1
|
Egunlusi AO, Joubert J. NMDA Receptor Antagonists: Emerging Insights into Molecular Mechanisms and Clinical Applications in Neurological Disorders. Pharmaceuticals (Basel) 2024; 17:639. [PMID: 38794209 PMCID: PMC11124131 DOI: 10.3390/ph17050639] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Neurodegenerative disorders (NDs) include a range of chronic conditions characterized by progressive neuronal loss, leading to cognitive, motor, and behavioral impairments. Common examples include Alzheimer's disease (AD) and Parkinson's disease (PD). The global prevalence of NDs is on the rise, imposing significant economic and social burdens. Despite extensive research, the mechanisms underlying NDs remain incompletely understood, hampering the development of effective treatments. Excitotoxicity, particularly glutamate-mediated excitotoxicity, is a key pathological process implicated in NDs. Targeting the N-methyl-D-aspartate (NMDA) receptor, which plays a central role in excitotoxicity, holds therapeutic promise. However, challenges, such as blood-brain barrier penetration and adverse effects, such as extrapyramidal effects, have hindered the success of many NMDA receptor antagonists in clinical trials. This review explores the molecular mechanisms of NMDA receptor antagonists, emphasizing their structure, function, types, challenges, and future prospects in treating NDs. Despite extensive research on competitive and noncompetitive NMDA receptor antagonists, the quest for effective treatments still faces significant hurdles. This is partly because the same NMDA receptor that necessitates blockage under pathological conditions is also responsible for the normal physiological function of NMDA receptors. Allosteric modulation of NMDA receptors presents a potential alternative, with the GluN2B subunit emerging as a particularly attractive target due to its enrichment in presynaptic and extrasynaptic NMDA receptors, which are major contributors to excitotoxic-induced neuronal cell death. Despite their low side-effect profiles, selective GluN2B antagonists like ifenprodil and radiprodil have encountered obstacles such as poor bioavailability in clinical trials. Moreover, the selectivity of these antagonists is often relative, as they have been shown to bind to other GluN2 subunits, albeit minimally. Recent advancements in developing phenanthroic and naphthoic acid derivatives offer promise for enhanced GluN2B, GluN2A or GluN2C/GluN2D selectivity and improved pharmacodynamic properties. Additional challenges in NMDA receptor antagonist development include conflicting preclinical and clinical results, as well as the complexity of neurodegenerative disorders and poorly defined NMDA receptor subtypes. Although multifunctional agents targeting multiple degenerative processes are also being explored, clinical data are limited. Designing and developing selective GluN2B antagonists/modulators with polycyclic moieties and multitarget properties would be significant in addressing neurodegenerative disorders. However, advancements in understanding NMDA receptor structure and function, coupled with collaborative efforts in drug design, are imperative for realizing the therapeutic potential of these NMDA receptor antagonists/modulators.
Collapse
Affiliation(s)
- Ayodeji Olatunde Egunlusi
- Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa
| | - Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| |
Collapse
|
2
|
He M, Wang Y, Zhang X, Zhang L. Exploration of the potential neuroprotective compounds targeting GluN1-GluN2B NMDA receptors. J Biomol Struct Dyn 2023; 41:10900-10908. [PMID: 36591642 DOI: 10.1080/07391102.2022.2159527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/10/2022] [Indexed: 01/03/2023]
Abstract
The N-methyl-d-aspartic acid (NMDA) receptors belongs to the family of ionotropic glutamate receptors, which could mediate most excitatory synaptic transmission in the brain. It is interesting to know if some available drugs have regulatory effects on the NMDARs. Herein, the present study reports the discovery of drugs targeting NMDAR using virtual screening. In this study, talniflumate with the EC50 value at 61.49 nM was successfully screened. The interaction analysis of this compound was further explored through molecular dynamics simulation. It is indicated that talniflumate could form stable interactions with GluN1-GluN2B NMDA receptors. In particular, H-bond interactions with high occupancies between GluN1-GluN2B NMDA receptors and talniflumate were observed. Compared to de novo drug discovery, this approach could be an alternative choice for development of safety and efficiency NMDAR inhibitors from available drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Meixi He
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
3
|
Rajani V, Sengar AS, Salter MW. Tripartite signalling by NMDA receptors. Mol Brain 2020; 13:23. [PMID: 32070387 PMCID: PMC7029596 DOI: 10.1186/s13041-020-0563-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are excitatory glutamatergic receptors that are fundamental for many neuronal processes, including synaptic plasticity. NMDARs are comprised of four subunits derived from heterogeneous subunit families, yielding a complex diversity in NMDAR form and function. The quadruply-liganded state of binding of two glutamate and two glycine molecules to the receptor drives channel gating, allowing for monovalent cation flux, Ca2+ entry and the initiation of Ca2+-dependent signalling. In addition to this ionotropic function, non-ionotropic signalling can be initiated through the exclusive binding of glycine or of glutamate to the NMDAR. This binding may trigger a transmembrane conformational change of the receptor, inducing intracellular protein-protein signalling between the cytoplasmic domain and secondary messengers. In this review, we outline signalling cascades that can be activated by NMDARs and propose that the receptor transduces signalling through three parallel streams: (i) signalling via both glycine and glutamate binding, (ii) signalling via glycine binding, and (iii) signalling via glutamate binding. This variety in signal transduction mechanisms and downstream signalling cascades complements the widespread prevalence and rich diversity of NMDAR activity throughout the central nervous system and in disease pathology.
Collapse
Affiliation(s)
- Vishaal Rajani
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Ameet S Sengar
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
4
|
Gonzalez J, Jurado-Coronel JC, Ávila MF, Sabogal A, Capani F, Barreto GE. NMDARs in neurological diseases: a potential therapeutic target. Int J Neurosci 2014; 125:315-27. [PMID: 25051426 DOI: 10.3109/00207454.2014.940941] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
N-methyl-D-aspartate ionotropic glutamate receptor (NMDARs) is a ligand-gated ion channel that plays a critical role in excitatory neurotransmission, brain development, synaptic plasticity associated with memory formation, central sensitization during persistent pain, excitotoxicity and neurodegenerative diseases in the central nervous system (CNS). Within iGluRs, NMDA receptors have been the most actively investigated for their role in neurological diseases, especially neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases. It has been demonstrated that excessive activation of NMDA receptors (NMDARs) plays a key role in mediating some aspects of synaptic dysfunction in several CNS disorders, so extensive research has been directed on the discovery of compounds that are able to reduce NMDARs activity. This review discusses the role of NMDARs on neurological pathologies and the possible therapeutic use of agents that target this receptor. Additionally, we delve into the role of NMDARs in Alzheimer's and Parkinson's diseases and the receptor antagonists that have been tested on in vivo models of these pathologies. Finally, we put into consideration the importance of antioxidants to counteract oxidative capacity of the signaling cascade in which NMDARs are involved.
Collapse
Affiliation(s)
- Janneth Gonzalez
- 1Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | | | | | | | | |
Collapse
|
5
|
Difference in brain distributions of carbon 11-labeled 4-hydroxy-2(1H)-quinolones as PET radioligands for the glycine-binding site of the NMDA ion channel. Nucl Med Biol 2008; 35:203-12. [DOI: 10.1016/j.nucmedbio.2007.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 10/02/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
|
6
|
Kadieva MG, Oganesyan ÉT, Zefirova OH. Antagonists of AMPA/KA and NMDA (glycine site) glutamate receptors. Pharm Chem J 2008. [DOI: 10.1007/s11094-008-0063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Bordi F, Mugnaini M, Terron A, Barnaby R, Reggiani A. GV150526: A Neuroprotective Agent. CNS DRUG REVIEWS 2006. [DOI: 10.1111/j.1527-3458.2000.tb00142.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Abstract
Dynamic modulation of the number of postsynaptic glutamate receptors is considered one of the main mechanisms for altering the strength of excitatory synapses in the central nervous system (CNS). However, until recently N-methyl-d-aspartate (NMDA) receptors were considered relatively stable once in the plasma membrane, especially in comparison with alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors that are internalized at a high rate. A series of recent studies has changed this viewpoint by revealing that NMDA receptors are subject to constitutive as well as agonist-induced internalization through clathrin-mediated endocytosis. Surprisingly, agonist-induced internalization is not dependent on current flow through the NMDA channel, and the receptors are primed for this type of internalization by selective stimulation of the glycine site but not of the glutamate site. Endocytosis of NMDA receptors provides a fundamental mechanism for dynamic regulation of the number of NMDA receptors at synapses, which might be important for physiological and pathological functioning of the CNS.
Collapse
Affiliation(s)
- Yi Nong
- Programme in Brain and Behavior & Cell Biology, Hospital for Sick Children, Department of Physiology, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | | | | |
Collapse
|
9
|
Nong Y, Huang YQ, Ju W, Kalia LV, Ahmadian G, Wang YT, Salter MW. Glycine binding primes NMDA receptor internalization. Nature 2003; 422:302-7. [PMID: 12646920 DOI: 10.1038/nature01497] [Citation(s) in RCA: 336] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2002] [Accepted: 02/03/2003] [Indexed: 11/09/2022]
Abstract
NMDA (N-methyl-d-aspartate) receptors (NMDARs) are a principal subtype of excitatory ligand-gated ion channel with prominent roles in physiological and disease processes in the central nervous system. Recognition that glycine potentiates NMDAR-mediated currents as well as being a requisite co-agonist of the NMDAR subtype of 'glutamate' receptor profoundly changed our understanding of chemical synaptic communication in the central nervous system. The binding of both glycine and glutamate is necessary to cause opening of the NMDAR conductance pore. Although binding of either agonist alone is insufficient to cause current flow through the channel, we report here that stimulation of the glycine site initiates signalling through the NMDAR complex, priming the receptors for clathrin-dependent endocytosis. Glycine binding alone does not cause the receptor to be endocytosed; this requires both glycine and glutamate site activation of NMDARs. The priming effect of glycine is mimicked by the NMDAR glycine site agonist d-serine, and is blocked by competitive glycine site antagonists. Synaptic as well as extrasynaptic NMDARs are primed for internalization by glycine site stimulation. Our results demonstrate transmembrane signal transduction through activating the glycine site of NMDARs, and elucidate a model for modulating cell-cell communication in the central nervous system.
Collapse
Affiliation(s)
- Yi Nong
- Programme in Brain and Behaviour, Hospital for Sick Children, , University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Beardsley PM, Ratti E, Balster RL, Willetts J, Trist D. The selective glycine antagonist gavestinel lacks phencyclidine-like behavioral effects. Behav Pharmacol 2002; 13:583-92. [PMID: 12409996 DOI: 10.1097/00008877-200211000-00007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gavestinel [GV150526A; ( E)-3[(phenylcarbamoil)ethenyl]-4,6-dichloroindole-2-carboxylic acid sodium salt] is a selective antagonist at the strychnine-insensitive glycine site of the -methyl-D-aspartate (NMDA) receptor. It was tested for its ability to substitute for phencyclidine (PCP) in rats and rhesus monkeys trained to discriminate PCP from saline, under a two-lever fixed-ratio (FR) food reinforcement schedule, and for its ability to maintain responding in rhesus monkeys trained to self-administer PCP under a FR reinforcement schedule. No PCP-lever responding was observed after gavestinel (1-56 mg/kg i.p.) administration to rats discriminating PCP (2.0 mg/kg i.p.) from saline. The highest dose of gavestinel (100 mg/kg i.p.) tested eliminated responding. Likewise, no PCP-lever responding was observed after gavestinel (1-30 mg/kg s.c.) administration to rhesus monkeys discriminating PCP (0.08 or 0.1 mg/kg i.m.) from saline; the highest dose of gavestinel (30 mg/kg s.c.) tested reduced response rates to approximately 50% of those observed after its vehicle ( -cyclodextrin in 0.9% saline). Gavestinel (0.1-1 mg/kg per i.v. infusion) was not self-administered by rhesus monkeys that reliably self-administered PCP (0.0056 or 0.01 mg/kg per i.v. infusion). Infusion rates at the highest dose were typically lower than those for vehicle or saline, suggesting behavioral activity. Together, these results suggest that at behaviorally active doses gavestinel is not PCP-like and is likely to have low abuse liability.
Collapse
Affiliation(s)
- P M Beardsley
- Virginia Commonwealth University, Medical College of Virginia Campus, Department of Pharmacology and Toxicology, Richmond, Virginia, USA
| | | | | | | | | |
Collapse
|
11
|
Ohtani KI, Tanaka H, Yoneda Y, Yasuda H, Ito A, Nagata R, Nakamura M. In vitro and in vivo antagonistic activities of SM-31900 for the NMDA receptor glycine-binding site. Brain Res 2002; 944:165-73. [PMID: 12106676 DOI: 10.1016/s0006-8993(02)02741-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purpose of this study was to clarify the in vitro pharmacological profile and the in vivo activity of (3S)-7-chloro-3-[2-((1R)-1-carboxyethoxy)-4-aminomethylphenyl]aminocarbonylmethyl-1,3,4,5-tetrahydrobenz[c,d]indole-2-carboxylic acid hydrochloride (SM-31900). SM-31900 inhibited the binding of [3H]glycine and [3H]5,7-dichlorokynurenic acid, radioligands for the N-methyl-D-aspartate (NMDA) receptor glycine-binding site, to rat brain membranes in a competitive manner, with K(i) values of 11+/-2 and 1.0+/-0.1 nM, respectively, and completely prevented the binding of [3H]dizocilpine (MK-801), a radioligand for the NMDA receptor channel site. In cultures of rat cortical neurons, SM-31900 markedly prevented the neuronal cell death induced by transient exposure to glutamate, in a concentration-dependent manner. Its neuroprotective potency was much stronger than those of other glycine-binding site antagonists (4-trans-2-carboxy-5,7-dichloro-4-phenylaminocarbonylamino-1,2,3,4-tetrahydroquinoline (L-689,560), 5,7-dichlorokynurenic acid, and 7-chlorokynurenic acid). Furthermore, SM-31900 showed anticonvulsant activity when administered systemically, unlike other antagonists. These data indicate that SM-31900 is a systemically active antagonist with high affinity for the NMDA receptor glycine-binding site.
Collapse
MESH Headings
- Aminoquinolines/pharmacology
- Animals
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Brain/drug effects
- Brain/metabolism
- Cells, Cultured
- Dizocilpine Maleate/pharmacology
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Antagonists/pharmacology
- Fetus
- Glutamic Acid/metabolism
- Glutamic Acid/pharmacology
- Indoles/pharmacology
- Kynurenic Acid/analogs & derivatives
- Kynurenic Acid/pharmacology
- Male
- Neurons/drug effects
- Neurons/metabolism
- Neuroprotective Agents/pharmacology
- Neurotoxins/metabolism
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptors, Glycine/antagonists & inhibitors
- Receptors, Glycine/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Seizures/drug therapy
Collapse
Affiliation(s)
- Ken-ichi Ohtani
- Research Center, Sumitomo Pharmaceuticals Co., Ltd, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Mugnaini M, Meoni P, Bunnemann B, Corsi M, Bowery NG. Allosteric modulation of [3H]-CGP39653 binding through the glycine site of the NMDA receptor: further studies in rat and human brain. Br J Pharmacol 2001; 132:1883-97. [PMID: 11309261 PMCID: PMC1572734 DOI: 10.1038/sj.bjp.0704017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2000] [Revised: 02/01/2001] [Accepted: 02/01/2001] [Indexed: 11/08/2022] Open
Abstract
Binding of D,L-(E)-2-amino-4-[(3)H]-propyl-5-phosphono-3-pentenoic acid ([(3)H]-CGP39653), a selective antagonist at the glutamate site of the NMDA receptor, is modulated by glycine in rat brain tissue. We have further investigated this phenomenon in rodent and human brain by means of receptor binding and quantitative autoradiography techniques. In rat cerebral cortical membranes the glycine antagonist 3-[2-(Phenylaminocarbonyl)ethenyl]-4,6-dichloro-indole-2-carboxylic acid sodium salt (GV150526A) did not change basal [(3)H]-CGP39653 binding, but competitively reversed the high affinity component of [(3)H]-CGP39653 binding inhibition by glycine, with a pK(B) value of 8.38, in line with its affinity for the glycine site (pK(i)=8.49 vs. [(3)H]-glycine). Glycine (10 microM) significantly decreased [(3)H]-CGP39653 affinity for the NMDA receptor (with no change in the B(max)), whereas enhanced L-glutamate affinity (P<0.05, paired-samples Student's t-test). In rat brain sections the addition of GV150526A (30 microM) to the incubation medium increased [(3)H]-CGP39653 binding to 208% of control (average between areas), indicating the presence of endogenous glycine. The enhancement presented significant regional differences (P<0.05, two-way ANOVA), with striatum higher than cerebral cortex (282 and 187% of control, respectively; P<0.05, Fisher's LSD). On the contrary, there was not any significant variation in affinity values of [(3)H]-CGP39653, L-glutamate, glycine and GV150526A in striatal and cortical membranes. These results confirmed the existence of regionally distinct NMDA receptors subtypes with different glycine/glutamate allosteric modulation. Whole brain autoradiography revealed an uneven distribution of [(3)H]-CGP39653 binding sites in human brain. High levels of binding were determined in hippocampus and in cingulate, frontoparietal and insular cortex. Intermediate to low levels of binding were found in diencephalic nuclei and basal ganglia. [(3)H]-CGP39653 binding was increased to 216% of control (mean between areas) by 30 microM GV150526A. The enhancement, however, did not present significant regional differences. These results introduce GV150526A as a useful tool to identify NMDA receptor subtypes by means of receptor autoradiography; moreover, they demonstrate that the allosteric inhibition of [(3)H]-CGP39653 binding by glycine parallels an increase in receptor affinity to the endogenous ligand L-glutamate. Finally, this study provides the first detailed anatomical description of the regional distribution of [(3)H]-CGP39653 binding sites in human brain.
Collapse
Affiliation(s)
- M Mugnaini
- GlaxoSmithKline Group, GlaxoWellcome S. p. A., Medicines Research Centre, Via Fleming 4, 37100 Verona, Italy.
| | | | | | | | | |
Collapse
|
13
|
Chopra B, Chazot PL, Stephenson FA. Characterization of the binding of two novel glycine site antagonists to cloned NMDA receptors: evidence for two pharmacological classes of antagonists. Br J Pharmacol 2000; 130:65-72. [PMID: 10780999 PMCID: PMC1572047 DOI: 10.1038/sj.bjp.0703298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/1999] [Revised: 01/31/2000] [Accepted: 02/08/2000] [Indexed: 11/09/2022] Open
Abstract
The potency of two novel glycine site antagonists, GV150,526A and GV196,771A, was assessed by their ability to inhibit the binding of [(3)H]-MDL105,519 to cell homogenates prepared from mammalian cells transfected with either NR1-1a, NR1-2a, NR1-1a/NR2A, NR1-1a/NR2B, NR1-1a/NR2C or NR1-1a/NR2D NMDA receptor clones. The inhibition constants (K(i)s) for GV150,526A displacement of [(3)H]-MDL105,519 binding to either NR1-1a or NR1-2a expressed alone were not significantly different and were best fit by a one-site binding model. GV150,526A inhibition to NR1-1a/NR2 combinations was best fit by a two-site model with the NR1-1a/NR2C having an approximate 2 - 4 fold lower affinity compared to other NR1-1a/NR2 receptors. The K(i)s for GV196,771A displacement of [(3)H]-MDL105,519 binding to NR1-1a, NR1-2a and all NR1-1a/NR2 combinations was best fit by a two-site binding model. There was no significant difference between the K(i)s for the binding to NR1-1a and NR1-2a; NR1-1a/NR2A receptors had an approximate 4 fold lower affinity for GV196,771A compared to other NR1-1a/NR2 combinations. The K(i)s for both GV150, 526A and GV196,771A for the inhibition of [(3)H]-MDL105,519 binding to membranes prepared from adult rat forebrain were determined and compared to the values obtained for binding to cloned NMDA receptors. The K(i)s for a series of glycine site ligands with diverse chemical structures were also determined for the inhibition of [(3)H]-MDL105,519 binding to NR1-1a/NR2A receptors. L689,560 displayed similar binding characteristics to GV150,526A. It is suggested that glycine site antagonists may be divided into two classes based on their ability to distinguish between NR1 and NR1/NR2 receptors with respect to binding curve characteristics.
Collapse
Affiliation(s)
- Bela Chopra
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX
| | - Paul L Chazot
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX
| | - F Anne Stephenson
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX
| |
Collapse
|