1
|
Badaut J, Ghersi-Egea JF, Thorne RG, Konsman JP. Blood-brain borders: a proposal to address limitations of historical blood-brain barrier terminology. Fluids Barriers CNS 2024; 21:3. [PMID: 38183042 PMCID: PMC10770911 DOI: 10.1186/s12987-023-00478-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/11/2023] [Indexed: 01/07/2024] Open
Abstract
Many neuroscientists use the term Blood-Brain Barrier (BBB) to emphasize restrictiveness, often equating or reducing the notion of BBB properties to tight junction molecules physically sealing cerebral endothelial cells, rather than pointing out the complexity of this biological interface with respect to its selectivity and variety of exchange between the general blood circulation and the central nervous tissue. Several authors in the field find it unfortunate that the exquisitely dynamic interfaces between blood and brain continue to be viewed primarily as obstructive barriers to transport. Although the term blood-brain interface is an excellent descriptor that does not convey the idea of a barrier, it is important and preferable for the spreading of an idea beyond specialist communities to try to appeal to well-chosen metaphors. Recent evidence reviewed here indicates that blood-brain interfaces are more than selective semi-permeable membranes in that they display many dynamic processes and complex mechanisms for communication. They are thus more like 'geopolitical borders'. Furthermore, some authors working on blood-brain interface-relevant issues have started to use the word border, for example in border-associated macrophages. Therefore, we suggest adopting the term Blood-Brain Border to better communicate the flexibility of and movement across blood-brain interfaces.
Collapse
Affiliation(s)
- Jerome Badaut
- Brain Molecular Imaging Lab, UMR 5536, CNRS, RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
- Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Jean-François Ghersi-Egea
- FLUID Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR 5292, Lyon-1 University, Bron, France.
| | - Robert G Thorne
- Denali Therapeutics, Inc, 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
- Department of Pharmaceutics, University of Minnesota, 9-177 Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, MN, 55455, USA.
| | - Jan Pieter Konsman
- UMR 5164, CNRS, ImmunoConcEpT, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
| |
Collapse
|
2
|
He Z, Cui L, Patterson TA, Paule MG. Defining the phosphodiesterase superfamily members in rat brain microvessels. ACS Chem Neurosci 2011; 2:600-7. [PMID: 22860158 DOI: 10.1021/cn2000487] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/27/2011] [Indexed: 11/30/2022] Open
Abstract
Eleven phosphodiesterase (PDE) families are known, each having several different isoforms and splice variants. Recent evidence indicates that expression of individual PDE family members is tissue-specific. Little is known concerning detailed PDE component expression in brain microvessels where the blood-brain-barrier and the local cerebral blood flow are thought to be regulated by PDEs. The present study attempted to identify PDE family members that are expressed in brain microvessels. Adult male F344 rats were sacrificed and blocks of the cerebral cortex and infratentorial areas were dissected. Microvessels were isolated using a filtration method, and total RNA was extracted. RNA quality and quantity were determined using an Agilent bioanalyzer. The isolated cortical and infratentorial microvessel total RNA amounts were 2720 ± 750 ng (n = 2) and 250 ± 40 ng (n = 2), respectively. Microarrays with 22 000 transcripts demonstrated that there were 16 PDE transcripts in the PDE superfamily, exhibiting quantifiable density in the microvessels. An additional immunofluorescent study verified that PDE4D (cAMP-specific) and PDE5A (cGMP-specific) were colocalized with RECA-1 (an endothelial marker) in the cerebral cortex using both F344 rats and Sprague-Dawley rats (n = 3-6/strain). In addition, PDE4D and PDE5A were found to be colocalized with alpha-smooth muscle actin which delineates cerebral arteries and arterioles as well as pericytes. In conclusion, a filtration method followed by microarray analyses allows PDE components to be identified in brain microvessels, and confirmed that PDE4D and PDE5A are the primary forms expressed in rat brain microvessels.
Collapse
Affiliation(s)
- Zhen He
- Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Li Cui
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Tucker A. Patterson
- Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Merle G. Paule
- Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079, United States
| |
Collapse
|
3
|
Abstract
Chemical delivery systems (CDSs) based on the redox conversion of a lipophilic dihydropyridine to an ionic, lipid-insoluble pyridinium salt have been developed to improve the access of therapeutic agents to the central nervous system. A dihydropyridinium-type CDS or a redox analog of the drug is sufficiently lipophilic to enter the brain by passive transport, then undergoes an enzymatic oxidation to an ionic pyridinium compound, which promotes retention in the CNS. At the same time, peripheral elimination of the entity is accelerated due to facile conversion of the CDS in the body. This review discusses chemical, physicochemical, biochemical, and biological aspects in relation to the principles and practical implementation of the redox brain-targeting approach to various classes of drugs. Representative examples to the brain-enhanced delivery of neurotransmitters, steroids, anticonvulsants, antibiotics, antiviral, anticancer and antidementia agents, and neuropeptides and their analogs are presented in detail. In vivo and in vitro studies and preliminary clinical data of several novel derivatives have been promising, which could lead to a practical use of the redox CDSs after proper pharmaceutical development. The investigations accentuate the need for considering physicochemical, metabolic, and pharmacokinetic properties in designing of carrier systems that are able to target drugs into the central nervous system.
Collapse
Affiliation(s)
- L Prokai
- Center for Drug Discovery, College of Pharmacy, University of Florida, J. Hillis Miller Health Center, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
4
|
Mathison S, Nagilla R, Kompella UB. Nasal route for direct delivery of solutes to the central nervous system: fact or fiction? J Drug Target 1998; 5:415-41. [PMID: 9783675 DOI: 10.3109/10611869808997870] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
During this century, several investigators reported that certain viruses, metals, drugs, and other solutes could bypass systemic circulation and enter the brain and/or cerebrospinal fluid directly following nasal administration. Although evidence clearly suggests that the olfactory epithelium and its olfactory cells play a major role, little is known about the mechanisms of direct transport of solutes into the brain. An overview of what is known about these mechanisms may aid in further research in this field, including studies of direct drug delivery to the central nervous system. This review, in addition to summarizing the literature to date, clearly describes the intricate association of the anatomical features involved in direct entry of solutes into the brain following nasal administration. To aid in the understanding of the possible routes a solute can take after nasal administration, the anatomy of the olfactory epithelium and surrounding tissues is described, and a detailed scheme delineating the emerging pathways is presented. Techniques used in delineating these pathways and studies supporting a particular pathway are discussed in greater detail. Finally, some factors influencing the direct transport of solutes to the cerebrospinal fluid and brain are summarized.
Collapse
Affiliation(s)
- S Mathison
- Department of Chemistry, Auburn University, AL 36849-5503, USA
| | | | | |
Collapse
|
5
|
Kurihara A, Suzuki H, Sawada Y, Sugiyama Y, Iga T, Hanano M. Transport of digoxin into brain microvessels and choroid plexuses isolated from guinea pig. J Pharm Sci 1988; 77:347-52. [PMID: 3379595 DOI: 10.1002/jps.2600770414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To characterize the efflux system of digoxin, a cardiac glycoside, from the brain to the blood through the blood-brain barrier and blood-cerebrospinal fluid (CSF) barrier, the accumulation of digoxin by the brain microvessel or the choroid plexus isolated from guinea pig brain was investigated. The accumulation of digoxin by the brain microvessel has a saturable component (Km = 0.163 microM, Vmax = 0.142 nmol/mL of tissue/min), with a nonsaturable component [Kd = 0.203 cell-to-medium (C:M) ratio/min] that was decreased by hypothermia (Q10 = 2.9), sulfhydryl reagent, and quinidine, but not by a metabolic inhibitor [2,4-dinitrophenol (DNP)]. It was concentration- and Na+-dependent. The accumulation of digoxin by the choroid plexus was also saturable (Km = 1.9 microM, Vmax = 3.8 nmol/mL of tissue/min), and was decreased by hypothermia (Q10 = 4.4), sulfhydryl reagents, ouabain, and quinidine, but not by metabolic inhibitors (DNP, KCN); it was also concentration- and Na+-dependent. The binding of digoxin to the homogenate of choroid plexus was one-tenth of digoxin accumulation by the intact choroid plexus, suggesting that digoxin is transported into the cells and bound to the cytosol fraction. The value of (Vmax/Km + Kd) multiplied by the total tissue weight of the microvessel per guinea pig is approximately 10-fold that of Vmax/Km multiplied by the tissue weight of the choroid plexus, although (Vmax/Km + Kd) per milliliter of the microvessel is half the Vmax/Km value of the choroid plexus. These findings suggest that digoxin can be excreted from both the brain and the cerebrospinal fluid to blood by a carrier-mediated diffusion system which is inhibited by quinidine, and that a main route of digoxin efflux from the brain to the blood is not through the blood-CSF barrier, but through the blood-brain barrier.
Collapse
Affiliation(s)
- A Kurihara
- Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Wu VY, Wilson B, Klepser H, Cohen MP. Analysis of glycosaminoglycans in bovine retinal microvessel basement membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 938:107-13. [PMID: 3337812 DOI: 10.1016/0005-2736(88)90127-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glycosaminoglycans (GAG) were isolated from bovine retinal microvessel basement membrane (RMV-BM) and quantitatively analyzed using a recently described competitive binding assay that is specific for and sensitive to nanogram amounts of heparan and chondroitin sulfates. Treatment of osmotically lysed retinal microvessels with the ionic detergent deoxycholate (DOC), required for liberation of the extracellular matrix for plasma membrane lipoproteins and purification of the insoluble matrix, solubilized less than 5% of the GAG in the water-insoluble material. Total GAG content in the DOC-insoluble basement membranes was approx. 0.52 micrograms/mg dry weight; about 70% of the measurable GAG was resistant to both chondroitinase ABC and chondroitinase AC digestion and was sensitive to nitrous acid treatment, indicating its heparan sulfate nature. Cellulose acetate electrophoresis revealed two bands, one of which had an electrophoretic mobility similar to heparan sulfate standard and was sensitive to nitrous acid; the other migrated in the same position as chondroitin sulfate standard and was sensitive to chondroitinase ABC and chondroitinase AC digestion. These results provide evidence that RMV-BM contains chondroitin sulfate(s) as well as heparan sulfate, and offer the first quantitative analysis of GAG in this extracellular matrix.
Collapse
Affiliation(s)
- V Y Wu
- University of Medicine and Dentistry of New Jersey
| | | | | | | |
Collapse
|
7
|
|
8
|
Greengard O, Brass CA. Developmental changes of cerebral phenylalanine uptake from severely elevated blood levels. Neurochem Res 1984; 9:837-48. [PMID: 6541764 DOI: 10.1007/bf00965670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Brain phenylalanine concentrations at plasma levels raised to that in phenylketonuric subjects were studied in rats from fetal through postnatal life. Suppression of the hepatic phenylalanine hydroxylase with alpha methylphenylalanine, and injections of age-adjusted doses of phenylalanine on the next day, assured the persistence of the same elevation of plasma levels for at least four hours prior to assay. The net phenylalanine uptake determined under these conditions underwent several-fold decreases between the fourth day and the end of the suckling period, and by about the age of 30 days it was as low as in adulthood. The development of transport properties studied here could contribute to the change with age in the vulnerability of the brain to the same degree of hyperphenylalaninemia and, since the cerebral phenylalanine uptake may decrease to non-damaging levels during childhood, it is pertinent to defining the age at which the rigorous diet of phenylketonurics might be safely relaxed.
Collapse
|
9
|
Abstract
Copper-containing benzylamine oxidase with a specific activity of 200 units was isolated from bovine brain microvessels. It was shown that the content of the enzyme in microvessels was significantly higher as compared with large blood vessels such as heart aorta. Some physico-chemical properties of the enzyme were determined. The enzyme was inhibited by high concentrations of the substrate as well as thiol reagents and beta-aminopropionitrile fumarate. On the basis of EPR and optical spectra of the enzyme its copper was considered to be 'non-blue' type.
Collapse
|
10
|
Abstract
Adenosine uptake by isolated rat brain capillaries is a carrier-mediated, temperature- and pH-sensitive process. The Km value for adenosine uptake is 4.74 microM and the Vmax is 21.7 picomol/mg protein/10 min. This is a high-affinity uptake system that can be cross-inhibited by several nucleosides and by the adenosine analogs tubercidin and 5'-deoxyadenosine. The uptake is very sensitive to inhibition by papaverine, hexobendine, and dipyridamole. These results confirm the existence of a nucleoside transport system associated with the blood-brain barrier observed during in vivo studies.
Collapse
|
11
|
|