1
|
Bankir L, Bouby N, Speth RC, Velho G, Crambert G. Glucagon revisited: Coordinated actions on the liver and kidney. Diabetes Res Clin Pract 2018; 146:119-129. [PMID: 30339786 DOI: 10.1016/j.diabres.2018.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 01/22/2023]
Abstract
Glucagon secretion is stimulated by a low plasma glucose concentration. By activating glycogenolysis and gluconeogenesis in the liver, glucagon contributes to maintain a normal glycemia. Glucagon secretion is also stimulated by the intake of proteins, and glucagon contributes to amino acid metabolism and nitrogen excretion. Amino acids are used for gluconeogenesis and ureagenesis, two metabolic pathways that are closely associated. Intriguingly, cyclic AMP, the second messenger of glucagon action in the liver, is released into the bloodstream becoming an extracellular messenger. These effects depend not only on glucagon itself but on the actual glucagon/insulin ratio because insulin counteracts glucagon action on the liver. This review revisits the role of glucagon in nitrogen metabolism and in disposal of nitrogen wastes. This role involves coordinated actions of glucagon on the liver and kidney. Glucagon influences the transport of fluid and solutes in the distal tubule and collecting duct, and extracellular cAMP influences proximal tubule reabsorption. These combined effects increase the fractional excretion of urea, sodium, potassium and phosphates. Moreover, the simultaneous actions of glucagon and extracellular cAMP are responsible, at least in part, for the protein-induced rise in glomerular filtration rate that contributes to a more efficient excretion of protein-derived end products.
Collapse
Affiliation(s)
- Lise Bankir
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | - Nadine Bouby
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Pharmacology and Physiology, College of Medicine, Georgetown University, Washington, DC, USA
| | - Gilberto Velho
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Gilles Crambert
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France; CNRS ERL 8228, Centre de Recherche des Cordeliers, Laboratoire de Métabolisme et Physiologie Rénale, F-75006 Paris, France
| |
Collapse
|