Batenburg WW, Popp R, Fleming I, Vries RD, Garrelds IM, Saxena PR, Danser AHJ. Bradykinin-induced relaxation of coronary microarteries: S-nitrosothiols as EDHF?
Br J Pharmacol 2004;
142:125-35. [PMID:
15066907 PMCID:
PMC1574930 DOI:
10.1038/sj.bjp.0705747]
[Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
1. To investigate whether S-nitrosothiols, in addition to NO, mediate bradykinin-induced vasorelaxation, porcine coronary microarteries (PCMAs) were mounted in myographs. 2. Following preconstriction, concentration-response curves (CRCs) were constructed to bradykinin, the NO donors S-nitroso-N-penicillamine (SNAP) and diethylamine NONOate (DEA-NONOate) and the S-nitrosothiols L-S-nitrosocysteine (L-SNC) and D-SNC. All agonists relaxed PCMAs. L-SNC was approximately 5-fold more potent than D-SNC. 3. The guanylyl cyclase inhibitor ODQ and the NO scavenger hydroxocobalamin induced a larger shift of the bradykinin CRC than the NO synthase inhibitor L-NAME, although all three inhibitors equally suppressed bradykinin-induced cGMP responses. 4. Complete blockade of bradykinin-induced relaxation was obtained with L-NAME in the presence of the large- and intermediate-conductance Ca(2+)-activated K(+)-channel (BK(Ca), IK(Ca)) blocker charybdotoxin and the small-conductance Ca(2+)-activated K(+)-channel (SK(Ca)) channel blocker apamin, but not in the presence of L-NAME, apamin and the BK(Ca) channel blocker iberiotoxin. 5. Inhibitors of cytochrome P450 epoxygenase, cyclooxygenase, voltage-dependent K(+) channels and ATP-sensitive K(+) channels did not affect bradykinin-induced relaxation. 6. SNAP-, DEA-NONOate- and D-SNC-induced relaxations were mediated entirely by the NO-guanylyl cyclase pathway. L-SNC-induced relaxations were partially blocked by charybdotoxin+apamin, but not by iberiotoxin+apamin, and this blockade was abolished following endothelium removal. ODQ, but not hydroxocobalamin, prevented L-SNC-induced increases in cGMP, and both drugs shifted the L-SNC CRC 5-10-fold to the right. 7. L-SNC hyperpolarized intact and endothelium-denuded coronary arteries. 8. Our results support the concept that bradykinin-induced relaxation is mediated via de novo synthesized NO and a non-NO, endothelium-derived hyperpolarizing factor (EDHF). S-nitrosothiols, via stereoselective activation of endothelial IK(Ca) and SK(Ca) channels, and through direct effects on smooth muscle cells, may function as an EDHF in porcine coronary microarteries.
Collapse