of GeneticsBiomedicum HelsinkiHelsinkiFinland
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Aalto NeuroimagingMEG CoreAalto UniversityEspooFinland
| | - Juha Kere
- Molecular Neurology Research ProgramResearch Programs UnitUniversity of HelsinkiPO Box 63FI‐00014HelsinkiFinland
- Folkhälsan Institute of GeneticsBiomedicum HelsinkiHelsinkiFinland
- Science for Life LaboratoryKarolinska InstitutetSolnaSweden
| |
Collapse
|
9
|
Abstract
The brain is a self-organizing system which displays self-similarities at different spatial and temporal scales. Thus, the complexity of its dynamics, associated to efficient processing and functional advantages, is expected to be captured by a measure of its scale-free (fractal) properties. Under the hypothesis that the fractal dimension (FD) of the electroencephalographic signal (EEG) is optimally sensitive to the neuronal dysfunction secondary to a brain lesion, we tested the FD's ability in assessing two key processes in acute stroke: the clinical impairment and the recovery prognosis. Resting EEG was collected in 36 patients 4-10 days after a unilateral ischemic stroke in the middle cerebral artery territory and 19 healthy controls. National Health Institute Stroke Scale (NIHss) was collected at T0 and 6 months later. Highuchi FD, its inter-hemispheric asymmetry (FDasy) and spectral band powers were calculated for EEG signals. FD was smaller in patients than in controls (1.447±0.092 vs 1.525±0.105) and its reduction was paired to a worse acute clinical status. FD decrease was associated to alpha increase and beta decrease of oscillatory activity power. Larger FDasy in acute phase was paired to a worse clinical recovery at six months. FD in our patients captured the loss of complexity reflecting the global system dysfunction resulting from the structural damage. This decrease seems to reveal the intimate nature of structure-function unity, where the regional neural multi-scale self-similar activity is impaired by the anatomical lesion. This picture is coherent with neuronal activity complexity decrease paired to a reduced repertoire of functional abilities. FDasy result highlights the functional relevance of the balance between homologous brain structures' activities in stroke recovery.
Collapse
|
10
|
Zappasodi F, Olejarczyk E, Marzetti L, Assenza G, Pizzella V, Tecchio F. Fractal dimension of EEG activity senses neuronal impairment in acute stroke. PLoS One 2014; 9:e100199. [PMID: 24967904 PMCID: PMC4072666 DOI: 10.1371/journal.pone.0100199] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/23/2014] [Indexed: 01/15/2023] Open
Abstract
The brain is a self-organizing system which displays self-similarities at different spatial and temporal scales. Thus, the complexity of its dynamics, associated to efficient processing and functional advantages, is expected to be captured by a measure of its scale-free (fractal) properties. Under the hypothesis that the fractal dimension (FD) of the electroencephalographic signal (EEG) is optimally sensitive to the neuronal dysfunction secondary to a brain lesion, we tested the FD's ability in assessing two key processes in acute stroke: the clinical impairment and the recovery prognosis. Resting EEG was collected in 36 patients 4-10 days after a unilateral ischemic stroke in the middle cerebral artery territory and 19 healthy controls. National Health Institute Stroke Scale (NIHss) was collected at T0 and 6 months later. Highuchi FD, its inter-hemispheric asymmetry (FDasy) and spectral band powers were calculated for EEG signals. FD was smaller in patients than in controls (1.447±0.092 vs 1.525±0.105) and its reduction was paired to a worse acute clinical status. FD decrease was associated to alpha increase and beta decrease of oscillatory activity power. Larger FDasy in acute phase was paired to a worse clinical recovery at six months. FD in our patients captured the loss of complexity reflecting the global system dysfunction resulting from the structural damage. This decrease seems to reveal the intimate nature of structure-function unity, where the regional neural multi-scale self-similar activity is impaired by the anatomical lesion. This picture is coherent with neuronal activity complexity decrease paired to a reduced repertoire of functional abilities. FDasy result highlights the functional relevance of the balance between homologous brain structures' activities in stroke recovery.
Collapse
Affiliation(s)
- Filippo Zappasodi
- Dept. of Neuroscience, Imaging and Clinical Sciences, ‘G. d’Annunzio’ University, Chieti, Italy
- Institute for Advanced Biomedical Technologies, ‘G. d’Annunzio’ University, Chieti, Italy
| | - Elzbieta Olejarczyk
- Institute for Advanced Biomedical Technologies, ‘G. d’Annunzio’ University, Chieti, Italy
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Laura Marzetti
- Dept. of Neuroscience, Imaging and Clinical Sciences, ‘G. d’Annunzio’ University, Chieti, Italy
- Institute for Advanced Biomedical Technologies, ‘G. d’Annunzio’ University, Chieti, Italy
| | - Giovanni Assenza
- Institute of Neurology, Campus Biomedico University of Rome, Rome, Italy
| | - Vittorio Pizzella
- Dept. of Neuroscience, Imaging and Clinical Sciences, ‘G. d’Annunzio’ University, Chieti, Italy
- Institute for Advanced Biomedical Technologies, ‘G. d’Annunzio’ University, Chieti, Italy
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational neuroScience (LET’S), ISTC, National Research Council (CNR), Fatebenefratelli hospital – Isola Tiberina, Rome, Italy
- Dept. of Imaging, IRCCS San Raffale Pisana, Rome, Italy
| |
Collapse
|
11
|
The inferior colliculus is involved in deviant sound detection as revealed by BOLD fMRI. Neuroimage 2014; 91:220-7. [PMID: 24486979 DOI: 10.1016/j.neuroimage.2014.01.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 11/24/2022] Open
Abstract
Rapid detection of deviant sounds is a crucial property of the auditory system because it increases the saliency of biologically important, unexpected sounds. The oddball paradigm in which a deviant sound is randomly interspersed among a train of standard sounds has been traditionally used to study this property in mammals. Currently, most human studies have only revealed the involvement of cortical regions in this property. Recently, several animal electrophysiological studies have reported that neurons in the inferior colliculus (IC) exhibit reduced responses to a standard sound but restore their responses at the occurrence of a deviant sound (i.e., stimulus-specific adaptation or SSA), suggesting that the IC may also be involved in deviance detection. However, by adopting an invasive method, these animal studies examined only a limited number of neurons. Although SSA appears to be more prominent in the external cortical nuclei of the IC for frequency deviant, a thorough investigation of this property throughout the IC using other deviants and efficient imaging techniques may provide more comprehensive information on this important phenomenon. In this study, blood-oxygen-level-dependent (BOLD) fMRI with a large field of view was applied to investigate the role of the IC in deviance detection. Two sound tokens that had identical frequency spectrum but temporally inverted profiles were used as the deviant and standard. A control experiment showed that these two sounds evoked the same responses in the IC when they were separately presented. Two oddball experiments showed that the deviant induced higher responses than the standard (by 0.41±0.09% and 0.41±0.10%, respectively). The most activated voxels were in the medial side of the IC in both oddball experiments. The results clearly demonstrated that the IC is involved in deviance detection. BOLD fMRI detection of increased activities in the medial side of the IC to the deviant revealed the highly adaptive nature of a substantial population of neurons in this region, probably those that belong to the rostral or dorsal cortex of the IC. These findings highlighted the complexity of auditory information processing in the IC and may guide future studies of the functional organizations of this subcortical structure.
Collapse
|
12
|
Deviance Detection Based on Regularity Encoding Along the Auditory Hierarchy: Electrophysiological Evidence in Humans. Brain Topogr 2013; 27:527-38. [DOI: 10.1007/s10548-013-0328-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
|
13
|
Laaksonen K, Helle L, Parkkonen L, Kirveskari E, Mäkelä JP, Mustanoja S, Tatlisumak T, Kaste M, Forss N. Alterations in spontaneous brain oscillations during stroke recovery. PLoS One 2013; 8:e61146. [PMID: 23593414 PMCID: PMC3623808 DOI: 10.1371/journal.pone.0061146] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 03/07/2013] [Indexed: 11/18/2022] Open
Abstract
Amplitude or frequency alterations of spontaneous brain oscillations may reveal pathological phenomena in the brain or predict recovery from brain lesions, but the temporal evolution and the functional significance of these changes is not well known. We performed follow-up recordings of spontaneous brain oscillations with whole-head MEG in 16 patients with first-ever stroke in the middle cerebral artery territory, affecting upper limb motor function, 1-7 days (T0), 1 month (T1), and 3 months (T2) after stroke, with concomitant clinical examination. Clinical test results improved significantly from T0 to T1 or T2. During recovery (at T1 and T2), the strength of temporo-parietal ≈ 10-Hz oscillations in the affected hemisphere (AH) was increased as compared with the unaffected hemisphere. Abnormal low-frequency magnetic activity (ALFMA) at ≈ 1 Hz in the AH was detected in the perilesional cortex in seven patients at T0. In four of these, ALFMA persisted at T2. In patients with ALFMA, the lesion size was significantly larger than in the rest of the patients, and worse clinical outcome was observed in patients with persisting ALFMA. Our results indicate that temporo-parietal ≈ 10-Hz oscillations are enhanced in the AH during recovery from stroke. Moreover, stroke causes ALFMA, which seems to persist in patients with worse clinical outcome.
Collapse
Affiliation(s)
- Kristina Laaksonen
- Brain Research Unit, O.V. Lounasmaa Laboratory and MEG Core, Aalto Neuroimaging, Aalto University, Aalto, Espoo, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Alain C, Roye A, Arnott SR. Middle- and long-latency auditory evoked potentials. DISORDERS OF PERIPHERAL AND CENTRAL AUDITORY PROCESSING 2013. [DOI: 10.1016/b978-0-7020-5310-8.00009-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
15
|
Sun ZY, Wang JH, Sun JL, Wang TJ, Li L, Dong YH, Wu J, Cui WZ, Wu YJ, Lu PY. Magnetoencephalography assessment of evoked magnetic fields and cognitive function in subcortical ischemic vascular dementia patients. Neurosci Lett 2013; 532:17-22. [DOI: 10.1016/j.neulet.2012.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 10/13/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
|
16
|
Graux J, Gomot M, Roux S, Bonnet-Brilhault F, Camus V, Bruneau N. My Voice or Yours? An Electrophysiological Study. Brain Topogr 2012; 26:72-82. [DOI: 10.1007/s10548-012-0233-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
|
17
|
The mismatch negativity (MMN)--a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol 2011; 123:424-58. [PMID: 22169062 DOI: 10.1016/j.clinph.2011.09.020] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/14/2022]
Abstract
In this article, we review clinical research using the mismatch negativity (MMN), a change-detection response of the brain elicited even in the absence of attention or behavioural task. In these studies, the MMN was usually elicited by employing occasional frequency, duration or speech-sound changes in repetitive background stimulation while the patient was reading or watching videos. It was found that in a large number of different neuropsychiatric, neurological and neurodevelopmental disorders, as well as in normal ageing, the MMN amplitude was attenuated and peak latency prolonged. Besides indexing decreased discrimination accuracy, these effects may also reflect, depending on the specific stimulus paradigm used, decreased sensory-memory duration, abnormal perception or attention control or, most importantly, cognitive decline. In fact, MMN deficiency appears to index cognitive decline irrespective of the specific symptomatologies and aetiologies of the different disorders involved.
Collapse
|
18
|
Schulman JJ, Cancro R, Lowe S, Lu F, Walton KD, Llinás RR. Imaging of thalamocortical dysrhythmia in neuropsychiatry. Front Hum Neurosci 2011; 5:69. [PMID: 21863138 PMCID: PMC3149146 DOI: 10.3389/fnhum.2011.00069] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 07/15/2011] [Indexed: 12/22/2022] Open
Abstract
Abnormal brain activity dynamics, in the sense of a thalamocortical dysrhythmia (TCD), has been proposed as the underlying mechanism for a subset of disorders that bridge the traditional delineations of neurology and neuropsychiatry. In order to test this proposal from a psychiatric perspective, a study using magnetoencephalography (MEG) was implemented in subjects with schizophrenic spectrum disorder (n = 14), obsessive–compulsive disorder (n = 10), or depressive disorder (n = 5) and in control individuals (n = 18). Detailed CNS electrophysiological analysis of these patients, using MEG, revealed the presence of abnormal theta range spectral power with typical TCD characteristics, in all cases. The use of independent component analysis and minimum-norm-based methods localized such TCD to ventromedial prefrontal and temporal cortices. The observed mode of oscillation was spectrally equivalent but spatially distinct from that of TCD observed in other related disorders, including Parkinson's disease, central tinnitus, neuropathic pain, and autism. The present results indicate that the functional basis for much of these pathologies may relate most fundamentally to the category of calcium channelopathies and serve as a model for the cellular substrate for low-frequency oscillations present in these psychiatric disorders, providing a basis for therapeutic strategies.
Collapse
Affiliation(s)
- Joshua J Schulman
- Department of Physiology and Neuroscience, New York University School of Medicine New York, NY, USA
| | | | | | | | | | | |
Collapse
|
19
|
Cognitive, affective and behavioural disturbances following vascular thalamic lesions: a review. Cortex 2010; 47:273-319. [PMID: 21111408 DOI: 10.1016/j.cortex.2010.09.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 06/21/2010] [Accepted: 09/15/2010] [Indexed: 11/23/2022]
Abstract
During the last decades, many studies have shown that the thalamus is crucially involved in language and cognition. We critically reviewed a study corpus of 465 patients with vascular thalamic lesions published in the literature since 1980. 42 out of 465 (9%) cases with isolated thalamic lesions allowed further neurocognitive analysis. On the neurolinguistic level, fluent output (=31/33; 93.9%), normal to mild impairment of repetition (=33/35; 94.3%), mild dysarthria (=8/9; 88.9%) and normal to mild impairment of auditory comprehension (=27/34; 79.4%) were most commonly found in the group of patients with left and bilateral thalamic lesions. The taxonomic label of thalamic aphasia applied to the majority of the patients with left thalamic damage (=7/11; 63.6%) and to one patient with bithalamic lesions (=1/1). On the neuropsychological level, almost 90% of the left thalamic and bithalamic patient group presented with amnestic problems, executive dysfunctions and behaviour and/or mood alterations. In addition, two thirds (2/3) of the patients with bilateral thalamic damage presented with a typical cluster of neurocognitive disturbances consisting of constructional apraxia, anosognosia, desorientation, global intellectual dysfunctioning, amnesia, and executive dysfunctions associated with behaviour and/or mood alterations. Our study supports the long-standing view of a 'lateralised linguistic thalamus' but restates the issue of a 'lateralised cognitive thalamus'. In addition, critical analysis of the available literature supports the view that aphasia following left or bithalamic damage constitutes a prototypical linguistic syndrome.
Collapse
|
20
|
Abstract
A 19-year-old female presented with acute onset of bizarre behavior, confusion, auditory hallucinations, and delusions after two weeks on a 100 kcal/day diet. She had a normal neurological examination. Urinalysis showed ketones 4+. She had elevated antinuclear antibody (ANA) (320) and positive heterozygous factor V Leiden mutation. Magnetic resonance imaging brain scan showed hyperintensity in the ventroanterior nucleus of the left thalamus. Ventroanterior thalamic stroke has been associated with personality changes. This is the first case of starvation-induced thalamic psychosis in the setting of factor V Leiden mutation and elevated ANA. The patient improved with risperidone in one month.
Collapse
|
21
|
Walton KD, Dubois M, Llinás RR. Abnormal thalamocortical activity in patients with Complex Regional Pain Syndrome (CRPS) Type I. Pain 2010; 150:41-51. [DOI: 10.1016/j.pain.2010.02.023] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/19/2010] [Accepted: 02/12/2010] [Indexed: 11/26/2022]
|
22
|
The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 2007; 118:2544-90. [PMID: 17931964 DOI: 10.1016/j.clinph.2007.04.026] [Citation(s) in RCA: 1764] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 04/18/2007] [Accepted: 04/28/2007] [Indexed: 11/22/2022]
Abstract
In the present article, the basic research using the mismatch negativity (MMN) and analogous results obtained by using the magnetoencephalography (MEG) and other brain-imaging technologies is reviewed. This response is elicited by any discriminable change in auditory stimulation but recent studies extended the notion of the MMN even to higher-order cognitive processes such as those involving grammar and semantic meaning. Moreover, MMN data also show the presence of automatic intelligent processes such as stimulus anticipation at the level of auditory cortex. In addition, the MMN enables one to establish the brain processes underlying the initiation of attention switch to, conscious perception of, sound change in an unattended stimulus stream.
Collapse
|
23
|
Tecchio F, Zappasodi F, Pasqualetti P, Tombini M, Caulo M, Ercolani M, Rossini PM. Long-term effects of stroke on neuronal rest activity in rolandic cortical areas. J Neurosci Res 2006; 83:1077-87. [PMID: 16493681 DOI: 10.1002/jnr.20796] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To understand the relationship between neuronal function and clinical state in the framework of stroke, the long-term poststroke rolandic spontaneous neuronal activity was studied by means of magnetoencephalography. Fifty-six patients who had suffered a unilateral stroke within the middle cerebral artery were enrolled. Median time since stroke was 2.8 years. In association with lesion features and clinical picture, total and relative band powers and the spectral entropy were analyzed in the affected (AH) and unaffected (UH) hemispheres in comparison with an age-matched control group. An increase of absolute and relative slow band powers and a reduction of relative fast band powers were found in patients' AH with respect to both UH and control values. Absolute delta band was higher than in controls also in UH. New findings were the increase of rolandic rest activity power also in the alpha band and the decrease of spectral entropy in AH with respect to both UH and control values. Moreover, our results in chronic stroke patients indicate frequency-selective alterations related to specific dysfunctions: global clinical status was mostly impaired in patients with larger lesions and increased total and slow band activity powers, whereas hand functionality was mostly disrupted in patients with subcortical involvement and reduction of high-frequency rhythms and spectral entropy. Total power increase and spectral richness decrease are in agreement with a higher synchrony of local neuronal activity, a reduction of the intracortical inhibitory network's efficiency, and an increase of neuronal excitability.
Collapse
Affiliation(s)
- F Tecchio
- ISTC-CNR, Dip. Neuroscienze, Osp. Fatebenefratelli, Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Tecchio F, Zappasodi F, Pasqualetti P, Tombini M, Salustri C, Oliviero A, Pizzella V, Vernieri F, Rossini PM. Rhythmic brain activity at rest from rolandic areas in acute mono-hemispheric stroke: a magnetoencephalographic study. Neuroimage 2005; 28:72-83. [PMID: 16023869 DOI: 10.1016/j.neuroimage.2005.05.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 05/10/2005] [Accepted: 05/20/2005] [Indexed: 11/18/2022] Open
Abstract
In order to deepen our knowledge of the brain's ability to react to a cerebral insult, it is fundamental to obtain a "snapshot" of the acute phase, both for understanding the neural condition immediately after the insult and as a starting point for follow-up and clinical outcome prognosis. The characteristics of the brain's spontaneous neuronal activity in perirolandic cortical areas were investigated in 32 patients who had a stroke in the middle cerebral artery (MCA) territory of one hemisphere in the previous 10 days. Magnetic fields from both left and right rolandic areas were recorded at rest with open eyes. Total and band power properties, the individual alpha frequency (IAF) and the spectral entropy were analyzed and compared with a sex-age matched control group. In agreement with electroencephalographic literature, low frequency absolute powers were higher and high frequency were lower in the affected (AH) than in the unaffected hemisphere (UH), and also their values in both hemispheres differed from control values. An IAF reduction was found in AH with respect to UH. As new findings, the total power was higher in AH than in UH, after excluding 4 right-damaged patients with cortico-subcortical lesions, who showed a completely disorganized spectral pattern. Spectral entropy was lower in AH than in UH. Clinical severity correlated with the AH decrease of gamma band power, IAF and spectral entropy. Larger lesions were associated to worse clinical pictures and MEG alterations. A lesion affecting the MCA territory of one hemisphere induces a perilesional increase of the low-frequency rhythms' spectral power within the AH rolandic areas; the same effect was present also in the UH, indicating interhemispheric diaschisis. In the AH, results showed an increase of the total power and a reduction of the spectral entropy, suggesting a higher synchrony of local neuronal activity, a reduction of the intra-cortical inhibitory networks efficiency and an increase of neuronal excitability. Direct correlation linked gamma band activity preservation and less severe clinical status. Dependence of the clinical picture, and associated spectral alterations, on the lesion volume and not on the lesion level, suggests a diffuse neuronal impairment, rather than a selective structures damage, contributing to neurological status in the acute phase of stroke.
Collapse
Affiliation(s)
- Franca Tecchio
- Istituto di Scienze e Tecnologie della Cognizione (ISTC), CNR, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liljeström M, Kujala J, Jensen O, Salmelin R. Neuromagnetic localization of rhythmic activity in the human brain: a comparison of three methods. Neuroimage 2005; 25:734-45. [PMID: 15808975 DOI: 10.1016/j.neuroimage.2004.11.034] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 10/04/2004] [Accepted: 11/29/2004] [Indexed: 11/17/2022] Open
Abstract
Cortical rhythmic activity is increasingly employed for characterizing human brain function. Using MEG, it is possible to localize the generators of these rhythms. Traditionally, the source locations have been estimated using sequential dipole modeling. Recently, two new methods for localizing rhythmic activity have been developed, Dynamic Imaging of Coherent Sources (DICS) and Frequency-Domain Minimum Current Estimation (MCE(FD)). With new analysis methods emerging, the researcher faces the problem of choosing an appropriate strategy. The aim of this study was to compare the performance and reliability of these three methods. The evaluation was performed using measured data from four healthy subjects, as well as with simulations of rhythmic activity. We found that the methods gave comparable results, and that all three approaches localized the principal sources of oscillatory activity very well. Dipole modeling is a very powerful tool once appropriate subsets of sensors have been selected. MCE(FD) provides simultaneous localization of sources and was found to give a good overview of the data. With DICS, it was possible to separate close-by sources that were not retrieved by the other two methods.
Collapse
Affiliation(s)
- M Liljeström
- Brain Research Unit, Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 2200, Fin-02015 HUT, Espoo, Finland.
| | | | | | | |
Collapse
|
26
|
Baldeweg T, Klugman A, Gruzelier JH, Hirsch SR. Impairment in frontal but not temporal components of mismatch negativity in schizophrenia. Int J Psychophysiol 2002; 43:111-22. [PMID: 11809515 DOI: 10.1016/s0167-8760(01)00183-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Impairment in mismatch negativity (MMN) potentials is a robust finding in schizophrenia. While previous studies suggested that MMN in man is generated by a single dipole source bilaterally in the primary auditory cortex, more recent data modified this assumption by showing differential modulation of MMN components over the frontal and temporal scalp. Here we used a roving standard experiment to record mismatch potentials to tone duration deviants with the aim to detect robust temporal and frontal mismatch components. Fourteen schizophrenic patients with normal intelligence and without overt cognitive deficits and age- and sex-matched controls were studied. In agreement with previous findings MMN recorded from the frontal scalp was markedly attenuated in patients. However, in contrast to previous reports, positive mismatch potentials of normal magnitude were recorded from temporal (mastoid) electrodes. This finding raises the possibility of a selective impairment in multiple mismatch generators in schizophrenia and may lend support for the notion of impaired cortico-cortical connectivity in schizophrenia.
Collapse
Affiliation(s)
- Torsten Baldeweg
- Institute of Child Health and Great Ormond Street Hospital, Wolfson Centre, Mecklenburgh Square, WC1N 2AP, London, UK.
| | | | | | | |
Collapse
|
27
|
Yago E, Escera C, Alho K, Giard MH. Cerebral mechanisms underlying orienting of attention towards auditory frequency changes. Neuroreport 2001; 12:2583-7. [PMID: 11496153 DOI: 10.1097/00001756-200108080-00058] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Brain mechanisms underlying detection of auditory frequency changes were studied with event-related potentials (ERPs) in 14 human subjects discriminating visual stimuli. Scalp-current density mapping revealed bilateral components of mismatch negativity (MMN) in frontal and auditory cortices. Deviance-related activations in frontal and temporal cortex began to be significant at 94 ms and 154 ms in the right hemisphere, and at 128 ms and 132 ms in the left hemisphere. The magnitude of MMN-neuroelectric currents from the left temporal cortex correlated significantly (r = -0.56, p < 0.05) with distraction caused by MMN-eliciting deviant tones. These results suggest a complex cerebral circuitry involved in frequency change detection and strongly support the role of this circuitry in driving attention involuntarily towards potentially relevant frequency changes in the acoustic environment.
Collapse
Affiliation(s)
- E Yago
- Neurodynamics Laboratory, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, P. Vall d'Hebron 171, 08035-Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
28
|
Laine M, Salmelin R, Helenius P, Marttila R. Brain activation during reading in deep dyslexia: an MEG study. J Cogn Neurosci 2000; 12:622-34. [PMID: 10936915 DOI: 10.1162/089892900562381] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Magnetoencephalographic (MEG) changes in cortical activity were studied in a chronic Finnish-speaking deep dyslexic patient during single-word and sentence reading. It has been hypothesized that in deep dyslexia, written word recognition and its lexical-semantic analysis are subserved by the intact right hemisphere. However, in our patient, as well as in most nonimpaired readers, lexical-semantic processing as measured by sentence-final semantic-incongruency detection was related to the left superior-temporal cortex activation. Activations around this same cortical area could be identified in single-word reading as well. Another factor relevant to deep dyslexic reading, the morphological complexity of the presented words, was also studied. The effect of morphology was observed only during the preparation for oral output. By performing repeated recordings 1 year apart, we were able to document significant variability in both the spontaneous activity and the evoked responses in the lesioned left hemisphere even though at the behavioural level, the patient's performance was stable. The observed variability emphasizes the importance of estimating consistency of brain activity both within and between measurements in brain-damaged individuals.
Collapse
Affiliation(s)
- M Laine
- University of Turku, Turku, Finland.
| | | | | | | |
Collapse
|
29
|
Mäkelä JP, Salmelin R, Hokkanen L, Launes J, Hari R. Neuromagnetic sequelae of herpes simplex encephalitis. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1998; 106:251-8. [PMID: 9743284 DOI: 10.1016/s0013-4694(97)00132-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Spontaneous cortical activity and auditory evoked responses were recorded with a whole-scalp 122-channel neuromagnetometer from 4 patients after left-hemisphere dominant herpes simplex encephalitis and associated memory disorders. Spontaneous activity of one patient contained periodic sharp waves over the left hemisphere; the background activity was attenuated. The sources of periodic sharp waves clustered close to the sources of auditory evoked fields in the temporal lobe. In controls, dominant rhythmic activity over the parieto-occipital region had spectral maximum at 10.6 +/- 0.6 Hz; in patients the dominant rhythmic activity peaked at 8.6 +/- 1.8 Hz. The suppression of the parieto-occipital activity in eyes-open versus eyes-closed condition was smaller in patients than in controls. The patients' peak spectral frequency was correlated with neuropsychological tests reflecting deficient attentional capacity. The observed changes probably reflect decreased subcortical control of the cortical electric activity.
Collapse
Affiliation(s)
- J P Mäkelä
- Brain Research Unit, Helsinki University of Technology, Espoo, Finland
| | | | | | | | | |
Collapse
|