1
|
Krasnova M, Efremova A, Bukhonin A, Zhekaite E, Bukharova T, Melyanovskaya Y, Goldshtein D, Kondratyeva E. The Effect of Complex Alleles of the CFTR Gene on the Clinical Manifestations of Cystic Fibrosis and the Effectiveness of Targeted Therapy. Int J Mol Sci 2023; 25:114. [PMID: 38203285 PMCID: PMC10779438 DOI: 10.3390/ijms25010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
The authors of this article analyzed the available literature with the results of studying the prevalence of complex alleles of the CFTR gene among patients with cystic fibrosis, and their pathogenicity and influence on targeted therapy with CFTR modulators. Cystic fibrosis (CF) is a multisystemic autosomal recessive disease caused by a defect in the expression of the CFTR protein, and more than 2000 genetic variants are known. Clinically significant variants are divided into seven classes. Information about the frequency of complex alleles appears in a number of registers, along with the traditional presentation of data on genetic variants. Complex alleles (those with the presence of more than two nucleotide variants on one allele) can complicate the diagnosis of the disease, and change the clinical manifestations of cystic fibrosis and the response to treatment, since each variant in the complex allele can contribute to the functional activity of the CFTR protein, changing it both in terms of increasing and decreasing function. The role of complex alleles is often underestimated, and their frequency has not been studied. At the moment, characteristic frequently encountered complex alleles have been found for several populations of patients with cystic fibrosis, but the prevalence and pathogenicity of newly detected complex alleles require additional research. In this review, more than 35 complex alleles of the CFTR gene from existing research studies were analyzed, and an analysis of their influence on the manifestations of the disease and the effectiveness of CFTR modulators was also described.
Collapse
Affiliation(s)
| | - Anna Efremova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (M.K.); (A.B.); (E.Z.); (T.B.); (Y.M.); (D.G.); (E.K.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Yang Z, Hildebrandt E, Jiang F, Aleksandrov AA, Khazanov N, Zhou Q, An J, Mezzell AT, Xavier BM, Ding H, Riordan JR, Senderowitz H, Kappes JC, Brouillette CG, Urbatsch IL. Structural stability of purified human CFTR is systematically improved by mutations in nucleotide binding domain 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1193-1204. [PMID: 29425673 DOI: 10.1016/j.bbamem.2018.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is an ABC transporter containing two transmembrane domains forming a chloride ion channel, and two nucleotide binding domains (NBD1 and NBD2). CFTR has presented a formidable challenge to obtain monodisperse, biophysically stable protein. Here we report a comprehensive study comparing effects of single and multiple NBD1 mutations on stability of both the NBD1 domain alone and on purified full length human CFTR. Single mutations S492P, A534P, I539T acted additively, and when combined with M470V, S495P, and R555K cumulatively yielded an NBD1 with highly improved structural stability. Strategic combinations of these mutations strongly stabilized the domain to attain a calorimetric Tm > 70 °C. Replica exchange molecular dynamics simulations on the most stable 6SS-NBD1 variant implicated fluctuations, electrostatic interactions and side chain packing as potential contributors to improved stability. Progressive stabilization of NBD1 directly correlated with enhanced structural stability of full-length CFTR protein. Thermal unfolding of the stabilized CFTR mutants, monitored by changes in intrinsic fluorescence, demonstrated that Tm could be shifted as high as 67.4 °C in 6SS-CFTR, more than 20 °C higher than wild-type. H1402S, an NBD2 mutation, conferred CFTR with additional thermal stability, possibly by stabilizing an NBD-dimerized conformation. CFTR variants with NBD1-stabilizing mutations were expressed at the cell surface in mammalian cells, exhibited ATPase and channel activity, and retained these functions to higher temperatures. The capability to produce enzymatically active CFTR with improved structural stability amenable to biophysical and structural studies will advance mechanistic investigations and future cystic fibrosis drug development.
Collapse
Affiliation(s)
- Zhengrong Yang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ellen Hildebrandt
- Department of Cell Biology and Biochemistry, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6540, Lubbock, TX 79430, USA
| | - Fan Jiang
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA
| | - Andrei A Aleksandrov
- Department of Biochemistry and Biophysics and Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Qingxian Zhou
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianli An
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew T Mezzell
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA
| | - Bala M Xavier
- Department of Cell Biology and Biochemistry, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6540, Lubbock, TX 79430, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA
| | - John R Riordan
- Department of Biochemistry and Biophysics and Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hanoch Senderowitz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA; Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35233, USA
| | | | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6540, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Diana A, Polizzi AM, Santostasi T, Ratclif L, Pantaleo MG, Leonetti G, Iusco DR, Gallo C, Conese M, Manca A. The novel complex allele [A238V;F508del] of the CFTR gene: clinical phenotype and possible implications for cystic fibrosis etiological therapies. J Hum Genet 2016; 61:473-481. [PMID: 26911355 DOI: 10.1038/jhg.2016.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 02/08/2023]
Abstract
Few mutations in cis have been annotated for F508del homozygous patients. Southern Italy patients who at a first analysis appeared homozygous for the F508del mutation (n=63) or compound heterozygous for the F508del and another mutation in the cystic fibrosis transmembrane conductance regulator gene (n=155) were searched for the A238V mutation in exon 6. The allelic frequency of the complex allele [A238V;F508del] was 0.04. When the whole data set was used (comprised also of 56 F508del/F508del and 34 F508del/other mutation controls), no differences reached the statistical significance in the clinical parameters, except chloride concentrations which were lower in [A238V;F508del]/other mutation compared with F508del/other mutation (P=0.03). The two study groups presented less complications than the control groups. Within the minimal data set (34 F508del/F508del, 27 F508del/other mutation, 4 [A238V;F508del]/F508del cases and 5 [A238V;F508del]/other mutation cases); that is, presenting all the variables in each patient, forced expiratory volume in 1 s and forced vital capacity presented a trend to lower levels in the study groups in comparison with the F508del/F508del group, and C-reactive protein approximated statistically significant higher levels in the [A238V;F508del]/other mutation as compared with F508del/F508del patients (P=0.09). The analysis of statistical dependence among the variables showed a significant anticorrelation between chloride and body mass index in the [A238V;F508del]/other mutation group. In conclusion, the complex allele [A238V;F508del] seems to be associated with less general complications than in the control groups, on the other hand possibly giving a worse pulmonary phenotype and higher systemic/local inflammatory response. These findings have implications for the correct recruitment and clinical response of F508del patients in the clinical trials testing the new etiological drugs for cystic fibrosis.
Collapse
Affiliation(s)
- Anna Diana
- Cystic Fibrosis Regional Puglia Center, Department of Pediatric Surgery and Sciences - Operational Unit B. Trambusti, University Hospital Policlinico, Bari, Italy
| | - Angela Maria Polizzi
- Cystic Fibrosis Regional Puglia Center, Department of Pediatric Surgery and Sciences - Operational Unit B. Trambusti, University Hospital Policlinico, Bari, Italy
| | - Teresa Santostasi
- Cystic Fibrosis Regional Puglia Center, Department of Pediatric Surgery and Sciences - Operational Unit B. Trambusti, University Hospital Policlinico, Bari, Italy
| | - Luigi Ratclif
- Cystic Fibrosis Support Center, Pediatrics Section, Hospital of Cerignola, Cerignola, Italy
| | - Maria Giuseppina Pantaleo
- Cystic Fibrosis Regional Puglia Center, Department of Pediatric Surgery and Sciences - Operational Unit B. Trambusti, University Hospital Policlinico, Bari, Italy
| | - Giuseppina Leonetti
- Cystic Fibrosis Regional Puglia Center, Department of Pediatric Surgery and Sciences - Operational Unit B. Trambusti, University Hospital Policlinico, Bari, Italy
| | - Danila Rosa Iusco
- Cystic Fibrosis Regional Puglia Center, Department of Pediatric Surgery and Sciences - Operational Unit B. Trambusti, University Hospital Policlinico, Bari, Italy
| | - Crescenzio Gallo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Antonio Manca
- Cystic Fibrosis Regional Puglia Center, Department of Pediatric Surgery and Sciences - Operational Unit B. Trambusti, University Hospital Policlinico, Bari, Italy
| |
Collapse
|
4
|
Pluchino KM, Esposito D, Moen JK, Hall MD, Madigan JP, Shukla S, Procter LV, Wall VE, Schneider TD, Pringle I, Ambudkar SV, Gill DR, Hyde SC, Gottesman MM. Identification of a Cryptic Bacterial Promoter in Mouse (mdr1a) P-Glycoprotein cDNA. PLoS One 2015; 10:e0136396. [PMID: 26309032 PMCID: PMC4550409 DOI: 10.1371/journal.pone.0136396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/03/2015] [Indexed: 01/09/2023] Open
Abstract
The efflux transporter P-glycoprotein (P-gp) is an important mediator of various pharmacokinetic parameters, being expressed at numerous physiological barriers and also in multidrug-resistant cancer cells. Molecular cloning of homologous cDNAs is an important tool for the characterization of functional differences in P-gp between species. However, plasmids containing mouse mdr1a cDNA display significant genetic instability during cloning in bacteria, indicating that mdr1a cDNA may be somehow toxic to bacteria, allowing only clones containing mutations that abrogate this toxicity to survive transformation. We demonstrate here the presence of a cryptic promoter in mouse mdr1a cDNA that causes mouse P-gp expression in bacteria. This expression may account for the observed toxicity of mdr1a DNA to bacteria. Sigma 70 binding site analysis and GFP reporter plasmids were used to identify sequences in the first 321 bps of mdr1a cDNA capable of initiating bacterial protein expression. An mdr1a M107L cDNA containing a single residue mutation at the proposed translational start site was shown to allow sub-cloning of mdr1a in E. coli while retaining transport properties similar to wild-type P-gp. This mutant mdr1a cDNA may prove useful for efficient cloning of mdr1a in E. coli.
Collapse
Affiliation(s)
- Kristen M. Pluchino
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States of America
| | - Janna K. Moen
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Matthew D. Hall
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - James P. Madigan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Lauren V. Procter
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States of America
| | - Vanessa E. Wall
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States of America
| | - Thomas D. Schneider
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Molecular Information Theory Group, Frederick, MD, United States of America
| | - Ian Pringle
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Deborah R. Gill
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Steven C. Hyde
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
5
|
LaRusch J, Jung J, General IJ, Lewis MD, Park HW, Brand RE, Gelrud A, Anderson MA, Banks PA, Conwell D, Lawrence C, Romagnuolo J, Baillie J, Alkaade S, Cote G, Gardner TB, Amann ST, Slivka A, Sandhu B, Aloe A, Kienholz ML, Yadav D, Barmada MM, Bahar I, Lee MG, Whitcomb DC. Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis. PLoS Genet 2014; 10:e1004376. [PMID: 25033378 PMCID: PMC4102440 DOI: 10.1371/journal.pgen.1004376] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 03/10/2014] [Indexed: 02/07/2023] Open
Abstract
CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD) affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens) but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a) screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b) conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c) computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d) tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N) not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002). Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005) and male infertility (OR 395, p<<0.0001). WNK1-SPAK pathway-activated increases in CFTR bicarbonate permeability are altered by CFTRBD variants through multiple mechanisms. CFTRBD variants are associated with clinically significant disorders of the pancreas, sinuses, and male reproductive system.
Collapse
Affiliation(s)
- Jessica LaRusch
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jinsei Jung
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ignacio J. General
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michele D. Lewis
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Hyun Woo Park
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Randall E. Brand
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andres Gelrud
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michelle A. Anderson
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter A. Banks
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Darwin Conwell
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Christopher Lawrence
- Digestive Disease Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Joseph Romagnuolo
- Digestive Disease Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - John Baillie
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Samer Alkaade
- Department of Internal Medicine, St. Louis University School of Medicine, St Louis, Missouri, United States of America
| | - Gregory Cote
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Timothy B. Gardner
- Dartmouth-Hitchcock Medical Center, Hanover, New Hampshire, United States of America
| | - Stephen T. Amann
- North Mississippi Medical Center, Tupelo, Mississippi, United States of America
| | - Adam Slivka
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bimaljit Sandhu
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States of America
| | - Amy Aloe
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michelle L. Kienholz
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Dhiraj Yadav
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - M. Michael Barmada
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ivet Bahar
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - David C. Whitcomb
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | | |
Collapse
|
6
|
Kolaczkowski M, Sroda-Pomianek K, Kolaczkowska A, Michalak K. A conserved interdomain communication pathway of pseudosymmetrically distributed residues affects substrate specificity of the fungal multidrug transporter Cdr1p. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:479-90. [PMID: 23122779 DOI: 10.1016/j.bbamem.2012.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/19/2012] [Accepted: 10/21/2012] [Indexed: 11/19/2022]
Abstract
Understanding the communication pathways between remote sites in proteins is of key importance for understanding their function and mechanism of action. These remain largely unexplored among the pleiotropic drug resistance (PDR) representatives of the ubiquitous superfamily of ATP-binding cassette (ABC) transporters. To identify functionally coupled residues important for the polyspecific transport by the fungal ABC multidrug transporter Cdr1p a new selection strategy, towards increased resistance to a preferred substrate of the homologous Snq2p, was applied to a library of randomly generated mutants. The single amino acid substitutions, located pseudosymmetrically in each domain of the internally duplicated protein: the H-loop of the N-terminal nucleotide binding domain (NBD1) (C363R) and in the C-terminal NBD2 region preceding Walker A (V885G). The central regions of the first transmembrane helices 1 and 7 of both transmembrane domains were also affected by the G521S/D and A1208V substitutions respectively. Although the mutants were expressed at a similar level and located correctly to the plasma membrane, they selectively affected transport of multiple drugs, including azole antifungals. The synergistic effects of combined mutations on drug resistance, drug dependent ATPase activity and transport support the view inferred from the statistical coupling analysis (SCA) of aminoacid coevolution and mutational analysis of other ABC transporter families that these residues are an important part of the conserved, allosterically coupled interdomain communication network. Our results shed new light on the communication between the pseudosymmetrically arranged domains in a fungal PDR ABC transporter and reveal its profound influence on substrate specificity.
Collapse
Affiliation(s)
- Marcin Kolaczkowski
- Department of Biophysics, Wroclaw Medical University, PL-50-368 Wroclaw, Poland.
| | | | | | | |
Collapse
|
7
|
Lucarelli M, Narzi L, Pierandrei S, Bruno SM, Stamato A, d'Avanzo M, Strom R, Quattrucci S. A new complex allele of the CFTR gene partially explains the variable phenotype of the L997F mutation. Genet Med 2011; 12:548-55. [PMID: 20706124 DOI: 10.1097/gim.0b013e3181ead634] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To evaluate the role of complex alleles, with two or more mutations in cis position, of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in the definition of the genotype-phenotype relationship in cystic fibrosis (CF), and to evaluate the functional significance of the highly controversial L997F CFTR mutation. METHODS We evaluated the diagnosis of CF or CFTR-related disorders in 12 unrelated subjects with highly variable phenotypes. According to a first CFTR mutational analysis, subjects appeared to be compound heterozygotes for a classic mutation and the L997F mutation. A further CFTR mutational analysis was conducted by means of a protocol of extended sequencing, particularly suited to the detection of complex alleles. RESULTS We detected a new [R117L; L997F] CFTR complex allele in the four subjects with the highest sweat test values and CF. The eight subjects without the complex allele showed the most varied biochemical and clinical outcome and were diagnosed as having mild CF, CFTR-related disorders, or even no disease. CONCLUSIONS The new complex allele partially explains the variable phenotype in CF subjects with the L997F mutation. CFTR complex alleles are likely to have a role in the definition of the genotype-phenotype relationship in CF. Whenever apparently identical CFTR-mutated genotypes are found in subjects with divergent phenotypes, an extensive mutational search is mandatory.
Collapse
Affiliation(s)
- Marco Lucarelli
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sosnay PR, Castellani C, Corey M, Dorfman R, Zielenski J, Karchin R, Penland CM, Cutting GR. Evaluation of the disease liability of CFTR variants. Methods Mol Biol 2011; 742:355-372. [PMID: 21547743 DOI: 10.1007/978-1-61779-120-8_21] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Over 1600 novel sequence variants in the CFTR gene have been reported to the CF Mutation Database (http://www.genet.sickkids.on.ca/cftr/Home.html). While about 25 mutations are well characterized by clinical studies and functional assays, the disease liability of most of the remaining mutations is either unclear or unknown. This gap in knowledge has implications for diagnosis, therapy selection, and counseling for patients and families carrying an uncharacterized CFTR mutation. This chapter will describe a critical approach to assessing the disease implications of CFTR mutations utilizing clinical data, literature review, functional testing, and bioinformatic in silico methods.
Collapse
Affiliation(s)
- Patrick R Sosnay
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
p.Ser1235Arg should no longer be considered as a cystic fibrosis mutation: results from a large collaborative study. Eur J Hum Genet 2010; 19:36-42. [PMID: 20717170 DOI: 10.1038/ejhg.2010.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Among the 1700 mutations reported in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, a missense mutation, p.Ser1235Arg, is a relatively frequent finding. To clarify its clinical significance, we collected data from 104 subjects heterozygous for the mutation p.Ser1235Arg from the French CF network, addressed for various indications including classical CF, atypical phenotypes or carrier screening in subjects with or without a family history. Among them, 26 patients (5 having CF, 10 CBAVD (congenital bilateral absence of the vas deferens) and 11 with CF-like symptoms) and 14 healthy subjects were compound heterozygous for a second CFTR mutation. An exhaustive CFTR gene analysis identified a second mutation in cis of p.Ser1235Arg in all CF patients and in 81.8% CBAVD patients. Moreover, epidemiological data from >2100 individuals found a higher frequency of p.Ser1235Arg in the general population than in CF or CBAVD patients. These data, added to the fact that in silico analysis and functional assays suggest a benign nature of this substitution, give several lines of evidence against an association of p.Ser1235Arg with CF or CBAVD.
Collapse
|
10
|
McWilliams RR, Petersen GM, Rabe KG, Holtegaard LM, Lynch PJ, Bishop MD, Highsmith WE. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations and risk for pancreatic adenocarcinoma. Cancer 2010; 116:203-9. [PMID: 19885835 DOI: 10.1002/cncr.24697] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are common in white persons and are associated with pancreatic disease. The purpose of this case-control study was to determine whether CFTR mutations confer a higher risk of pancreatic cancer. METHODS In a case-control study, the authors compared the rates of 39 common cystic fibrosis-associated CFTR mutations between 949 white patients with pancreatic adenocarcinoma and 13,340 white controls from a clinical laboratory database for prenatal testing for CFTR mutations. The main outcome measure was the CFTR mutation frequency in patients and controls. RESULTS Overall, 50 (5.3%) of 949 patients with pancreatic cancer carried a common CFTR mutation versus 510 (3.8%) of 13,340 controls (odds ratio [OR], 1.40; 95% confidence interval [CI], 1.04-1.89; P = .027). Among patients who were younger when their disease was diagnosed (<60 years), the carrier frequency was higher than in controls (OR, 1.82; 95% CI, 1.14-2.94; P = .011). In patient-only analyses, the presence of a mutation was associated with younger age (median 62 vs 67 years; P = .034). In subgroups, the difference was seen only among ever-smokers (60 vs 65 years, P = .028). Subsequent sequencing analysis of the CFTR gene detected 8 (16%) compound heterozygotes among the 50 patients initially detected to have 1 mutation. CONCLUSIONS Carrying a disease-associated mutation in CFTR is associated with a modest increase in risk for pancreatic cancer. Those affected appear to be diagnosed at a younger age, especially among smokers. Clinical evidence of antecedent pancreatitis was uncommon among both carriers and noncarriers of CFTR mutations.
Collapse
|
11
|
Huang Q, Ding W, Wei MX. Comparative analysis of common CFTR polymorphisms poly-T, TG-repeats and M470V in a healthy Chinese population. World J Gastroenterol 2008; 14:1925-30. [PMID: 18350634 PMCID: PMC2699602 DOI: 10.3748/wjg.14.1925] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the three important cystic fibrosis transmembrane conductance regulator (CFTR) haplotypes poly-T, TG-repeats and the M470V polymorphisms in the Chinese population, and to compare their distribution with that in Caucasians and other Asian populations.
METHODS: Genomic DNA was extracted from blood leukocytes. Exons 9 and 10 of the CFTR gene were obtained through polymerase chain reaction (PCR). Exon 9 DNA sequences were directly detected by an automated sequencer and poly-T and TG-repeats were identified by direct sequence analysis. Pure exon 10 PCR-amplified products were digested by HphI restriction enzyme and the M470V mutation was detected by the AGE photos of digestion products.
RESULTS: T7 was the most common (93.6%) haplotype and the (TG)11 frequency of 57.2% and (TG)12 frequency of 40.9% were dominant haplotypes in the junction of intron 8 (IVS-8) and exon 9. The frequency of T5 was 3.8% and all T5 allele tracts (10 alleles) were joined with (TG)12. Four new alleles of T6 (1.5%) were found in three healthy individuals. In exon 10, the V allele (56.1%) was slightly more frequent than the M allele (43.9%), and the M/V (45.5%) was the dominant genotype in these individuals. The three major haplotypes T7-(TG)11-V470, T7-(TG)12-M470 and T7-TG11-M470 were related to nearly 86.0% of the population.
CONCLUSION: The polymorphisms of poly-T, TG-repeats, and M470V distribution were similar to those in other East Asians, but they had marked differences in frequency from those single haplotype polymorphisms or linkage haplotypes in Caucasians. Thus, they may be able to explain the low incidence of CF and CF-like diseases in Asians.
Collapse
|
12
|
Narzi L, Ferraguti G, Stamato A, Narzi F, Valentini SB, Lelli A, Delaroche I, Lucarelli M, Strom R, Quattrucci S. Does cystic fibrosis neonatal screening detect atypical CF forms? Extended genetic characterization and 4-year clinical follow-up. Clin Genet 2007; 72:39-46. [PMID: 17594398 DOI: 10.1111/j.1399-0004.2007.00825.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neonatal screening protocol for cystic fibrosis (CF) is based on a first determination of blood immunoreactive trypsin (IRT1), followed by a first level genetic test that includes the 31 worldwide most common mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene (DNA31), and a second determination of blood immunoreactive trypsin (IRT2). This approach identifies, in addition to affected subjects, a high proportion of newborns with hypertrypsinaemia at birth, in whom only one mutation is identified and who have a negative or borderline sweat test and pancreatic sufficiency. Although it has been suggested that hypertrypsinaemia may be caused by a single CFTR mutation, whether such neonates should be merely considered as healthy carriers remains a matter of debate as hypertrypsinaemia at birth may be a biochemical marker of a CFTR malfunction because of a second mild mutation. We analyzed, by means of an extended sequencing protocol, 32 newborns who tested positive at an IRT1/DNA31/IRT2 screening protocol and in whom only one CFTR mutation was found. The results obtained demonstrate that 62.5% of these newborns were also carrying a second mild CFTR mutation. The high proportion of compound heterozygous subjects, combined with the results of a 4-year follow-up in nine of these subjects all of whom displaying initial CF clinical symptoms, suggest that it may be possible to use the IRT1/DNA31/IRT2 protocol of neonatal screening to identify newborns with atypical forms of CF. In view of these findings, an extended genetic search for subjects with compound heterozygosity and a periodic clinical assessment should be considered.
Collapse
Affiliation(s)
- L Narzi
- Department of Paediatrics, Cystic Fibrosis Centre, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pompei F, Ciminelli BM, Bombieri C, Ciccacci C, Koudova M, Giorgi S, Belpinati F, Begnini A, Cerny M, Des Georges M, Claustres M, Ferec C, Macek M, Modiano G, Pignatti PF. Haplotype block structure study of the CFTR gene. Most variants are associated with the M470 allele in several European populations. Eur J Hum Genet 2006; 14:85-93. [PMID: 16251901 DOI: 10.1038/sj.ejhg.5201498] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
An average of about 1700 CFTR (cystic fibrosis transmembrane conductance regulator) alleles from normal individuals from different European populations were extensively screened for DNA sequence variation. A total of 80 variants were observed: 61 coding SNSs (results already published), 13 noncoding SNSs, three STRs, two short deletions, and one nucleotide insertion. Eight DNA variants were classified as non-CF causing due to their high frequency of occurrence. Through this survey the CFTR has become the most exhaustively studied gene for its coding sequence variability and, though to a lesser extent, for its noncoding sequence variability as well. Interestingly, most variation was associated with the M470 allele, while the V470 allele showed an 'extended haplotype homozygosity' (EHH). These findings make us suggest a role for selection acting either on the M470V itself or through an hitchhiking mechanism involving a second site. The possible ancient origin of the V allele in an 'out of Africa' time frame is discussed.
Collapse
Affiliation(s)
- Fiorenza Pompei
- Department of Biology, University of Roma-Tor Vergata, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Clain J, Lehmann-Che J, Girodon E, Lipecka J, Edelman A, Goossens M, Fanen P. A neutral variant involved in a complex CFTR allele contributes to a severe cystic fibrosis phenotype. Hum Genet 2005; 116:454-60. [PMID: 15744523 DOI: 10.1007/s00439-004-1246-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 12/12/2004] [Indexed: 11/26/2022]
Abstract
In order to further elucidate the contribution of complex alleles to the wide phenotypic variability of cystic fibrosis (CF), we investigated the structure-function relationships of a severe CF-associated complex allele [p.S912L;p.G1244V]. To evaluate the contribution of each mutation to the phenotype, cystic fibrosis transmembrane conductance regulator (CFTR) mutants were expressed in HeLa cells and analysed for protein processing and Cl- channel activity. Both p.G1244V and [p.S912L;p.G1244V] mutants had normal protein processing but markedly decreased Cl- channel activity compared with wild-type. Notably, the double mutant displayed a dramatic decrease in Cl- channel activity compared with p.G1244V (P<0.001). p.S912L had normal protein processing and no detectable impact on CFTR function. In other respects, the p.S912L variation was identified in compound heterozygosity with p.R709X in a healthy fertile man. Together, these data strongly support the view that p.S912L in isolation should be considered as a neutral variant but one that might significantly impair CFTR function when inherited in cis with another CFTR mutation. Our data also further document the contribution of complex alleles to the wide phenotypic variability of CF. The results of functional studies of such complex alleles in other genetic diseases are discussed.
Collapse
Affiliation(s)
- Jérôme Clain
- Service de Biochimie et Génétique, Hôpital Henri Mondor, Institut National de la Santé et de la Recherche Médicale U.468, AP-HP, 94010, Créteil, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Lee JH, Choi JH, Namkung W, Hanrahan JW, Chang J, Song SY, Park SW, Kim DS, Yoon JH, Suh Y, Jang IJ, Nam JH, Kim SJ, Cho MO, Lee JE, Kim KH, Lee MG. A haplotype-based molecular analysis of CFTR mutations associated with respiratory and pancreatic diseases. Hum Mol Genet 2003; 12:2321-32. [PMID: 12952861 DOI: 10.1093/hmg/ddg243] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aberrant membrane transport caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene is associated with a wide spectrum of respiratory and digestive diseases as well as cystic fibrosis. Using a gene scanning method, we found 11 polymorphisms and mutations of the CFTR gene in the Korean population. Individual variants at these sites were analyzed by conventional DNA screening in 117 control and 75 patients having bronchiectasis or chronic pancreatitis. In a haplotype determination based on a Bayesian algorithm, 15 haplotypes were assembled in the 192 individuals tested. Several haplotypes, especially with Q1352H, IVS8 T5, and E217G, were found to have disease associations in a case-control study. Notably, a common polymorphism of M470V appears to affect the intensity of the disease association. Among the two haplotypes having IVS8 T5, the T5-V470 haplotype showed higher disease association than the T5-M470 haplotype. In addition, a Q1352H mutation found in a V470 background showed the strongest disease association. The physiological significances of the identified mutations were rigorously analyzed. Non-synonymous E217G and Q1352H mutations in the M470 background caused a 60-80% reduction in CFTR-dependent Cl(-) currents and HCO3(-) -transport activities. Surprisingly, the additional M470V polymorphic variant with the Q1352H mutation completely abolished CFTR-dependent anion transport activities. These findings provide the first evidence on the importance of CFTR mutations in the Asian population. Importantly, the results also reveal that interactions between multiple genetic variants in cis affect the final function of the gene products.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Department of Pharmacology, Yonsei University College of Medicine, 134 Sinchon-Dong, Seoul 120-752, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Devaney J, Glennon M, Farrell G, Ruttledge M, Smith T, Houghton JA, Maher M. Cystic fibrosis mutation frequencies in an Irish population. Clin Genet 2003; 63:121-5. [PMID: 12630958 DOI: 10.1034/j.1399-0004.2003.00017.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The incidence of cystic fibrosis (CF) at birth in Ireland is 1/1461. Neonate CF genetic testing is not routinely performed in Ireland. Currently, screening is only carried out where there is clinical evidence or a family history to suggest disease. Here we report the frequencies of common CF mutations occurring in an Irish population composed of samples collected from western, mid-western and southern regions of Ireland. Rarer CF mutations were also identified in a selected number of CF patients. In addition, a number of polymorphisms were identified, some of which are reported to be functionally and phenotypically important.
Collapse
Affiliation(s)
- J Devaney
- National Diagnostics Center, BioResearch Ireland, National University of Ireland, Galway, Republic of Ireland.
| | | | | | | | | | | | | |
Collapse
|
17
|
Girodon E, Sternberg D, Chazouillères O, Cazeneuve C, Huot D, Calmus Y, Poupon R, Goossens M, Housset C. Cystic fibrosis transmembrane conductance regulator (CFTR) gene defects in patients with primary sclerosing cholangitis. J Hepatol 2002; 37:192-7. [PMID: 12127423 DOI: 10.1016/s0168-8278(02)00161-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Because biliary tract lesions that resemble those of primary sclerosing cholangitis (PSC) may occur in cystic fibrosis (CF), we examined the prevalence and influence of CF transmembrane conductance regulator (CFTR) gene mutations in PSC patients. METHODS Genomic DNA was analyzed in 29 consecutive PSC patients and in 115 healthy control individuals. A scanning method followed by direct DNA sequencing was used to scan the CFTR coding regions. RESULTS Four patients (13.8%) were heterozygous for a CFTR mutation, including a new putative severe CF-causing mutation (N782K), and three mild defects (L997F, D1270N, and S1235R). The comparison of PSC patients with healthy controls showed no significant difference in the frequency of CFTR mutations (P=0.415). In addition, two patients (6.9%) were heterozygous for the IVS8-5T allele, which is not significantly different from the 5-6%-prevalence in the general population. Unusual clinical features including a severe outcome in childhood, with a lethal outcome at age 22, and biliary aspergillosis were recorded in patients with a CFTR mutation. CONCLUSIONS The proportion of CF carriers is not significantly higher in PSC patients than in the general population. The possibility that CFTR mutations may contribute to a severe clinical course in PSC patients is worth further examining.
Collapse
Affiliation(s)
- Emmanuelle Girodon
- Service de Biochimie et de Génétique, AP-HP and INSERM U468, Hôpital Henri Mondor, 94010 Créteil, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ravnik-Glavac M, Svetina N, Zorn B, Peterlin B, Glavac D. Involvement of CFTR gene alterations in obstructive and nonobstructive infertility in men. GENETIC TESTING 2002; 5:243-7. [PMID: 11788091 DOI: 10.1089/10906570152742308] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There have not been many studies concerning CFTR gene alterations in nonobstructive causes of male infertility and subfertility, and in those that have been published, the results reported are not concordant. Therefore, we proposed to determine, in a representative unselected sample of men who were sent for microsurgical epididymal sperm aspiration, if different types of male infertility and impaired fertility were associated with CFTR gene alterations. We screened 80 men with idiopathic azoospermia, 50 men with severe oligozoospermia, 70 men with oligoasthenoteratozoospermia, and 7 men with congenital bilateral absence of the vas deferens (CBAVD), as well as 95 controls from Slovenia, for mutations in 10 CFTR exons that include the majority of the most common cystic fibrosis (CF) disease causing mutations. We also wanted to evaluate the risk for CF in children born after the intracytoplasmic sperm injection (ICSI) method of in vitro fertilization (IVF). No tested individual had mutations in both CFTR alleles. Altogether 13 different nucleotide alterations were identified. The frequencies of both CFTR gene alterations and polymorphisms did not differ significantly between the control group and men with idiopathic nonobstructive azoospermia and subfertility, but were significantly increased in men with CBAVD (DeltaF508, p = 0.039; IVS8-5T, p = 0.006). Our results suggest that CFTR mutations are not associated with errors in spermatogenesis and nonobstructive pathology of urogenital tract in men with any frequency. However, genetic counseling and CFTR mutation screening continue to be recommended for men with obstructive azoospermic conditions and their female partners.
Collapse
Affiliation(s)
- M Ravnik-Glavac
- Department of Molecular Genetics, Institute of Pathology, Medical Faculty, Vraztovtrg 2, 1000 Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
19
|
Lebecque P, Leal T, De Boeck C, Jaspers M, Cuppens H, Cassiman JJ. Mutations of the cystic fibrosis gene and intermediate sweat chloride levels in children. Am J Respir Crit Care Med 2002; 165:757-61. [PMID: 11897640 DOI: 10.1164/ajrccm.165.6.2104073] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The incidence of mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in children with intermediate sweat chloride levels is unknown. The results of 2,349 sweat tests performed at two Belgian university hospitals were reviewed. Intermediate chloride concentrations were observed in 98 subjects (4.2%), 68 being younger than 18 years of age. Forty-three children could be traced and their parents agreed to take part in the study. Exhaustive analysis of the CFTR gene disclosed a total of 24 putative mutations (27.9%). Three subjects were found to carry only one CFTR mutation, whereas 10 harbored one mutation on both CFTR genes. These 10 children were investigated in detail. At the time of writing, the mean age (+/-SD) of this group is 8.9 years (+/-4.2 years). Nine children are pancreatic sufficient. Three have been asymptomatic for more than two years, whereas the others display, to different degrees, clinical features suggestive of CF. The sweat chloride concentration is slightly higher in this group (39.4 +/- 5.4 mM) than in subjects without CFTR mutation (35.2 +/- 4.4 mM, p < 0.05). The nasal potential difference was abnormal in five of the nine subjects tested. In this study, 23% of children displaying intermediate sweat chloride levels were found to carry a putative mutation on both CFTR genes.
Collapse
Affiliation(s)
- Patrick Lebecque
- Department of Pediatrics, Center for Human Genetics, Gasthuisberg, Belgium.
| | | | | | | | | | | |
Collapse
|
20
|
Wei L, Freichel M, Jaspers M, Cuppens H, Cassiman JJ, Droogmans G, Flockerzi V, Nilius B. Functional interaction between TRP4 and CFTR in mouse aorta endothelial cells. BMC PHYSIOLOGY 2001; 1:3. [PMID: 11356184 PMCID: PMC32182 DOI: 10.1186/1472-6793-1-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2001] [Accepted: 05/15/2001] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study describes the functional interaction between the putative Ca2+ channel TRP4 and the cystic fibrosis transmembrane conductance regulator, CFTR, in mouse aorta endothelium (MAEC). RESULTS MAEC cells express CFTR transcripts as shown by RT-PCR analysis. Application of a phosphorylating cocktail activated a Cl- current with characteristics similar to those of CFTR mediated currents in other cells types (slow activation by cAMP, absence of rectification, block by glibenclamide). The current is present in trp4 +/+ MAEC, but not in trp4 -/- cells, although the expression of CFTR seems unchanged in the trp4 deficient cells as judged from RT-PCR analysis. CONCLUSIONS It is concluded that TRP4 is necessary for CFTR activation in endothelium, possibly by providing a scaffold for the formation of functional CFTR channels.
Collapse
Affiliation(s)
- Lin Wei
- Department of Physiology, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Marc Freichel
- Institut für Pharmakologie und Toxikologie, Universität des Saarlandes, D-66421 Homburg, Germany
| | - Martine Jaspers
- Center for Human Genetics, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Harry Cuppens
- Center for Human Genetics, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | | | - Guy Droogmans
- Department of Physiology, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Veit Flockerzi
- Institut für Pharmakologie und Toxikologie, Universität des Saarlandes, D-66421 Homburg, Germany
| | - Bernd Nilius
- Department of Physiology, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| |
Collapse
|