1
|
A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Nat Commun 2020; 11:4200. [PMID: 32826910 PMCID: PMC7442650 DOI: 10.1038/s41467-020-18071-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 01/20/2023] Open
Abstract
Chemoproteomics is a key technology to characterize the mode of action of drugs, as it directly identifies the protein targets of bioactive compounds and aids in the development of optimized small-molecule compounds. Current approaches cannot identify the protein targets of a compound and also detect the interaction surfaces between ligands and protein targets without prior labeling or modification. To address this limitation, we here develop LiP-Quant, a drug target deconvolution pipeline based on limited proteolysis coupled with mass spectrometry that works across species, including in human cells. We use machine learning to discern features indicative of drug binding and integrate them into a single score to identify protein targets of small molecules and approximate their binding sites. We demonstrate drug target identification across compound classes, including drugs targeting kinases, phosphatases and membrane proteins. LiP-Quant estimates the half maximal effective concentration of compound binding sites in whole cell lysates, correctly discriminating drug binding to homologous proteins and identifying the so far unknown targets of a fungicide research compound. Proteomics is often used to map protein-drug interactions but identifying a drug’s protein targets along with the binding interfaces has not been achieved yet. Here, the authors integrate limited proteolysis and machine learning for the proteome-wide mapping of drug protein targets and binding sites.
Collapse
|
2
|
Mast Cell Purification Protocols. Methods Mol Biol 2020. [PMID: 32766964 DOI: 10.1007/978-1-0716-0696-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Studying a tissue-specific mast cell can be of particular benefit given the heterogeneity that is known to exist among mast cells isolated or developed from different sources. Methods for isolating mast cells from a variety of tissues have been in existence for a number of years although, over time, these methodologies have been refined. We have had considerable experience studying mast cells isolated from human lung tissue. It is for this reason that, in this chapter, we provide detailed methods for the isolation and purification of human lung mast cells. However, it should be noted that the methods that are described in this chapter are generally applicable to the isolation of mast cells from different tissues, and this will also be discussed.
Collapse
|
3
|
Proteomic Analysis of Lipid Rafts from RBL-2H3 Mast Cells. Int J Mol Sci 2019; 20:ijms20163904. [PMID: 31405203 PMCID: PMC6720779 DOI: 10.3390/ijms20163904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Lipid rafts are highly ordered membrane microdomains enriched in cholesterol, glycosphingolipids, and certain proteins. They are involved in the regulation of cellular processes in diverse cell types, including mast cells (MCs). The MC lipid raft protein composition was assessed using qualitative mass spectrometric characterization of the proteome from detergent-resistant membrane fractions from RBL-2H3 MCs. Using two different post-isolation treatment methods, a total of 949 lipid raft associated proteins were identified. The majority of these MC lipid raft proteins had already been described in the RaftProtV2 database and are among highest cited/experimentally validated lipid raft proteins. Additionally, more than half of the identified proteins had lipid modifications and/or transmembrane domains. Classification of identified proteins into functional categories showed that the proteins were associated with cellular membrane compartments, and with some biological and molecular functions, such as regulation, localization, binding, catalytic activity, and response to stimulus. Furthermore, functional enrichment analysis demonstrated an intimate involvement of identified proteins with various aspects of MC biological processes, especially those related to regulated secretion, organization/stabilization of macromolecules complexes, and signal transduction. This study represents the first comprehensive proteomic profile of MC lipid rafts and provides additional information to elucidate immunoregulatory functions coordinated by raft proteins in MCs.
Collapse
|
4
|
Bastan R, Eskandari N, J Ardakani H, T Peachell P. Effects of fostriecin on β2-adrenoceptor-driven responses in human mast cells. J Immunotoxicol 2017; 14:60-65. [PMID: 28090813 DOI: 10.1080/1547691x.2016.1259277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
As part of the intracellular processes leading to mast cell and basophil activation, phosphorylation of key substrates is likely to be important. These processes, mediated by phosphatases, are responsible for regulating phosphorylation. The aim of the present study was to determine effects fostriecin - a selective inhibitor of PP2A (protein phosphatase-2) - on β2-adrenoceptor-driven responses in human mast cells. Here, the effects of fostriecin (PP inhibitors) on the inhibition of histamine release from HLMC, on β-adrenoceptor-driven responses in mast cells and on desensitization were investigated. Long-term incubation (24 h) of mast cells with fostriecin (10-6 M) resulted in a significant (p < 0.001) reduction in the maximal response (from 41.2 [± 3.0] to 29.9 [± 4.2] %) to salbutamol following fostriecin treatment. The results showed that fostriecin pretreatment significantly attenuated the inhibitory effects of salbutamol. Overall, the present study suggested that PP2A has an important role in regulating mast cell β2-adrenoceptors.
Collapse
Affiliation(s)
- Reza Bastan
- a Department of Human Vaccines , Razi Serum and Vaccine Research Institute , Karaj , Iran
| | - Nahid Eskandari
- b Department of Immunology , Applied Physiology Research Center, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Hamidrez J Ardakani
- b Department of Immunology , Applied Physiology Research Center, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Peter T Peachell
- c Academic Unit of Respiratory Medicine , Medical School, University of Sheffield , Sheffield , UK
| |
Collapse
|
5
|
Bastan R, Eskandari N, Sabzghabaee AM, Manian M. Serine/Threonine phosphatases: classification, roles and pharmacological regulation. Int J Immunopathol Pharmacol 2015; 27:473-84. [PMID: 25572726 DOI: 10.1177/039463201402700402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phosphatases are important enzymes in a variety of biochemical pathways in different cells which they catalyze opposing reactions of phosphorylation and dephosphorylation, which may modulate the function of crucial signaling proteins in different cells. This is an important mechanism in the regulation of intracellular signal transduction pathways in many cells. Phosphatases play a key role in regulating signal transduction. It is known that phosphatases are specific for cleavage of either serine-threonine or tyrosine phosphate groups. To date, numerous compounds have been identified. This paper reviews the classification, roles and pharmacological of protein serine/threonine phosphates.
Collapse
Affiliation(s)
- R Bastan
- Department of Human Vaccine, Razi-Karaj Institute, Karaj, Iran
| | - N Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A M Sabzghabaee
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Manian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Sim ATR, Ludowyke RI, Verrills NM. Mast cell function: regulation of degranulation by serine/threonine phosphatases. Pharmacol Ther 2006; 112:425-39. [PMID: 16790278 DOI: 10.1016/j.pharmthera.2006.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 04/26/2006] [Indexed: 01/28/2023]
Abstract
Mast cells play both effector and modulatory roles in a range of allergic and immune responses. The principal function of these cells is the release of inflammatory mediators from mast cells by degranulation, which involves a complex interplay of signalling molecules. Understanding the molecular architecture underlying mast cell signalling has attracted renewed interest as the capacity for therapeutic intervention through controlling mast cell degranulation is now accepted as a viable proposition. The dynamic regulation of signalling by protein phosphorylation is a well-established phenomenon and many of the early events involved in mast cell activation are well understood. Less well understood however are the events further downstream of receptor activation that allow movement of granules through the cytoskeletal barrier and docking and fusion of granules with the plasma membrane. Whilst a potential role for the protein phosphatase family of signalling enzymes in mast cell function has been accepted for some time, the evidence has largely been derived from the use of broad specificity pharmacological inhibitors and results often depend upon the experimental conditions, leading to conflicting views. In this review, we present and discuss the pharmacological and recent molecular evidence that protein phosphatases, and in particular the protein phosphatase serine/threonine phosphatase type 2A (PP2A), have major regulatory roles to play and may be potential targets for the design of new therapeutic agents.
Collapse
Affiliation(s)
- Alistair T R Sim
- School of Biomedical Sciences and Hunter Medical Research Institute, Faculty of Health, The University of Newcastle, Callaghan, NSW, Australia.
| | | | | |
Collapse
|
7
|
Boudreau RTM, Hoskin DW. The use of okadaic acid to elucidate the intracellular role(s) of protein phosphatase 2A: Lessons from the mast cell model system. Int Immunopharmacol 2005; 5:1507-18. [PMID: 16023602 DOI: 10.1016/j.intimp.2005.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/05/2005] [Accepted: 05/18/2005] [Indexed: 11/29/2022]
Abstract
In recent years a heightened appreciation has emerged for the role(s) that phosphatases play in regulating signal transduction pathways and other cellular processes. The tumor-promoting agent okadaic acid (OA) has been an invaluable tool in efforts aimed at delineating the contributions of the most abundant mammalian serine/threonine phosphatase, protein phosphatase 2A (PP2A), to intracellular signaling and cell function. PP2A, which is ubiquitous and vital in virtually every cell system studied, continues to be the focus of much research on phosphorylation control machinery. Mast cells represent an excellent in vitro model for the study of protein phosphorylation events because they possess a number of distinct signaling pathways that lead to the production and/or release of discreet mediators in response to different stimuli. The utility of OA in analyzing PP2A function has been demonstrated in mast cells across several species. Results of these studies have contributed to the current recognition that PP2A plays a crucial role in the biology of mast cells and other cell types.
Collapse
Affiliation(s)
- Robert T M Boudreau
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Sir Charles Tupper Medical Building, 5850 University Ave., Halifax, NS B3H 1X5, Canada
| | | |
Collapse
|
8
|
Marone G, Triggiani M, Genovese A, De Paulis A. Role of human mast cells and basophils in bronchial asthma. Adv Immunol 2005; 88:97-160. [PMID: 16227089 DOI: 10.1016/s0065-2776(05)88004-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mast cells and basophils are the only cells expressing the tetrameric (alphabetagamma2) structure of the high affinity receptor for IgE (FcepsilonRI) and synthesizing histamine in humans. Human FcepsilonRI+ cells are conventionally considered primary effector cells of bronchial asthma. There is now compelling evidence that these cells differ immunologically, biochemically, and pharmacologically, which suggests that they might play distinct roles in the appearance and fluctuation of the asthma phenotype. Recent data have revealed the complexity of the involvement of human mast cells and basophils in asthma and have shed light on the control of recruitment and activation of these cells in different lung compartments. Preliminary evidence suggests that these cells might not always be detrimental in asthma but, under some circumstances, they might exert a protective effect by modulating certain aspects of innate and acquired immunity and allergic inflammation.
Collapse
Affiliation(s)
- Gianni Marone
- Division of Clinical Immunology and Allergy, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, I-80131 Naples, Italy
| | | | | | | |
Collapse
|
9
|
Sim ATR, Baldwin ML, Rostas JAP, Holst J, Ludowyke RI. The role of serine/threonine protein phosphatases in exocytosis. Biochem J 2003; 373:641-59. [PMID: 12749763 PMCID: PMC1223558 DOI: 10.1042/bj20030484] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 05/09/2003] [Accepted: 05/16/2003] [Indexed: 10/27/2022]
Abstract
Modulation of exocytosis is integral to the regulation of cellular signalling, and a variety of disorders (such as epilepsy, hypertension, diabetes and asthma) are closely associated with pathological modulation of exocytosis. Emerging evidence points to protein phosphatases as key regulators of exocytosis in many cells and, therefore, as potential targets for the design of novel therapies to treat these diseases. Diverse yet exquisite regulatory mechanisms have evolved to direct the specificity of these enzymes in controlling particular cell processes, and functionally driven studies have demonstrated differential regulation of exocytosis by individual protein phosphatases. This Review discusses the evidence for the regulation of exocytosis by protein phosphatases in three major secretory systems, (1) mast cells, in which the regulation of exocytosis of inflammatory mediators plays a major role in the respiratory response to antigens, (2) insulin-secreting cells in which regulation of exocytosis is essential for metabolic control, and (3) neurons, in which regulation of exocytosis is perhaps the most complex and is essential for effective neurotransmission.
Collapse
Affiliation(s)
- Alistair T R Sim
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, and Clinical Neuroscience Program, Hunter Medical Research Institute, Callaghan, NSW 2308, Australia.
| | | | | | | | | |
Collapse
|
10
|
Marone G, Genovese A, Granata F, Forte V, Detoraki A, de Paulis A, Triggiani M. Pharmacological modulation of human mast cells and basophils. Clin Exp Allergy 2002; 32:1682-9. [PMID: 12653156 DOI: 10.1046/j.1365-2222.2002.01535.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- G Marone
- Division of Clinical Immunology and Allergy, University of Naples Federico II, School of Medicine, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|