1
|
Stereological and allometric studies on neurons and axo-dendritic synapses in superior cervical ganglia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014. [PMID: 24952916 DOI: 10.1016/b978-0-12-800179-0.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The superior cervical ganglion (SCG) plays an important role in neuropathies including Horner's syndrome, stroke, and epilepsy. While mammalian SCGs seem to share certain organizational features, they display natural differences related to the animal size and side and the complexity and synaptic coverage of their dendritic arborizations. However, apart from the rat SCG, there is little information concerning the number of SCG neurons and synapses, and the nature of relationships between body weight and the numbers and sizes of neurons and synapses remain uncertain. In the recognition of this gap in the literature, in this chapter, we reviewed the current knowledge on the SCG structure and its remodeling during postnatal development across a plethora of large mammalian species, focusing on exotic rodents and domestic animals. Instrumentally, we present stereology as a state-of-the-art 3D technology to assess the SCG 3D structure unbiasedly and suggest future research directions on this topic.
Collapse
|
2
|
Ladd AABL, Ladd FVL, da Silva AAP, Oliveira MF, de Souza RR, Coppi AA. SCG postnatal remodelling--hypertrophy and neuron number stability--in Spix's yellow-toothed cavies (Galea spixii). Int J Dev Neurosci 2011; 30:129-37. [PMID: 22212604 DOI: 10.1016/j.ijdevneu.2011.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/04/2011] [Accepted: 12/04/2011] [Indexed: 02/05/2023] Open
Abstract
Whilst a fall in neuron numbers seems a common pattern during postnatal development, several authors have nonetheless reported an increase in neuron number, which may be associated with any one of a number of possible processes encapsulating either neurogenesis or late maturation and incomplete differentiation. Recent publications have thus added further fuel to the notion that a postnatal neurogenesis may indeed exist in sympathetic ganglia. In the light of these uncertainties surrounding the effects exerted by postnatal development on the number of superior cervical ganglion (SCG) neurons, we have used state-of-the-art design-based stereology to investigate the quantitative structure of SCG at four distinct timepoints after birth, viz., 1-3 days, 1 month, 12 months and 36 months. The main effects exerted by ageing on the SCG structure were: (i) a 77% increase in ganglion volume; (ii) stability in the total number of the whole population of SCG nerve cells (no change--either increase or decrease) during post-natal development; (iii) a higher proportion of uninucleate neurons to binucleate neurons only in newborn animals; (iv) a 130% increase in the volume of uninucleate cell bodies; and (v) the presence of BrdU positive neurons in animals at all ages. At the time of writing our results support the idea that neurogenesis takes place in the SCG of preás, albeit it warrants confirmation by further markers. We also hypothesise that a portfolio of other mechanisms: cell repair, maturation, differentiation and death may be equally intertwined and implicated in the numerical stability of SCG neurons during postnatal development.
Collapse
Affiliation(s)
- Aliny A B Lobo Ladd
- Laboratory of Stochastic Stereology and Chemical Anatomy (LSSCA)(1), Department of Surgery, College of Veterinary Medicine, University of São Paulo (USP), São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Sun Z, Baker W, Hiraki T, Greenberg JH. The effect of right vagus nerve stimulation on focal cerebral ischemia: an experimental study in the rat. Brain Stimul 2011; 5:1-10. [PMID: 22037134 DOI: 10.1016/j.brs.2011.01.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/21/2010] [Accepted: 01/24/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The aim of this study was to determine the effect of vagus nerve stimulation (VNS) on infarct size after transient and after permanent focal cerebral ischemia in rats and to test the hypothesis that VNS-induced neuroprotection is due to changes in cerebral blood flow. METHODS Ischemia was produced by either temporary proximal middle cerebral artery occlusion (TMCAO) or permanent distal middle cerebral artery occlusion (PMCAO). Stimulating electrodes were implanted on the cervical part of the right vagus nerve, and electrical stimulation was initiated 30 minutes after the induction of ischemia and delivered for 30 seconds every 5 minutes for 1 hour. All the procedures were duplicated but no stimulus was delivered in control groups. Cerebral blood flow in the MCA territory was continuously monitored with laser speckle contrast imaging. A neurologic evaluation was undertaken after 24 hours of ischemia, and animals were euthanized and neuronal damage evaluated. RESULTS Ischemic lesion volume was smaller in VNS-treated animals in both the temporary and permanent ischemic groups (P<.01). VNS-treated animals in TMCAO had better functional scores at 24 hours as compared with control animals (P<.01), but there were no statistically significant differences in the neurobehavioral scores in PMCAO (P=.089). Cerebral blood flow changes in the MCA territory during ischemia did not differ between the VNS-treated animals and control animals in either group. CONCLUSIONS VNS offers neuroprotection against stroke in both temporary and permanent ischemia. Although the precise mechanism of this effect remains to be determined, alterations in cerebral blood flow do not appear to play a role. VNS could readily be translated to clinical practice.
Collapse
Affiliation(s)
- Zhenghui Sun
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6063, USA
| | | | | | | |
Collapse
|
4
|
Fioretto ET, de Abreu RN, Castro MFDS, Guidi WL, Ribeiro AACM. Macro- and Microstructure of the Superior Cervical Ganglion in Dogs, Cats and Horses during Maturation. Cells Tissues Organs 2007; 186:129-40. [PMID: 17519523 DOI: 10.1159/000103015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2007] [Indexed: 11/19/2022] Open
Abstract
The superior cervical ganglion (SCG) provides sympathetic input to the head and neck, its relation with mandible, submandibular glands, eyes (second and third order control) and pineal gland being demonstrated in laboratory animals. In addition, the SCG's role in some neuropathies can be clearly seen in Horner's syndrome. In spite of several studies published involving rats and mice, there is little morphological descriptive and comparative data of SCG from large mammals. Thus, we investigated the SCG's macro- and microstructural organization in medium (dogs and cats) and large animals (horses) during a very specific period of the post-natal development, namely maturation (from young to adults). The SCG of dogs, cats and horses were spindle shaped and located deeply into the bifurcation of the common carotid artery, close to the distal vagus ganglion and more related to the internal carotid artery in dogs and horses, and to the occipital artery in cats. As to macromorphometrical data, that is ganglion length, there was a 23.6% increase from young to adult dogs, a 1.8% increase from young to adult cats and finally a 34% increase from young to adult horses. Histologically, the SCG's microstructure was quite similar between young and adult animals and among the 3 species. The SCG was divided into distinct compartments (ganglion units) by capsular septa of connective tissue. Inside each ganglion unit the most prominent cellular elements were ganglion neurons, glial cells and small intensely fluorescent cells, comprising the ganglion's morphological triad. Given this morphological arrangement, that is a summation of all ganglion units, SCG from dogs, cats and horses are better characterized as a ganglion complex rather than following the classical ganglion concept. During maturation (from young to adults) there was a 32.7% increase in the SCG's connective capsule in dogs, a 25.8% increase in cats and a 33.2% increase in horses. There was an age-related increase in the neuronal profile size in the SCG from young to adult animals, that is a 1.6-fold, 1.9-fold and 1.6-fold increase in dogs, cats and horses, respectively. On the other hand, there was an age-related decrease in the nuclear profile size of SCG neurons from young to adult animals (0.9-fold, 0.7-fold and 0.8-fold in dogs, cats and horses, respectively). Ganglion connective capsule is composed of 2 or 3 layers of collagen fibres in juxtaposition and, as observed in light microscopy and independently of the animal's age, ganglion neurons were organised in ganglionic units containing the same morphological triad seen in light microscopy.
Collapse
Affiliation(s)
- Emerson Ticona Fioretto
- Department of Surgery, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
5
|
Paquet-Durand F, Gierse A, Bicker G. Diltiazem protects human NT-2 neurons against excitotoxic damage in a model of simulated ischemia. Brain Res 2006; 1124:45-54. [PMID: 17070504 DOI: 10.1016/j.brainres.2006.09.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 09/22/2006] [Accepted: 09/23/2006] [Indexed: 11/27/2022]
Abstract
In vitro models are often used to investigate pathophysiological mechanisms of brain cell injury as they occur for instance during cerebral ischemia. To analyze the efficacy of potential neuroprotective compounds, cell physiological experiments were performed in a recently improved culture system of human model neurons. The postmitotic neurons were generated from the human NT-2 teratocarcinoma cell line, using a cell sphere culture method to facilitate rapid terminal differentiation. We simulated ischemic conditions in cultures of purified NT-2 neurons and found that low doses of the antihypertensive drug diltiazem protected against excitotoxic neuronal damage in vitro. Experiments with primary cortical mouse neuron cultures demonstrated a similar response to simulated ischemia and confirmed the neuroprotective effect of diltiazem. Calcium imaging experiments showed that diltiazem reduced both NMDA- and glutamate-induced calcium influxes in NT-2 neurons suggesting that its neuroprotective effect is based on the inhibition of voltage-gated calcium channels. These results indicate that diltiazem is an effective blocker of glutamate-induced excitotoxicity. Moreover, we suggest that cell cultures of human model neurons can provide an important initial test system for drug development in stroke therapy.
Collapse
Affiliation(s)
- François Paquet-Durand
- University of Veterinary Medicine Hannover, Cell Biology, Bischofsholer Damm 15/102, D-30173 Hannover, Germany.
| | | | | |
Collapse
|
6
|
Abstract
Ion channels are membrane proteins that flicker open and shut to regulate the flow of ions down their electrochemical gradient across the membrane and consequently regulate cellular excitability. Every living cell expresses ion channels, as they are critical life-sustaining proteins. Ion channels are generally either activated by voltage or by ligand interaction. For each group of ion channels the channels' molecular biology and biophysics will be introduced and the pharmacology of that group of channels will be reviewed. The in vitro and in vivo literature will be reviewed and, for ion channel groups in which clinical trials have been conducted, the efficacy and therapeutic potential of the neuroprotective compounds will be reviewed. A large part of this article will deal with glutamate receptors, focusing specifically on N-methyl-D-aspartate (NMDA) receptors. Although the outcome of clinical trials for NMDA receptor antagonists as therapeutics for acute stroke is disappointing, the culmination of these failed trials was preceded by a decade of efforts to develop these agents. Sodium and calcium channel antagonists will be reviewed and the newly emerging efforts to develop therapeutics targeting potassium channels will be discussed. The future development of stroke therapeutics targeting ion channels will be discussed in the context of the failures of the last decade in hopes that this decade will yield successful stroke therapeutics.
Collapse
Affiliation(s)
- D L Small
- Institute or Biological Sciences, National Research Council of Canada, Building M-54, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6.
| |
Collapse
|
7
|
Gribkoff VK, Winquist RJ. Voltage-gated cation channel modulators for the treatment of stroke. Expert Opin Investig Drugs 2005; 14:579-92. [PMID: 15926865 DOI: 10.1517/13543784.14.5.579] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neuronal voltage-gated cation channels regulate the transmembrane flux of calcium, sodium and potassium. Neuronal ischaemia occurring during acute ischaemic stroke results in the breakdown in the normal function of these ion channels, contributing to a series of pathological events leading to cell death. A dramatic increase in the intracellular concentration of calcium during neuronal ischaemia plays a particularly important role in the neurotoxic cascade resulting in stroke-related acute neurodegeneration. One approach to provide therapeutic benefit following ischaemic stroke has been to target neuronal voltage-gated cation channels, and particularly blockers of calcium and sodium channels, for post-stroke neuroprotection. A recent development has been the identification of openers of large-conductance calcium- and voltage-dependent potassium channels (maxi-K channels), which hyperpolarize ischaemic neurons, reduce excitatory amino acid release, and reduce ischaemic calcium entry. Thus far, targeting these voltage-gated cation channels has not yet yielded significant clinical benefit. The reasons for this may involve the lack of small-molecule blockers of many neuronal members of these ion channel families and the design of preclinical stroke models, which do not adequately emulate the clinical condition and hence lack sufficient rigor to predict efficacy in human stroke. Furthermore, there may be a need for changes in clinical trial designs to optimise the selection of patients and the course of drug treatment to protect neurons during all periods of potential neuronal sensitivity to neuro-protectants. Clinical trials may also have to be powered to detect small effect sizes or be focused on patients more likely to respond to a particular therapy. The development of future solutions to these problems should result in an improved probability of success for the treatment of stroke.
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Department of Biology, Scion Pharmaceuticals, Inc., 200 Boston Avenue, Suite 3600, Medford, MA 02155, USA.
| | | |
Collapse
|
8
|
Paquet-Durand F, Bicker G. Hypoxic/ischaemic cell damage in cultured human NT-2 neurons. Brain Res 2004; 1011:33-47. [PMID: 15140642 DOI: 10.1016/j.brainres.2004.02.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
Postmitotic neurons were generated from the human NT-2 teratocarcinoma cell line in a novel rapid differentiation procedure. These neurons were used to establish an in vitro assay system that allows the investigation of hypoxic/ischaemic cell damage and the development of neuroprotective strategies. In experiments of simulated ischaemia, the neurons were subjected to anoxia and hypoglycaemia. The viability of NT-2 neuronal cells was significantly reduced by anoxia especially in the presence of glutamate, reflecting the cellular vulnerability to excitotoxic conditions. The addition of the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 reduced glutamate-induced neuronal damage. Calcium imaging showed that NT-2 neurons increased cytosolic calcium levels in response to stimulation with glutamate or NMDA, an effect that was abolished in calcium free medium and at low pH values. The NMDA receptor antagonists MK-801, AP 5 and ketamine reduced the NMDA-induced response, suggesting the presence of functional NMDA receptors in the human neuronal cells. The mitochondrial potential of neurons was estimated using the fluorescent dye rhodamine 123 (R123). The fluorescence imaging experiments indicated an energetic collapse of mitochondrial functions during anoxia, suggesting that the human NT-2 neurons can be used to investigate subcellular processes during the excitotoxic cascade.
Collapse
Affiliation(s)
- François Paquet-Durand
- School of Veterinary Medicine Hannover, Cell Biology, Bischofsholer Damm 15/102, D-30173 Hannover, Germany
| | | |
Collapse
|
9
|
Triggle DJ. Drug targets in the voltage-gated calcium channel family: why some are and some are not. Assay Drug Dev Technol 2004; 1:719-33. [PMID: 15090244 DOI: 10.1089/154065803770381075] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The L-type calcium channel antagonists have been, and continue to be, a very successful group of therapeutic agents targeted at cardiovascular disorders, notably angina and hypertension. The discovery that the voltage-gated calcium channels are a large and widely distributed family with important roles in both the peripheral and central nervous systems has initiated a major search for drugs active at other calcium channel types directed at disorders of the central nervous system, including pain, epilepsy, and stroke. These efforts have not been therapeutically successful thus far, and small molecule equivalents of the L-type blockers nifedipine, diltiazem, and verapamil directed at non-L-type channels have not been found. The underlying reasons for this are discussed together with suggestions for new directions, including fertility control, oxygen-sensitive channels, and calcium channel activators.
Collapse
Affiliation(s)
- David J Triggle
- School of Pharmacy and Pharmaceutical Sciences, SUNY at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
10
|
Dave JR, Lin Y, Ved HS, Koenig ML, Clapp L, Hunter J, Tortella FC. RS-100642-198, a novel sodium channel blocker, provides differential neuroprotection against hypoxia/hypoglycemia, veratridine or glutamate-mediated neurotoxicity in primary cultures of rat cerebellar neurons. Neurotox Res 2004; 3:381-95. [PMID: 14715468 DOI: 10.1007/bf03033199] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The present study investigated the effects of RS-100642-198 (a novel sodium channel blocker), and two related compounds (mexiletine and QX-314), in in vitro models of neurotoxicity. Neurotoxicity was produced in primary cerebellar cultures using hypoxia/hypoglycemia (H/H), veratridine or glutamate where, in vehicle-treated neurons, 65%, 60% and 75% neuronal injury was measured, respectively. Dose-response neuroprotection experiments were carried out using concentrations ranging from 0.1-500 micro M. All the sodium channel blockers were neuroprotective against H/H-induced injury, with each exhibiting similar potency and efficacy. However, against veratridine-induced neuronal injury only RS-100642-198 and mexiletine were 100% protective, whereas QX-314 neuroprotection was limited (i.e. only 54%). In contrast, RS-100642-198 and mexiletine had no effect against glutamate-induced injury, whereas QX-314 produced a consistent, but very limited (i.e. 25%), neuroprotection. Measurements of intraneuronal calcium [Ca(2+)]i) mobilization revealed that glutamate caused immediate and sustained increases in [Ca(2+)]i which were not affected by RS-100642-198 or mexiletine. However, both drugs decreased the initial amplitude and attenuated the sustained rise in [Ca(2+)]i mobilization produced by veratridine or KCl depolarization. QX-314 produced similar effects on glutamate-, veratridine- or KCl-induced [Ca(2+)]i dynamics, effectively decreasing the amplitude and delaying the initial spike in [Ca(2+)]i, and attenuating the sustained increase in [Ca(2+)]i mobilization. By using different in vitro models of excitotoxicity, a heterogeneous profile of neuroprotective effects resulting from sodium channel blockade has been described for RS-100642-198 and related drugs, suggesting that selective blockade of neuronal sodium channels in pathological conditions may provide therapeutic neuroprotection against depolarization/excitotoxicity via inhibition of voltage-dependent Na(+) channels.
Collapse
Affiliation(s)
- J R Dave
- Division of Neurosciences, Walter Reed Army Inst of Research, Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | |
Collapse
|