1
|
LPS-Activated Microglial Cell-Derived Conditioned Medium Protects HT22 Neuronal Cells against Glutamate-Induced Ferroptosis. Int J Mol Sci 2023; 24:ijms24032910. [PMID: 36769233 PMCID: PMC9917809 DOI: 10.3390/ijms24032910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Neuron-glia interactions are essential for the central nervous system's homeostasis. Microglial cells are one of the key support cells in the brain that respond to disruptions in such homeostasis. Although their participation in neuroinflammation is well known, studies investigating their role in ferroptosis, an iron-dependent form of nonapoptotic cell death, are lacking. To address this issue, we explored whether microglial (BV-2 cells) activation products can intensify, mitigate or block oxidative and/or ferroptotic damage in neuronal cells (HT22 cell line). Cultured BV-2 microglial cells were stimulated with 5-100 ng/mL lipopolysaccharide (LPS) for 24 h and, after confirmation of microglial activation, their culture medium (conditioned media; CM) was transferred to neuronal cells, which was subsequently (6 h later) exposed to glutamate or tert-butyl hydroperoxide (t-BuOOH). As a major finding, HT22 cells pretreated for 6 h with CM exhibited a significant ferroptosis-resistant phenotype characterized by decreased sensitivity to glutamate (15 mM)-induced cytotoxicity. However, no significant protective effects of LPS-activated microglial cell-derived CM were observed in t-BuOOH (30 µM)-challenged cells. In summary, activated microglia-derived molecules may protect neuronal cells against ferroptosis. The phenomenon observed in this work highlights the beneficial relationship between microglia and neurons, highlighting new possibilities for the control of ferroptosis.
Collapse
|
2
|
Synthesis and Characterisation of a Boron-Rich Symmetric Triazine Bearing a Hypoxia-Targeting Nitroimidazole Moiety. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Boron Neutron Capture Therapy (BNCT) is a binary therapy that promises to be suitable in treating many non-curable cancers. To that, the discovery of new boron compounds able to accumulate selectively in the tumour tissue is still required. Hypoxia, a deficiency of oxygen in tumor tissue, is a great challenge in the conventional treatment of cancer, because hypoxic areas are resistant to conventional anticancer treatments. 2-Nitroimidazole derivatives are known to be hypoxia markers due to their enrichment by bioreduction in hypoxic cells. In the present work, 2-nitroimidazole was chosen as the starting point for the synthesis of a new boron-containing compound based on a 1,3,5-triazine skeleton. Two o-carborane moieties were inserted to achieve a high ratio of boron on the molecular weight, exploiting a short PEG spacer to enhance the polarity of the compound and outdistance the active part from the core. The compound showed no toxicity on normal human primary fibroblasts, while it showed noteworthy toxicity in multiple myeloma cells together with a consistent intracellular boron accumulation.
Collapse
|
3
|
Nagayasu M, Imanaka S, Kimura M, Maruyama S, Kobayashi H. Nonhormonal Treatment for Endometriosis Focusing on Redox Imbalance. Gynecol Obstet Invest 2021; 86:1-12. [PMID: 33395684 DOI: 10.1159/000512628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022]
Abstract
The aim of this review is to investigate the oxidant/antioxidant status and its regulatory mechanisms in patients with endometriosis and to summarize the antioxidant therapy as an alternative to hormonal therapy for endometriosis. Each keyword alone or in combination was used to search from PubMed and Embase by applying the filters of the title and the publication years between January 2000 and March 2020. Endometriosis is a chronic inflammatory disease characterized by repeated episodes of hemorrhage. Methemoglobin in repeated hemorrhage produces large amounts of superoxide anion via the autoxidation of hemoglobin. Excessive free-radical production causes redox imbalance, leading to inadequate antioxidant defenses and damage to endometrial cells, but may contribute to endometrial cell growth and survival through activation of various signaling pathways. In addition, to overcome excessive oxidative stress, estradiol participates in the induction of antioxidants such as superoxide dismutase in mitochondria. Several antioxidants that suppress free radicals may be effective in endometriosis-related pain. We searched for 23 compounds and natural substances that could reduce the pain caused by superoxide/reactive oxygen species in basic research and animal models. Next, we built a list of 16 drugs that were suggested to be effective against endometriosis other than hormone therapy in preclinical studies and clinical trials. Of the 23 and 16 drugs, 4 overlapping drugs could be potential candidates for clinically reducing endometriosis-related pain caused by superoxide anion/reactive oxygen species. These drugs include polyphenols (resveratrol and polydatin), dopamine agonists (cabergoline), and statins (simvastatin). However, no randomized controlled trials have evaluated the efficacy of these drugs. In conclusion, this review summarizes the following 2 points: superoxide anion generation by methemoglobin is enhanced in endometriosis, resulting in redox imbalance; and some compounds and natural substances that can suppress free radicals may be effective in endometriosis-related pain. Further randomized clinical trials based on larger series are mandatory to confirm the promising role of antioxidants in the nonhormonal management of endometriosis.
Collapse
Affiliation(s)
- Mika Nagayasu
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan.,Ms.Clinic MayOne, Kashihara, Japan
| | - Mai Kimura
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Sachiyo Maruyama
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan, .,Ms.Clinic MayOne, Kashihara, Japan,
| |
Collapse
|
4
|
Yang SJ, Han AR, Choi HR, Hwang K, Kim EA, Choi SY, Cho SW. N-Adamantyl-4-methylthiazol-2-amine suppresses glutamate-induced autophagic cell death via PI3K/Akt/mTOR signaling pathways in cortical neurons. BMB Rep 2020. [PMID: 32635984 PMCID: PMC7607153 DOI: 10.5483/bmbrep.2020.53.10.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently reported that N-adamantyl-4-methylthiazol-2-amine (KHG26693) attenuates glutamate-induced oxidative stress and inflammation in the brain. In this study, we investigated KHG 26693 as a therapeutic agent against glutamate-induced autophagic death of cortical neurons. Treatment with KHG26693 alone did not affect the viability of cultured cortical neurons but was protective against glutamate-induced cytotoxicity in a concentration-dependent manner. KHG26693 attenuated the glutamate-induced increase in protein levels of LC3, beclin-1, and p62. Whereas glutamate decreased the phosphorylation of PI3K, Akt, and mTOR, these levels were restored by treatment with KHG26693. These results suggest that KHG26693 inhibits glutamate-induced autophagy by regulating PI3K/Akt/mTOR signaling. Finally, KHG26693 treatment also attenuated glutamate-induced increases in reactive oxygen species, glutathione, glutathione peroxidase, and superoxide dismutase levels in cortical neurons, indicating that KHG26693 also protects cortical neurons against glutamate-induced autophagy by regulating the reactive oxygen species scavenging system.
Collapse
Affiliation(s)
- Seung-Ju Yang
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - A Reum Han
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hye-Rim Choi
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - Kyouk Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun-A Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
5
|
Siddique YH, Rahul, Idrisi M, Shahid M. Effect of Cabergoline on Cognitive Impairments in Transgenic Drosophila Model of Parkinson’s Disease. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200514100917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Parkinson’s disease is a common neurodegenerative disorder characterized
by selective loss of dopaminergic neurons in the substantia nigra pars compacta.
Introduction:
The effects of alpha synuclein, parkin mutation and pharmacological agents have
been studied in the Drosophila model.
Methods:
The effect of cabergoline was studied on the cognitive impairments exhibited by the
transgenic Drosophila expressing human alpha-synuclein in the neurons. The PD flies were allowed
to feed on the diet having 0.5, 1 and 1.5 μM of cabergoline.
Results and Discussion:
The exposure of cabergoline not only showed a dose-dependent significant
delay in the cognitive impairments but also prevented the loss of dopaminergic neurons. Molecular
docking studies showed the positive interaction between cabergoline and alpha-synuclein.
Conclusion:
The results suggest a protective effect of cabergoline against the cognitive impairments.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mantasha Idrisi
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd. Shahid
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
6
|
Ekici Eİ, Güney M, Nazıroğlu M. Protective effect of cabergoline on mitochondrial oxidative stress-induced apoptosis is mediated by modulations of TRPM2 in neutrophils of patients with endometriosis. J Bioenerg Biomembr 2020; 52:131-142. [PMID: 32227254 DOI: 10.1007/s10863-020-09830-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/20/2020] [Indexed: 12/30/2022]
Abstract
Calcium ion (Ca2+) signaling in endometriosis (ENDO) is associated with increased neutrophil activation and oxidative stress. A Ca2+ signaling modulator and antioxidant actions of cabergoline (CBG) in some cells were recently reported. TRPM2 cation channel is activated by reactive oxygen species (ROS). Antioxidant action of CGB via inhibition of ROS may modulate the channel. We aimed to investigate the effect of CBG on TRPM2 inhibition in serum and neutrophils of patients with ENDO. The serum and neutrophil samples were grouped into healthy samples (no treatment), ENDO and ENDO + CBG treated groups (n = 10 in each). In some experiments, the neutrophils were also incubated with TRPM2 (ACA) and PARP-1 (PJ34) blockers. The values of intracellular ROS, Ca2+ concentration, mitochondrial membrane depolarization, lipid peroxidation, apoptosis, and caspase - 3, caspase - 9, PARP-1 and TRPM2 expressions were high in the neutrophils of patients with ENDO, although antioxidant levels (reduced glutathione, glutathione peroxidase, vitamin A, and vitamin E) were low in the neutrophils and serum from these patients. However, markers for apoptosis, oxidative stress, and mitochondrial dysfunction were reduced with CBG, ACA and PJ34 treatments, although the antioxidant levels were increased in the serum and neutrophils following treatment with CBG. Taken together, our current results suggest that CBG are useful antagonists against apoptosis and mitochondrial oxidative stress via inhibition of TRPM2 in neutrophils of patients with ENDO.
Collapse
Affiliation(s)
- Elif İlknur Ekici
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet Güney
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey. .,Drug Discovery Unit, BSN Health, Analysis and Innovation Ltd. Inc. Teknokent, Isparta, Turkey. .,Neuroscience Research Center, Suleyman Demirel University, TR-32260, Isparta, Turkey.
| |
Collapse
|
7
|
Bameri B, Shaki F, Ahangar N, Ataee R, Samadi M, Mohammadi H. Evidence for the Involvement of the Dopaminergic System in Seizure and Oxidative Damage Induced by Tramadol. Int J Toxicol 2018; 37:164-170. [PMID: 29554822 DOI: 10.1177/1091581817753607] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tramadol (TR) is a synthetic analgesic drug with central function that can induce seizures even at therapeutic doses. The exact mechanism of TR effect on seizure generation is not clear, but inhibition of the serotonin and nitric oxide pathways and inhibitory effects on GABA receptors are the most common hypotheses about the seizure-inducing mechanism of the TR. This study aimed to evaluate the role of dopaminergic system on the seizure and oxidative damage induced by TR using agonist and antagonist drugs of this system in the Albino mice. Clonic seizure induced by TR was evaluated as seizure threshold. Haloperidol (0.2 mg/kg, IP), a predominantly D2 receptor antagonist, and cabergolin (0.5 mg/kg, IP), a dopamine agonist specific for the D2 receptors, were injected 60 minutes before the seizure induction. The seizure threshold was significantly increased by dopaminergic antagonist, but it was decreased significantly by pretreatment with the selective agonist. Oxidative stress biomarkers (reactive oxygen species, lipid peroxidation, and protein carbonyl content) significantly increased and glutathione content significantly decreased in brain mitochondria by TR compared with the control group, whereas oxidative markers were decreased significantly after pretreatment with haloperidol compared with the TR group. This study revealed that the dopaminergic system is involved in TR-induced seizure, and meanwhile, inhibition of dopamine D2 receptors can increase the TR threshold seizure and decrease the oxidative damage in the brain mitochondria. Conversely, stimulation of dopamine D2 receptors by cabergolin can decrease the TR threshold seizure and glutathione content in the brain mitochondria.
Collapse
Affiliation(s)
- Behnaz Bameri
- 1 Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shaki
- 1 Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,2 Pharmacutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nematollah Ahangar
- 1 Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,2 Pharmacutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ramin Ataee
- 1 Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,2 Pharmacutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahedeh Samadi
- 1 Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamidreza Mohammadi
- 1 Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,2 Pharmacutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Zhang G, Zhao L, Zhu J, Feng Y, Wu X. Anti-inflammatory activities and glycerophospholipids metabolism in KLA-stimulated RAW 264.7 macrophage cells by diarylheptanoids from the rhizomes ofAlpinia officinarum. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Guogai Zhang
- Central Laboratory; Guangdong Pharmaceutical University; Guangzhou Guangdong China
| | - Lifang Zhao
- Qingdao Yellow Sea Pharmaceutical Co. Ltd; Qingdao Shandong China
| | - Jiancheng Zhu
- Central Laboratory; Guangdong Pharmaceutical University; Guangzhou Guangdong China
| | - Yifan Feng
- Central Laboratory; Guangdong Pharmaceutical University; Guangzhou Guangdong China
| | - Xia Wu
- Central Laboratory; Guangdong Pharmaceutical University; Guangzhou Guangdong China
| |
Collapse
|
9
|
JNK1 and JNK3 play a significant role in both neuronal apoptosis and necrosis. Evaluation based on in vitro approach using tert-butylhydroperoxide induced oxidative stress in neuro-2A cells and perturbation through 3-aminobenzamide. Toxicol In Vitro 2017; 41:168-178. [DOI: 10.1016/j.tiv.2017.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/05/2017] [Accepted: 02/19/2017] [Indexed: 12/19/2022]
|
10
|
N-Adamantyl-4-Methylthiazol-2-Amine Attenuates Glutamate-Induced Oxidative Stress and Inflammation in the Brain. Neurotox Res 2017; 32:107-120. [PMID: 28285348 DOI: 10.1007/s12640-017-9717-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 12/15/2022]
Abstract
In this study, we explored the possible mechanisms underlying the neuroprotective and anti-oxidative effects of N-adamantyl-4-methylthiazol-2-amine (KHG26693) against in vivo glutamate-induced toxicity in the rat cerebral cortex. Our results showed that pretreatment with KHG26693 significantly attenuated glutamate-induced elevation of lipid peroxidation, tumor necrosis factor-α, interferon gamma, IFN-γ, interleukin-1β, nitric oxide, reactive oxygen species, NADPH oxidase, caspase-3, calpain activity, and Bax. Furthermore, KHG26693 pretreatment attenuated key antioxidant parameters such as levels of superoxide dismutase, catalase, glutathione, and glutathione reductase. KHG26693 also attenuated the protein levels of inducible nitric oxide synthase, neuronal nitric oxide synthase, nuclear factor erythroid 2-related factor 2, heme oxygenase-1, and glutamate cysteine ligase catalytic subunit caused by glutamate toxicity. Finally, KHG26693 mitigated glutamate-induced changes in mitochondrial ATP level and cytochrome oxidase c. Thus, KHG26693 functions as neuroprotective and anti-oxidative agent against glutamate-induced toxicity through its antioxidant and anti-inflammatory activities in rat brain at least in part.
Collapse
|
11
|
Neuroprotective Effect of 3-(Naphthalen-2-Yl(Propoxy)Methyl)Azetidine Hydrochloride on Brain Ischaemia/Reperfusion Injury. J Neuroimmune Pharmacol 2017; 12:447-461. [PMID: 28247179 DOI: 10.1007/s11481-017-9733-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/21/2017] [Indexed: 01/27/2023]
|
12
|
Kim J, Cho CH, Hahn HG, Choi SY, Cho SW. Neuroprotective effects of N-adamantyl-4-methylthiazol-2-amine against amyloid β-induced oxidative stress in mouse hippocampus. Brain Res Bull 2016; 128:22-28. [PMID: 27816554 DOI: 10.1016/j.brainresbull.2016.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
Abstract
We previously reported that N-adamantyl-4-methylthiazol-2-amine (KHG26693) suppresses amyloid beta (Aβ)-induced neuronal oxidative damage in cortical neurons. Here we investigated the mechanism and antioxidative function of KHG26693 in the hippocampus of Aβ-treated mice. KHG26693 significantly attenuated Aβ-induced TNF-α and IL-1β enhancements. KHG26693 decreased Aβ-mediated malondialdehyde formation, protein oxidation, and reactive oxygen species by decreasing the iNOS level. KHG26693 suppressed Aβ-induced oxidative stress through a mechanism involving glutathione peroxidase, catalase, and GSH attenuation. Aβ-induced MMP-2, cPLA2, and pcPLA2 expressions were almost completely attenuated by KHG26693 treatment, suggesting that Aβ-induced oxidative stress reduction by KHG26693 is, at least partly, caused by the downregulation of MMP-2 and cPLA2 activation. Compared with Aβ treatment, KHG26693 treatment upregulated Nrf2 and HO-1 expressions, suggesting that KHG26693 protects the brain from Aβ-induced oxidative damage, likely by maintaining redox balance through Nrf2/HO-1 pathway regulation. KHG26693 significantly attenuated Aβ-induced oxidative stress in the hippocampus of Aβ-treated mice.
Collapse
Affiliation(s)
- Jiae Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Chang Hun Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hoh-Gyu Hahn
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul, 02456, Republic of Korea
| | - Soo-Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon, 24252, Republic of Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
13
|
Search for Potential Biomarkers by UPLC/Q-TOF–MS Analysis of Dynamic Changes of Glycerophospholipid Constituents of RAW264.7 Cells Treated With NSAID. Chromatographia 2014. [DOI: 10.1007/s10337-014-2822-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Odaka H, Numakawa T, Adachi N, Ooshima Y, Nakajima S, Katanuma Y, Inoue T, Kunugi H. Cabergoline, dopamine D2 receptor agonist, prevents neuronal cell death under oxidative stress via reducing excitotoxicity. PLoS One 2014; 9:e99271. [PMID: 24914776 PMCID: PMC4051758 DOI: 10.1371/journal.pone.0099271] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 05/13/2014] [Indexed: 12/24/2022] Open
Abstract
Several lines of evidence demonstrate that oxidative stress is involved in the pathogenesis of neurodegenerative diseases, including Parkinson's disease. Potent antioxidants may therefore be effective in the treatment of such diseases. Cabergoline, a dopamine D2 receptor agonist and antiparkinson drug, has been studied using several cell types including mesencephalic neurons, and is recognized as a potent radical scavenger. Here, we examined whether cabergoline exerts neuroprotective effects against oxidative stress through a receptor-mediated mechanism in cultured cortical neurons. We found that neuronal death induced by H2O2 exposure was inhibited by pretreatment with cabergoline, while this protective effect was eliminated in the presence of a dopamine D2 receptor inhibitor, spiperone. Activation of ERK1/2 by H2O2 was suppressed by cabergoline, and an ERK signaling pathway inhibitor, U0126, similarly protected cortical neurons from cell death. This suggested the ERK signaling pathway has a critical role in cabergoline-mediated neuroprotection. Furthermore, increased extracellular levels of glutamate induced by H2O2, which might contribute to ERK activation, were reduced by cabergoline, while inhibitors for NMDA receptor or L-type Ca2+ channel demonstrated a survival effect against H2O2. Interestingly, we found that cabergoline increased expression levels of glutamate transporters such as EAAC1. Taken together, these results suggest that cabergoline has a protective effect on cortical neurons via a receptor-mediated mechanism including repression of ERK1/2 activation and extracellular glutamate accumulation induced by H2O2.
Collapse
Affiliation(s)
- Haruki Odaka
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Tadahiro Numakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Core Research for Evolution Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
- * E-mail:
| | - Naoki Adachi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Core Research for Evolution Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Yoshiko Ooshima
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shingo Nakajima
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Core Research for Evolution Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Yusuke Katanuma
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Core Research for Evolution Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| |
Collapse
|
15
|
Ha SC, Han AR, Kim DW, Kim EA, Kim DS, Choi SY, Cho SW. Neuroprotective effects of the antioxidant action of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride against ischemic neuronal damage in the brain. BMB Rep 2014; 46:370-5. [PMID: 23884104 PMCID: PMC4133914 DOI: 10.5483/bmbrep.2013.46.7.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ischemia is characterized by oxidative stress and changes in the antioxidant defense system. Our recent in vitro study showed that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects cortical astrocytes against oxidative stress. In the current study, we examined the effects of 2-cyclopropylimino-3-methyl- 1,3-thiazoline hydrochloride on ischemia-induced neuronal damage in a gerbil ischemia/reperfusion models. Extensive neuronal death in the hippocampal CA1 area was observed 4 days after ischemia/reperfusion. Intraperitoneal injection of 2-cyclopropylimino- 3-methyl-1,3-thiazoline hydrochloride (0.3 mg/kg body weight) significantly prevented neuronal death in the CA1 region of the hippocampus in response to transient forebrain ischemia. 2-Cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride administration reduced ischemia-induced increases in reactive oxygen species levels and malondialdehyde content. It also attenuated the associated reductions in glutathione level and superoxide dismutase, catalase, and glutathione peroxidase activities. Taken together, our results suggest that 2-cyclopropylimino- 3-methyl-1,3-thiazoline hydrochloride protects against ischemia-induced neuronal damage by reducing oxidative stress through its antioxidant actions.
Collapse
Affiliation(s)
- Seung Cheol Ha
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Kim EA, Choi J, Han AR, Choi SY, Hahn HG, Cho SW. Anti-oxidative and anti-inflammatory effects of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride on glutamate-induced neurotoxicity in rat brain. Neurotoxicology 2013; 38:106-14. [DOI: 10.1016/j.neuro.2013.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 01/13/2023]
|
17
|
Hirata Y, Furuta K, Suzuki M, Oh-hashi K, Ueno Y, Kiuchi K. Neuroprotective cyclopentenone prostaglandins up-regulate neurotrophic factors in C6 glioma cells. Brain Res 2012; 1482:91-100. [PMID: 22982731 DOI: 10.1016/j.brainres.2012.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 12/30/2022]
Abstract
In a previous study, we developed newly synthesized arylthio derivatives of cyclopentenone prostaglandins (GIF-0642, GIF-0643, GIF-0644, GIF-0745 and GIF-0747), which are neuroprotective against both manganese toxicity in PC12 cells and glutamate toxicity in HT22 cells. In the present study, we showed that these compounds and their lead compound, NEPP11, are potent inducers of glial cell line-derived neurotrophic factor (GDNF) expression in C6 glioma cells and primary astrocytes. These neuroprotective cyclopentenone prostaglandins also induced the gene expression of nerve growth factor and, to a lesser extent, brain-derived neurotrophic factor. The induction of GDNF mRNA was transcription-dependent, and the overexpression of dominant-negative Nrf2 attenuated the ability of the (arylthio)cyclopentenone prostaglandins to stimulate GDNF gene expression. These results suggest that (arylthio)cyclopentenone prostaglandins increase GDNF gene expression partly via the Keap1/Nrf2 pathway. A growing number of reports demonstrate the importance of increasing the amounts of neurotrophic factors, especially GDNF, in neuropathological states. Although the precise mechanisms by which the GIF compounds inhibit cell death are under investigation, an increase in neurotrophic factors may contribute to the diverse pharmacological properties of (arylthio)cyclopentenone prostaglandins in vivo and will make them potentially valuable in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yoko Hirata
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501 1193, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Zhang T, Sun L, Liu R, Zhang D, Lan X, Huang C, Xin W, Wang C, Zhang D, Du G. A Novel Naturally Occurring Salicylic Acid Analogue Acts as an Anti-Inflammatory Agent by Inhibiting Nuclear Factor-kappaB Activity in RAW264.7 Macrophages. Mol Pharm 2012; 9:671-7. [DOI: 10.1021/mp2003779] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and ‡National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Xicheng District, Beijing 100050, P. R. China
| | - Lan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and ‡National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Xicheng District, Beijing 100050, P. R. China
| | - Rui Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and ‡National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Xicheng District, Beijing 100050, P. R. China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and ‡National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Xicheng District, Beijing 100050, P. R. China
| | - Xi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and ‡National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Xicheng District, Beijing 100050, P. R. China
| | - Chao Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and ‡National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Xicheng District, Beijing 100050, P. R. China
| | - Wenyu Xin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and ‡National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Xicheng District, Beijing 100050, P. R. China
| | - Chao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and ‡National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Xicheng District, Beijing 100050, P. R. China
| | - Dongming Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and ‡National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Xicheng District, Beijing 100050, P. R. China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and ‡National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Xicheng District, Beijing 100050, P. R. China
| |
Collapse
|
19
|
Parrado AC, Canellada A, Gentile T, Rey-Roldán EB. Dopamine agonists upregulate IL-6 and IL-8 production in human keratinocytes. Neuroimmunomodulation 2012; 19:359-66. [PMID: 23051896 DOI: 10.1159/000342140] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/18/2012] [Indexed: 11/19/2022] Open
Abstract
AIM Catecholamines regulate functions of the nervous, neuroendocrine and immune systems. Dopamine may modulate the activity of keratinocytes, which play a role in secreting cytokines and chemokines. The aim of this study was to evaluate the effect of dopaminergic agonists on the production of IL-6 and IL-8 by a non-tumoral human keratinocyte cell line (HaCaT). METHODS Cells were stimulated with dopamine and the D(2) dopamine receptor agonist cabergoline. Levels of IL-6 and IL-8 in culture supernatants were then determined. Cell proliferation was also assessed. Assays were carried out in the presence or absence of the dopaminergic and β-adrenergic receptor antagonists (sulpiride and propranolol, respectively) and ascorbic acid. RESULTS Dopamine stimulated the production of IL-6 and IL-8 in a concentration-dependent manner. The effects observed on the secretion of IL-6 were more potent than those corresponding to IL-8 and were reduced by ascorbic acid. The dopamine-induced IL-6 secretion was partially reduced by sulpiride and abrogated by propranolol. The latter drug was able to block the effect of dopamine on the secretion of IL-8. The cabergoline-induced IL-6 release was reduced by sulpiride. Cell viability was not affected by any of the drugs. CONCLUSIONS Dopaminergic agonists can stimulate keratinocytes to produce IL-6 and IL-8 which are related to inflammatory cutaneous processes. These effects are mediated by dopaminergic and β-adrenergic receptors and by receptor-independent oxidative mechanisms.
Collapse
Affiliation(s)
- Andrea Cecilia Parrado
- Instituto de Estudios de la Inmunidad Humoral R.A. Margni (CONICET-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
20
|
Tripathi S, Chan MH, Chen C. An expedient synthesis of honokiol and its analogues as potential neuropreventive agents. Bioorg Med Chem Lett 2011; 22:216-21. [PMID: 22142539 DOI: 10.1016/j.bmcl.2011.11.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/21/2011] [Accepted: 11/09/2011] [Indexed: 01/23/2023]
Abstract
An efficient synthesis of honokiol with Suzuki-Miyaura cross coupling obtained an overall yield of 45%. The proposed approach successfully synthesized several structurally similar alkyl, alkenyl and alkynyl analogues, seven of which showed potential neuropreventive activity against MPP(+)-induced and CHP/TBHP oxidative stress induced neuroblastoma cell death.
Collapse
Affiliation(s)
- Subhankar Tripathi
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan
| | | | | |
Collapse
|
21
|
Kim H, Son HJ, Ha SC, Kim EA, Kim TU, Choi SY, Ahn JY, Cho SW. Neuroprotective effects of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride against oxidative stress. Cell Mol Neurobiol 2011; 31:979-84. [PMID: 21618048 PMCID: PMC11498653 DOI: 10.1007/s10571-011-9713-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
Oxidative stress, glutamate excitotoxicity, and inflammation are the important pathological mechanisms in neurodegenerative diseases. Recently, we reported that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects rat glial cells against glutamate-induced excitotoxicity. In this study, we report the effects of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride on primary cultured cortical astrocytes after exposure to hydrogen peroxide (H₂O₂). Pretreatment of cells with 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride prior to H₂O₂ exposure attenuated the H₂O₂-induced reductions in cell survival and superoxide dismutase, catalase, glutathione, and glutathione peroxidase activities. It also reduced H₂O₂-induced increases in reactive oxygen species levels, malondialdehyde content, and production of nitric oxide. These effects were all concentration-dependent. Our results suggest that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects against oxidative stress.
Collapse
Affiliation(s)
- Hanwook Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 138-736 Korea
| | - Hyo Jeong Son
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 138-736 Korea
| | - Seung Cheol Ha
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 138-736 Korea
| | - Eun-A Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 138-736 Korea
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, 222-701 Korea
| | - Tae Ue Kim
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, 222-701 Korea
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, and Medical & Bio-material Research Center, Hallym University, Chunchon, 200-702 Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746 Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 138-736 Korea
| |
Collapse
|
22
|
Anti-inflammatory activity of methyl salicylate glycosides isolated from Gaultheria yunnanensis (Franch.) Rehder. Molecules 2011; 16:3875-84. [PMID: 21555977 PMCID: PMC6263312 DOI: 10.3390/molecules16053875] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/28/2011] [Accepted: 05/06/2011] [Indexed: 12/16/2022] Open
Abstract
Gaultheria yunnanensis (Franch.) Rehder is a kind of traditional Chinese herbal medicine used for the treatments of rheumatoid arthritis, swelling and pain. Two methyl salicylate glycosides, namely methyl benzoate-2-O-β-D-xylopyranosyl(1-6)-O-β-D-gluco-pyranoside (J12122) and methyl benzoate-2-O-β-D-xylopyranosyl(1-2)[O-β-D-xylopyranosyl(1-6)]-O-β-D-glucopyranoside (J12123), are natural salicylic derivatives isolated from Gaultheria yunnanensis. In this study, we investigated the anti-inflammatory activity of J12122 and J12123 on LPS-induced RAW264.7 macrophage cells by measuring the production of pro-inflammatory cytokines, accumulation of nitric oxide (NO), and level of reactive oxygen species (ROS). The results showed that both methyl salicylate glycosides dose-dependently inhibited the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, respectively. Consistent with these observations, J12122 and J12123 significantly suppressed the accumulation of NO, with an inhibitory rate of 56.20% and 51.72% at 3.0 μg/mL concentration, respectively. Furthermore, the two methyl salicylate glycosides reduced the level of ROS induced by LPS. These results showed that the isolated compounds possess anti-inflammatory properties through inhibition the production pro-inflammatory cytokines, NO, and ROS.
Collapse
|
23
|
Härtl R, Gleinich A, Zimmermann M. Dramatic increase in readthrough acetylcholinesterase in a cellular model of oxidative stress. J Neurochem 2011; 116:1088-96. [DOI: 10.1111/j.1471-4159.2010.07164.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Anti-inflammatory and vascularprotective properties of 8-prenylapigenin. Eur J Pharmacol 2009; 620:120-30. [DOI: 10.1016/j.ejphar.2009.08.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/16/2009] [Accepted: 08/04/2009] [Indexed: 02/02/2023]
|
25
|
Fallarini S, Miglio G, Paoletti T, Minassi A, Amoruso A, Bardelli C, Brunelleschi S, Lombardi G. Clovamide and rosmarinic acid induce neuroprotective effects in in vitro models of neuronal death. Br J Pharmacol 2009; 157:1072-84. [PMID: 19466982 PMCID: PMC2737666 DOI: 10.1111/j.1476-5381.2009.00213.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/16/2009] [Accepted: 01/19/2009] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Phenolic compounds exert cytoprotective effects; our purpose was to investigate whether the isosteric polyphenolic compounds clovamide and rosmarinic acid are neuroprotective. EXPERIMENTAL APPROACH Three in vitro models of neuronal death were selected: (i) differentiated SH-SY5Y human neuroblastoma cells exposed to tert-butylhydroperoxide (t-BOOH), for oxidative stress; (ii) differentiated SK-N-BE(2) human neuroblastoma cells treated with L-glutamate, for excitotoxicity; and (iii) differentiated SH-SY5Y human neuroblastoma cells exposed to oxygen-glucose deprivation/reoxygenation, for ischaemia-reperfusion. Cell death was evaluated by lactate dehydrogenase measurements in the cell media, while the mechanisms underlying the effects by measuring: (i) t-BOOH-induced glutathione depletion and increase in lipoperoxidation; and (ii) L-glutamate-induced intracellular Ca(2+) overload (fura-2 method) and inducible gene expression (c-fos, c-jun), by reverse transcriptase-PCR. The ability of compounds to modulate nuclear factor-kappaB and peroxisome proliferator-activated receptor-gamma activation was evaluated by Western blot in SH-SY5Y cells not exposed to harmful stimuli. KEY RESULTS Both clovamide and rosmarinic acid (10-100 micromol x L(-1)) significantly protected neurons against insults with similar potencies and efficacies. The EC(50) values were in the low micromolar range (0.9-3.7 micromol x L(-1)), while the maximal effects ranged from 40% to -60% protection from cell death over untreated control at 100 micromol x L(-1). These effects are mediated by the prevention of oxidative stress, intracellular Ca(2+) overload and c-fos expression. In addition, rosmarinic acids inhibited nuclear factor-kappaB translocation and increased peroxisome proliferator-activated receptor-gamma expression in SH-SY5Y cells not exposed to harmful stimuli. CONCLUSION AND IMPLICATIONS Clovamide and rosmarinic acid are neuroprotective compounds of potential use at the nutritional/pharmaceutical interface.
Collapse
Affiliation(s)
- S Fallarini
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche, e Farmacologiche, University of Piemonte Orientale Amedeo Avogadro, 28100 Novara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sharif NA, McLaughlin MA, Kelly CR, Katoli P, Drace C, Husain S, Crosson C, Toris C, Zhan GL, Camras C. Cabergoline: Pharmacology, ocular hypotensive studies in multiple species, and aqueous humor dynamic modulation in the Cynomolgus monkey eyes. Exp Eye Res 2008; 88:386-97. [PMID: 18992242 DOI: 10.1016/j.exer.2008.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 09/19/2008] [Accepted: 10/01/2008] [Indexed: 12/11/2022]
Abstract
The aims of the current studies were to determine the in vitro and in vivo ocular and non-ocular pharmacological properties of cabergoline using well documented receptor binding, cell-based functional assays, and in vivo models. Cabergoline bound to native and/or human cloned serotonin-2A/B/C (5HT(2A/B/C)), 5HT(1A), 5HT(7), alpha(2B), and dopamine-2/3 (D(2/3)) receptor subtypes with nanomolar affinity. Cabergoline was an agonist at human recombinant 5HT(2), 5HT(1A) and D(2/3) receptors but an antagonist at 5HT(7) and alpha(2) receptors. In primary human ciliary muscle (h-CM) and trabecular meshwork (h-TM) cells, cabergoline stimulated phosphoinositide (PI) hydrolysis (EC(50)=19+/-7 nM in TM; 76 nM in h-CM) and intracellular Ca(2+) ([Ca(2+)](i)) mobilization (EC(50)=570+/-83 nM in h-TM; EC(50)=900+/-320 nM in h-CM). Cabergoline-induced [Ca(2+)](i) mobilization in h-TM and h-CM cells was potently antagonized by a 5HT(2A)-selective antagonist (M-100907, K(i)=0.29-0.53 nM). Cabergoline also stimulated [Ca(2+)](i) mobilization more potently via human cloned 5HT(2A) (EC(50)=63.4+/-10.3 nM) than via 5HT(2B) and 5HT(2C) receptors. In h-CM cells, cabergoline (1 microM) stimulated production of pro-matrix metalloproteinases-1 and -3 and synergized with forskolin to enhance cAMP production. Cabergoline (1 microM) perfused through anterior segments of porcine eyes caused a significant (27%) increase in outflow facility. Topically administered cabergoline (300-500 microg) in Dutch-belted rabbit eyes yielded 4.5 microMM and 1.97 microM levels in the aqueous humor 30 min and 90 min post-dose but failed to modulate intraocular pressure (IOP). However, cabergoline was an efficacious IOP-lowering agent in normotensive Brown Norway rats (25% IOP decrease with 6 microg at 4h post-dose) and in conscious ocular hypertensive cynomolgus monkeys (peak reduction of 30.6+/-3.6% with 50 microg at 3h post-dose; 30.4+/-4.5% with 500 microg at 7h post-dose). In ketamine-sedated monkeys, IOP was significantly lowered at 2.5h after the second topical ocular dose (300 microg) of cabergoline by 23% (p<0.02) and 35% (p<0.004) in normotensive and ocular hypertensive eyes, respectively. In normotensive eyes, cabergoline increased uveoscleral outflow (0.69+/-0.7 microL/min-1.61+/-0.97 microL/min, n=13; p<0.01). However, only seven of the eleven ocular hypertensive monkeys showed significantly increased uveoscleral outflow. These data indicate that cabergoline's most prominent agonist activity involves activation of 5HT(2), 5HT(1A), and D(2/3) receptors. Since 5HT(1A) agonists, 5HT(7) antagonists, and alpha(2) antagonists do not lower IOP in conscious ocular hypertensive monkeys, the 5HT(2) and dopaminergic agonist activities of cabergoline probably mediated the IOP reduction observed with this compound in this species.
Collapse
Affiliation(s)
- Najam A Sharif
- Discovery Ophthalmology Research, Alcon Research Ltd, Fort worth, TX, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lombardi G, Miglio G, Varsaldi F, Minassi A, Appendino G. Oxyhomologation of the amide bond potentiates neuroprotective effects of the endolipid N-palmitoylethanolamine. J Pharmacol Exp Ther 2007; 320:599-606. [PMID: 17068202 DOI: 10.1124/jpet.106.112987] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The endolipid N-palmitoylethanolamine (PEA) shows a pleiotropic pattern of bioactivities, whose mechanistic characterization is still unclear and whose pharmacological potential is substantially limited by rapid metabolization by the amido hydrolyzing enzymes fatty acid amide hydrolases and N-acylethanolamine-hydrolyzing acid amidase. To overcome this problem, we have synthesized a new series of PEA homologs and characterized their activity on two in vitro models of neurodegeneration (oxidative stress, excitotoxicity). PEA partially prevented tert-butylhydroperoxide (t-BOOH; 100 microM; 3 h)-induced cell death (maximal effect, 26.3 +/- 7.5% in comparison with t-BOOH-untreated cells at 30 microM), whereas it was ineffective against the L-glutamate (1 mM; 24 h)-induced excitotoxicity at all concentrations tested (0.01-30 microM). Oxyhomologation of the amide bond, although leading to an increased enzymatic stability, also potentiated neuroprotective activity, especially for N-palmitoyl-N-(2-hydroxyethyl)hydroxylamine (EC(50) = 2.1 microM). These effects were not mediated by cannabinoid/vanilloid-dependent mechanisms but rather linked to a decreased t-BOOH-induced lipoperoxidation and reactive oxygen species formation and L-glutamate-induced intracellular Ca(2+) overload. The presence of the hydroxamic group and the absence of either redox active or radical scavenger moieties suggest that the improved neuroprotection is the result of increased metal-chelating properties that boost the antioxidant activity of these compounds.
Collapse
Affiliation(s)
- Grazia Lombardi
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche, e Farmacologiche, University of Piemonte Orientale Amedeo Avogadro, Via Bovio, 6, 28100 Novara, Italy.
| | | | | | | | | |
Collapse
|
28
|
Micale V, Incognito T, Ignoto A, Rampello L, Spartà M, Drago F. Dopaminergic drugs may counteract behavioral and biochemical changes induced by models of brain injury. Eur Neuropsychopharmacol 2006; 16:195-203. [PMID: 16242919 DOI: 10.1016/j.euroneuro.2005.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 08/19/2005] [Indexed: 11/22/2022]
Abstract
The dopaminergic drugs, bromocriptine, cabergoline, dihydroergocryptine, pergolide and ropinirole were injected subcutaneously (s.c.) at the dose of 0.1, 0.5 and 1 mg/kg/day for 7 days into male rats of the Sprague-Dawley strain. The drug pre-treatment reverted amnesia induced in rats by hypobaric hypopxia and tested in active and passive avoidance tasks. A restoration of memory retention, as assessed in a step-through passive avoidance task, was found in animals with a 2-month brain occlusive ischemia and exposed to dopaminergic drugs for 7 days. For behavioral effects in both active and passive avoidance tests in both experimental models, the rank of relative potency was ropirinole>bromocriptine=cabergoline>pergolide>dihydroergocryptine. Spontaneous ambulation of animals with brain occlusive ischemia was increased by the higher doses of drugs. All dopaminergic drugs reduced kainate mortality rate. The rank of relative potency for this effect was ropirinole=bromocriptine=cabergoline>pergolide=dihydroergocryptine. However, no change was found in other seizure parameters (latency to first convulsion and total number of convulsions) after drug treatment. A biochemical analysis of glutathione redox index (glutathione reduced/glutathione oxidized ratio) in discrete brain areas revealed that exposure to dopaminergic drugs increased this parameter in frontal cortex, striatum and hippocampus of animals subject to hypobaric hypoxia and brain occlusive ischemia. For this effect, the relative potency rank was ropirinole>bromocriptine=cabergoline>>pergolide=dihydroergocryptine. These behavioral and biochemical findings suggest that dopaminergic drugs may counteract either behavioral or biochemical changes induced by experimental models of brain injury. This activity was found after protective activity (as found in animals pre-treated with these drugs and exposed to hypobaric hypoxia) or reversal of brain injury (as found in animals treated after 2-month occlusive brain ischemia). Their neuroprotective activity probably involves the reduction/oxidation balance of the glutathione system in the brain.
Collapse
Affiliation(s)
- V Micale
- Department of Experimental and Clinical Pharmacology, Faculty of Medicine, University of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Buhmann C, Arlt S, Kontush A, Möller-Bertram T, Sperber S, Oechsner M, Stuerenburg HJ, Beisiegel U. Plasma and CSF markers of oxidative stress are increased in Parkinson's disease and influenced by antiparkinsonian medication. Neurobiol Dis 2004; 15:160-70. [PMID: 14751781 DOI: 10.1016/j.nbd.2003.10.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We determined systemic oxidative stress in Parkinson's disease (PD) patients, patients with other neurological diseases (OND) and healthy controls by measurement of in vitro lipoprotein oxidation and levels of hydro- and lipophilic antioxidants in plasma and cerebrospinal fluid (CSF). Additionally, we investigated the influence of levodopa (LD) and dopamine agonist therapy (DA) on the oxidative status in PD patients. We found increased oxidative stress, seen as higher levels of lipoprotein oxidation in plasma and CSF, decrease of plasma levels of protein sulfhydryl (SH) groups and lower CSF levels of alpha-tocopherol in PD patients compared to OND patients and controls. Levodopa treatment did not significantly change the plasma lipoprotein oxidation but LD monotherapy tended to result in an increase of autooxidation and in a decrease of plasma antioxidants with significance for ubiquinol-10. DA monotherapy was significantly associated with higher alpha-tocopherol levels. Patients with DA monotherapy or co-medication with DA showed a trend to lower lipoprotein oxidation. These data support the concept of oxidative stress as a factor in the pathogenesis of PD and might be an indicator of a potential prooxidative role of LD and a possible antioxidative effect of DA in PD treatment.
Collapse
Affiliation(s)
- Carsten Buhmann
- Neurological Department, University Clinic Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Miglio G, Varsaldi F, Francioli E, Battaglia A, Canonico PL, Lombardi G. Cabergoline protects SH-SY5Y neuronal cells in an in vitro model of ischemia. Eur J Pharmacol 2004; 489:157-65. [PMID: 15087238 DOI: 10.1016/j.ejphar.2004.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 02/26/2004] [Accepted: 03/02/2004] [Indexed: 11/21/2022]
Abstract
Dopamine receptor agonists are protective in different models of neurodegeneration by both receptor-dependent and -independent mechanisms. We used SH-SY5Y cells, differentiated into neuron-like type, to evaluate if cabergoline, a dopamine D2 receptor agonist endowed with anti-oxidant activity, protects the cells against ischemia (oxygen-glucose deprivation model). Cabergoline protected the cells from ischemia-induced cell death in a concentration-dependent manner (EC(50)=1.2 microM), as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release, and fluorescein diacetate-propidium iodide staining. This effect, observed even when the drug was added after oxygen-glucose deprivation, was not mediated by either dopamine D2 receptor activation or anti-apoptotic Bcl-2 protein over-expression (Western blotting analysis), but was linked to a reduction in cellular free radical loading (2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining) and membrane lipid peroxidation (thiobarbituric acid-reacting test). In conclusion, cabergoline protects in vitro neurons against ischemia-induced cell death, suggesting its possible use in the therapy of other neurodegenerative diseases in addition to Parkinson's disease.
Collapse
Affiliation(s)
- Gianluca Miglio
- DISCAFF Department, University of Piemonte Orientale Amedeo Avogadro, Via Bovio 6, 28100 Novara, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Cabergoline is a synthetic ergoline dopamine agonist with a high affinity for dopamine D2 receptors and a long elimination half-life. This agent provides continuous dopaminergic stimulation with once-daily administration. Adjuvant oral cabergoline is usually well tolerated and effective in controlling symptoms in patients with advanced Parkinson's disease experiencing response fluctuations to long-term levodopa therapy. In patients with early Parkinson's disease, cabergoline (with or without levodopa) is well tolerated and effective in controlling disease symptoms, and may reduce the risk of developing drug-induced motor complications. Data from two pharmacoeconomic analyses suggest that cabergoline may be a cost-effective treatment option versus levodopa in patients with early Parkinson's disease, and highlight the need for further evaluation of the drug in this indication.
Collapse
|