1
|
Effects of Genistein on Common Kidney Diseases. Nutrients 2022; 14:nu14183768. [PMID: 36145144 PMCID: PMC9506319 DOI: 10.3390/nu14183768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/16/2022] Open
Abstract
Genistein is a naturally occurring phytoestrogen (soy or soybean products) that is classified as an isoflavone, and its structure is similar to that of endogenous estrogens; therefore, genistein can exert an estrogen-like effect via estrogen receptors. Additionally, genistein is a tyrosine kinase inhibitor, which enables it to block abnormal cell growth and proliferation signals through the inhibition of tyrosine kinase. Genistein is also an angiogenesis inhibitor and an antioxidant. Genistein has effects on kidney cells, some of the kidney’s physiological functions, and a variety of kidney diseases. First, genistein exerts a protective effect on normal cells by reducing the inflammatory response, inhibiting apoptosis, inhibiting oxidative stress, inhibiting remodeling, etc., but after cell injury, the protective effect of genistein decreases or even has the opposite effect. Second, genistein can regulate renin intake to maintain blood pressure balance, regulate calcium uptake to regulate Ca2+ and Pi balances, and reduce vasodilation to promote diuresis. Third, genistein has beneficial effects on a variety of kidney diseases (including acute kidney disease, kidney cancer, and different chronic kidney diseases), such as reducing symptoms, delaying disease progression, and improving prognosis. Therefore, this paper reviews animal and human studies on the protective effects of genistein on the kidney in vivo and in vitro to provide a reference for clinical research in the future.
Collapse
|
2
|
Schweigel-Röntgen M, Kolisek M. SLC41 transporters--molecular identification and functional role. CURRENT TOPICS IN MEMBRANES 2014; 73:383-410. [PMID: 24745990 DOI: 10.1016/b978-0-12-800223-0.00011-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The solute carrier family 41 (SLC41) encompasses three members A1, A2, and A3. Based on their distant homology to the bacterial Mg²⁺ channel MgtE, all have been linked to Mg²⁺ transport. There is only very limited knowledge on the molecular biology and exact functions of SLC41A2 and SLC41A3. SLC41A1 is ubiquitously expressed and data on its functional and molecular properties, regulation, complex-forming ability, and spectrum of binding partners are available. SLC41A1 was recently identified as being the Na⁺/Mg²⁺ exchanger (NME)-a predominant Mg²⁺ efflux system. Mg²⁺-dependent and hormonal regulation of NME activity is now known to depend on the intracellular N terminus of SLC41A1 that is involved in Mg²⁺ sensing and contains phosphorylation sites for protein kinase (PK) A and PKC. Data showing a link between SLC41A1 and human disorders such as Parkinson's disease, nephronophthisis (induced by the null mutation c.698G>T in renal SLC41A1), and preeclampsia make the protein a candidate therapeutic target.
Collapse
Affiliation(s)
- Monika Schweigel-Röntgen
- Institute for Muscle Biology & Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany.
| | - Martin Kolisek
- Institute of Veterinary Physiology, Free University Berlin, Berlin, Germany
| |
Collapse
|
3
|
Socała K, Nieoczym D, Poleszak E, Wlaź P. Influence of the phosphodiesterase type 5 inhibitor, sildenafil, on antidepressant-like activity of magnesium in the forced swim test in mice. Pharmacol Rep 2012; 64:205-11. [PMID: 22580537 DOI: 10.1016/s1734-1140(12)70747-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/01/2011] [Indexed: 11/28/2022]
Abstract
Magnesium, which acts as an antagonist of N-methyl-D-aspartate (NMDA) subtype of glutamate receptors, exerts antidepressant-like activity in animal models of depression. The present study was undertaken to elucidate the influence of sildenafil, a phosphodiesterase type 5 inhibitor, on the anti-immobility action of magnesium in the forced swim test in mice. Swim sessions were conducted by placing mice in glass cylinders filled with water for 6 min and the duration of the behavioral immobility during the last 4 min of the test was evaluated. Locomotor activity was measured with photoresistor actimeters. Serum and brain magnesium levels were assayed spectrophotometrically. Magnesium at a dose of 30 mg/kg, i.p. significantly decreased the immobility time while sildenafil (5, 10 and 20 mg/kg, i.p.) in a dose-dependent manner reduced the antidepressant-like activity of magnesium. The co-administration of magnesium with sildenafil at the highest dose entirely abolished the antidepressant-like effect of magnesium and caused a statistically significant increase in immobility duration as compared to the control group. Combination of magnesium with sildenafil resulted in a potent reduction (80%) of locomotor activity and pharmacokinetic studies showed a significant increase of magnesium concentration in serum (as compared to magnesium treatment alone) without changes within brain tissue in mice treated with magnesium and sildenafil. When given alone, sildenafil caused a significant increase in magnesium levels in both serum and brain. Our results indicate that a simultaneous treatment with magnesium and sildenafil results in hypermagnesemia in laboratory animals. However, the mechanism underlying this effect remains elusive.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | | | | | | |
Collapse
|
4
|
El Hamel C, Aldigier JC, Oblet C, Laffleur B, Bridoux F, Cogné M. Specific impairment of proximal tubular cell proliferation by a monoclonal κ light chain responsible for Fanconi syndrome. Nephrol Dial Transplant 2012; 27:4368-77. [PMID: 23024220 DOI: 10.1093/ndt/gfs261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fanconi syndrome (FS) is a rare renal disorder featuring proximal tubule dysfunction that may occur following tubular reabsorption of a monoclonal light chain (LC), in patients with multiple myeloma. FS may precede the recognition of multiple myeloma by several years. In most cases, crystalline inclusions of monoclonal κ LCs are observed within the lysosomes of proximal tubular cells (PTCs) and probably participate in their functional alteration. METHODS To investigate the mechanism implicated in proximal tubule dysfunction, we compared the effects of κ LC-CHEB obtained from a patient with myeloma-associated FS to those of control κ LC-BON obtained from a patient without evidence of FS, on the viability and proliferation of two different PTC lines. RESULTS Our data suggest that the tubular atrophy in myeloma-associated FS does not result from increased apoptosis of PTCs, but from their impaired capacity to proliferate and renew. Indeed, in vitro incubation of cultured PTCs with physiological amounts of the nephrotoxic κ LC-CHEB was sufficient to cause a depression in DNA synthesis and in cell proliferation. This effect was observed neither with control κ LC-BON nor in the absence of κ LC. CONCLUSIONS The reduced turnover of PTCs may affect tubular repair and regeneration. In addition, the reduced proliferation of myeloma cells producing the same monoclonal κ LC might explain the frequent association of FS with smoldering multiple myeloma.
Collapse
Affiliation(s)
- Chahrazed El Hamel
- Université de Limoges, Laboratoire Contrôle de la réponse immune B et lymphoproliférations, Centre National de la Recherche Scientifique (CNRS), Unité mixte de Recherche (UMR) 7276, CHU Limoges, France.
| | | | | | | | | | | |
Collapse
|
5
|
IKARI A. Molecular Physiological Study of Electrolyte Transporters in Renal Tubular Epithelial Cells. YAKUGAKU ZASSHI 2009; 129:1025-31. [DOI: 10.1248/yakushi.129.1025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Akira IKARI
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
6
|
Suketa Y. [Expression and regulation of renal sodium-cotransporters and -antiporters, and related-transport proteins]. YAKUGAKU ZASSHI 2008; 128:901-17. [PMID: 18520136 DOI: 10.1248/yakushi.128.901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The authors' researches have been focused on pathogenic, physiological and biochemical mechanisms in hypertension and diabetes. Studies on hypertension were performed using salt-sensitive hypertensive Dahl rats as compared with the corresponding normotensive rats. Especially, implication with mobilization of electrolytes such as sodium, potassium, calcium and magnesium in hypertension gave rise to provocative to the author. Furthermore, complications of diabetes with hypertension were themes for the authors' researches. Thus, sodium-dependent glucose transport has been studied on sodium-dependent glucose transporters such as SGLT1 and SGLT2 using cell lines of porcelain renal cell, LLC-PK(1), and murine renal cell, NRK-52E. Relationship between magnesium mobilization and NO in hypertension has been explored using renal epithelial cell-lines and salt-sensitive hypertensive Dahl rats in the latter half of the author's research life.
Collapse
Affiliation(s)
- Yasunobu Suketa
- Department of Pharmacy, Chiba Institute of Science Faculty of Pharmacy, 3 Shiomi-cho, Choshi City, Japan.
| |
Collapse
|
7
|
Ikari A, Nakajima K, Suketa Y, Harada H, Takagi K. Activation of Na+-independent Mg2+ efflux by 20-hydroxyeicosatetraenoic acid in rat renal epithelial cells. ACTA ACUST UNITED AC 2005; 54:415-9. [PMID: 15631697 DOI: 10.2170/jjphysiol.54.415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Renal epithelial cells may have Mg(2+) transport pathways that regulate intracellular free Mg(2+) concentration ([Mg(2+)](i)) and reabsorption into the body. In mag-fura 2 fluorescent measurement, extracellular Mg(2+) removal induced a Na(+)-independent [Mg(2+)](i) decrease. The [Mg(2+)](i) decrease was suppressed by methyl arachidonyl fluorophosphonate, a cytosolic and Ca(2+)-independent phospholipase A(2) (iPLA(2)) inhibitor, and bromoenol lactone, an iPLA(2) inhibitor, but it was not suppressed by a secretory phospholipase A(2) inhibitor. On the contrary, the [Mg(2+)](i) decrease was enhanced by the addition of exogenous arachidonic acid (AA). Next, we examined the effect of AA metabolite inhibitors on the [Mg(2+)](i) decrease. 17-octadecynoic acid inhibited the [Mg(2+)](i) decrease, but indomethacin and nordihydroguaiaretic acid did not. In the 17-octadecynoic acid-treated cells, 20-hydroxy-(5Z,8Z,11Z,14Z)-eicosatetraenoic acid (20-HETE) recovered the [Mg(2+)](i) decrease. Nicardipine inhibited both the basal and the 20-HETE-enhanced [Mg(2+)](i) decrease. These results suggest that 20-HETE is a key mediator in the activation of Na(+)-independent Mg(2+) efflux.
Collapse
Affiliation(s)
- A Ikari
- Department of Environmental Biochemistry and Toxicology, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka 422-8526, Japan.
| | | | | | | | | |
Collapse
|
8
|
Ebel H, Kreis R, Günther T. Regulation of Na+/Mg2+ antiport in rat erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:150-60. [PMID: 15328047 DOI: 10.1016/j.bbamem.2004.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Accepted: 05/10/2004] [Indexed: 01/19/2023]
Abstract
In rat erythrocytes, the regulation of Na+/Mg2+ antiport by protein kinases (PKs), protein phosphatases (PPs), intracellular Mg2+, ATP and Cl- was investigated. In untreated erythrocytes, Na+/Mg2+ antiport was slightly inhibited by the PK inhibitor staurosporine, slightly stimulated by the PP inhibitor calyculin A and strongly stimulated by vanadate. PMA stimulated Na+/Mg2+ antiport. This effect was completely inhibited by staurosporine and partially inhibited by the PKC inhibitors Ro-31-8425 and BIM I. Participation of other PKs such as PKA, the MAPK cascade, PTK, CK I, CK II, CAM II-K, PI 3-K, and MLCK was excluded by use of inhibitors. Na+/Mg2+ antiport in rat erythrocytes can thus be stimulated by PKCalpha. In non-Mg2+ -loaded erythrocytes, ATP depletion reduced Mg2+ efflux and PMA stimulation in NaCl medium. A drastic activation of Na+/Mg2+ antiport was induced by Mg2+ loading which was not further stimulated by PMA. Staurosporine, Ro-31-8425, BIM I and calyculin A did not inhibit Na+/Mg2+ antiport of Mg2+ -loaded cells. Obviously, at high [Mg2+]i Na+/Mg2+ antiport is maximally stimulated. PKCalpha or PPs are not involved in stimulation by intracellular Mg2+. ATP depletion of Mg2+ -loaded erythrocytes reduced Mg2+ efflux and the affinity of Mg2+ binding sites of the Na+/Mg2+ antiporter to Mg2+. In non-Mg2+ -loaded erythrocytes Na+/Mg2+ antiport essentially depends on Cl-. Mg2+ -loaded erythrocytes were less sensitive to the activation of Na+/Mg2+ antiport by [Cl-]i.
Collapse
Affiliation(s)
- H Ebel
- Campus Benjamin Franklin, Institut für Klinische Physiologie, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, D-12200, Germany.
| | | | | |
Collapse
|
9
|
Ikari A, Nakajima K, Suketa Y, Harada H, Takagi K. Arachidonic acid-activated Na+-dependent Mg2+ efflux in rat renal epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1618:1-7. [PMID: 14643927 DOI: 10.1016/j.bbamem.2003.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Arachidonic acid (AA), a metabolite of membrane phospholipids, and its metabolites are increased in Mg2+ deficiency. We examined whether the extracellular Mg2+ concentration affects AA production and whether AA regulates a putative Na+-dependent Mg2+ efflux pathway in renal epithelial NRK-52E cells. We used the cells cultured in 5 mM Mg2+-containing medium for 2 days because they enable us to detect Na+-stimulated Mg2+ efflux that was not observed in normal culture medium. Removal of extracellular Mg2+ increased AA release both in the absence and presence of extracellular Na+. This was inhibited by methyl arachidonyl fluorophosphonate (MAFP, 10 microM), an inhibitor of cytosolic phospholipase A) (cPLA2) and Ca2+-independent phospholipase A2 (iPLA2), and bromoenol lactone (BEL, 10 microM), an inhibitor of iPLA2. However, LY-311727 (10 microM), a secretory phospholipase A2 (sPLA2) inhibitor, had no inhibitory effect. Reverse transcriptase-polymerase chain reaction (RT-PCR) showed that NRK-52E cells express cPLA2 and iPLA2 mRNAs, but not sPLA2. In the mag-fura 2 fluorescence measurements, extracellular Mg2+ removal caused slight decrease in the intracellular free Mg2+ concentration ([Mg2+]i) in the Na+-free condition. The addition of Na+ caused a rapid decrease in [Mg2+]i, indicating the presence of a Na+-dependent Mg2+ efflux pathway. The Na+-dependent [Mg2+]i decrease was suppressed by MAFP and BEL. On the other hand, AA metabolite inhibitors, nordihydroguaiaretic acid (NDGA) (50 microM), indomethacin (10 microM) and 17-octadecynoic acid (ODYA) (10 microM), enhanced the Na+-dependent [Mg2+]i decrease. Furthermore, the addition of exogenous AA (30 microM) enhanced the Na+-dependent [Mg2+]i decrease, which was significantly inhibited by imipramine (0.1 mM), a putative Na+/Mg2+-exchanger inhibitor. These results suggest that extracellular Mg2+ removal elevates AA release mediated mainly by iPLA2 and that AA upregulates the Na+-dependent Mg2+ efflux in NRK-52E cells.
Collapse
Affiliation(s)
- Akira Ikari
- Department of Environmental Biochemistry and Toxicology, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Shizuoka 422-8526, Japan.
| | | | | | | | | |
Collapse
|