1
|
Verwilt J, Mestdagh P, Vandesompele J. Artifacts and biases of the reverse transcription reaction in RNA sequencing. RNA (NEW YORK, N.Y.) 2023; 29:889-897. [PMID: 36990512 DOI: 10.1261/rna.079623.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
RNA sequencing has spurred a significant number of research areas in recent years. Most protocols rely on synthesizing a more stable complementary DNA (cDNA) copy of the RNA molecule during the reverse transcription reaction. The resulting cDNA pool is often wrongfully assumed to be quantitatively and molecularly similar to the original RNA input. Sadly, biases and artifacts confound the resulting cDNA mixture. These issues are often overlooked or ignored in the literature by those that rely on the reverse transcription process. In this review, we confront the reader with intra- and intersample biases and artifacts caused by the reverse transcription reaction during RNA sequencing experiments. To fight the reader's despair, we also provide solutions to most issues and inform on good RNA sequencing practices. We hope the reader can use this review to their advantage, thereby contributing to scientifically sound RNA studies.
Collapse
Affiliation(s)
- Jasper Verwilt
- OncoRNALab, Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Peccoud J, Lequime S, Moltini-Conclois I, Giraud I, Lambrechts L, Gilbert C. A Survey of Virus Recombination Uncovers Canonical Features of Artificial Chimeras Generated During Deep Sequencing Library Preparation. G3 (BETHESDA, MD.) 2018; 8:1129-1138. [PMID: 29434031 PMCID: PMC5873904 DOI: 10.1534/g3.117.300468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chimeric reads can be generated by in vitro recombination during the preparation of high-throughput sequencing libraries. Our attempt to detect biological recombination between the genomes of dengue virus (DENV; +ssRNA genome) and its mosquito host using the Illumina Nextera sequencing library preparation kit revealed that most, if not all, detected host-virus chimeras were artificial. Indeed, these chimeras were not more frequent than with control RNA from another species (a pillbug), which was never in contact with DENV RNA prior to the library preparation. The proportion of chimera types merely reflected those of the three species among sequencing reads. Chimeras were frequently characterized by the presence of 1-20 bp microhomology between recombining fragments. Within-species chimeras mostly involved fragments in opposite orientations and located less than 100 bp from each other in the parental genome. We found similar features in published datasets using two other viruses: Ebola virus (EBOV; -ssRNA genome) and a herpesvirus (dsDNA genome), both produced with the Illumina Nextera protocol. These canonical features suggest that artificial chimeras are generated by intra-molecular template switching of the DNA polymerase during the PCR step of the Nextera protocol. Finally, a published Illumina dataset using the Flock House virus (FHV; +ssRNA genome) generated with a protocol preventing artificial recombination revealed the presence of 1-10 bp microhomology motifs in FHV-FHV chimeras, but very few recombining fragments were in opposite orientations. Our analysis uncovered sequence features characterizing recombination breakpoints in short-read sequencing datasets, which can be helpful to evaluate the presence and extent of artificial recombination.
Collapse
Affiliation(s)
- Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7267, Université de Poitiers, 86000 France
| | - Sébastian Lequime
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- CNRS, UMR 2000, Paris, France
| | - Isabelle Moltini-Conclois
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- CNRS, UMR 2000, Paris, France
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7267, Université de Poitiers, 86000 France
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- CNRS, UMR 2000, Paris, France
| | - Clément Gilbert
- Laboratoire Evolution, Génomes, Comportement, Écologie, UMR 9191 CNRS, UMR 247 IRD, Université Paris-Sud, 91198 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Yokomori M, Gotoh O, Murakami Y, Fujimoto K, Suyama A. A multiplex RNA quantification method to determine the absolute amounts of mRNA without reverse transcription. Anal Biochem 2017; 539:96-103. [PMID: 29029978 DOI: 10.1016/j.ab.2017.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/16/2023]
Abstract
We have developed a highly sensitive microarray-based method that determines the absolute amounts of mRNA in a total RNA sample in a multiplex manner without reverse transcription. This direct mRNA measurement promotes high-throughput testing and reduces bias in transcriptome analyses. Furthermore, quantification of the absolute amount of mRNA allows transcriptome analysis without common controls or additional, complicated normalization. The method, called Photo-DEAN, was validated using chemically synthesized RNAs of known quantities and mouse liver total RNA samples. We found that the absolute amounts of mRNA were successfully measured without the cDNA synthesis step, with a sensitivity of 15 zmol achieved in 7 h.
Collapse
Affiliation(s)
- Maasa Yokomori
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Osamu Gotoh
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yasufumi Murakami
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kenzo Fujimoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Akira Suyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
4
|
Sherrill-Mix S, Ocwieja KE, Bushman FD. Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats. Retrovirology 2015; 12:79. [PMID: 26377088 PMCID: PMC4574318 DOI: 10.1186/s12977-015-0205-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023] Open
Abstract
Background HIV infection has been reported to alter cellular gene activity, but published studies have commonly assayed transformed cell lines and lab-adapted HIV strains, yielding inconsistent results. Here we carried out a deep RNA-Seq analysis of primary human T cells infected with the low passage HIV isolate HIV89.6. Results Seventeen percent of cellular genes showed altered activity 48 h after infection. In a meta-analysis including four other studies, our data differed from studies of HIV infection in cell lines but showed more parallels with infections of primary cells. We found a global trend toward retention of introns after infection, suggestive of a novel cellular response to infection. HIV89.6 infection was also associated with activation of several human endogenous retroviruses (HERVs) and retrotransposons, of interest as possible novel antigens that could serve as vaccine targets. The most highly activated group of HERVs was a subset of the ERV-9. Analysis showed that activation was associated with a particular variant of ERV-9 long terminal repeats that contains an indel near the U3-R border. These data also allowed quantification of >70 splice forms of the HIV89.6 RNA and specified the main types of chimeric HIV89.6-host RNAs. Comparison to over 100,000 integration site sequences from the same infected cell populations allowed quantification of authentic versus artifactual chimeric reads, showing that 5′ read-in, splicing out of HIV89.6 from the D4 donor and 3′ read-through were the most common HIV89.6-host cell chimeric RNA forms. Conclusions Analysis of RNA abundance after infection of primary T cells with the low passage HIV89.6 isolate disclosed multiple novel features of HIV-host interactions, notably intron retention and induction of transcription of retrotransposons and endogenous retroviruses. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0205-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, 425 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| | - Karen E Ocwieja
- Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, 425 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
The role of canonical and noncanonical pre-mRNA splicing in plant stress responses. BIOMED RESEARCH INTERNATIONAL 2012; 2013:264314. [PMID: 23509698 PMCID: PMC3591102 DOI: 10.1155/2013/264314] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/02/2012] [Accepted: 10/11/2012] [Indexed: 11/17/2022]
Abstract
Plants are sessile organisms capable of adapting to various environmental constraints, such as high or low temperatures, drought, soil salinity, or pathogen attack. To survive the unfavorable conditions, plants actively employ pre-mRNA splicing as a mechanism to regulate expression of stress-responsive genes and reprogram intracellular regulatory networks. There is a growing evidence that various stresses strongly affect the frequency and diversity of alternative splicing events in the stress-responsive genes and lead to an increased accumulation of mRNAs containing premature stop codons, which in turn have an impact on plant stress response. A number of studies revealed that some mRNAs involved in plant stress response are spliced counter to the traditional conception of alternative splicing. Such noncanonical mRNA splicing events include trans-splicing, intraexonic deletions, or variations affecting multiple exons and often require short direct repeats to occur. The noncanonical alternative splicing, along with common splicing events, targets the spliced transcripts to degradation through nonsense-mediated mRNA decay or leads to translation of truncated proteins. Investigation of the diversity, biological consequences, and mechanisms of the canonical and noncanonical alternative splicing events will help one to identify those transcripts which are promising for using in genetic engineering and selection of stress-tolerant plants.
Collapse
|
6
|
Carvalhais LC, Dennis PG, Tyson GW, Schenk PM. Application of metatranscriptomics to soil environments. J Microbiol Methods 2012; 91:246-51. [PMID: 22963791 DOI: 10.1016/j.mimet.2012.08.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/10/2012] [Accepted: 08/22/2012] [Indexed: 01/24/2023]
Abstract
The activities of soil microbial communities are of critical importance to terrestrial ecosystem functioning. The mechanisms that determine the interactions between soil microorganisms, their environment and neighbouring organisms, however, are poorly understood. Due to advances in sequencing technologies, an increasing number of metagenomics studies are being conducted on samples from diverse environments including soils. This information has not only increased our awareness of the functional potential of soil microbial communities, but also constitutes powerful reference material for soil metatranscriptomics studies. Metatranscriptomics provides a snapshot of transcriptional profiles that correspond to discrete populations within a microbial community at the time of sampling. This information can indicate the potential activities of complex microbial communities and the mechanisms that regulate them. Here we summarise the technical challenges for metatranscriptomics applied to soil environments and discuss approaches for gaining biologically meaningful insight into these datasets.
Collapse
Affiliation(s)
- Lilia C Carvalhais
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
7
|
Zeng XC, Wang S, Nie Y, Zhang L, Luo X. Characterization of BmKbpp, a multifunctional peptide from the Chinese scorpion Mesobuthus martensii Karsch: gaining insight into a new mechanism for the functional diversification of scorpion venom peptides. Peptides 2012; 33:44-51. [PMID: 22115565 DOI: 10.1016/j.peptides.2011.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 11/09/2011] [Accepted: 11/09/2011] [Indexed: 01/16/2023]
Abstract
BmKbpp is a novel cationic and α-helical peptide from the Chinese scorpion Mesobuthus martensii Karsch, of which function or biological activity has not been characterized so far. Here we showed that BmKbpp possesses strong antimicrobial activity against both Gram-positive and Gram-negative bacteria with a MIC range from 2.3 μM to 68.2 μM for the majority of tested bacteria. BmKbpp also inhibits the growth of tested fungi with an IC50 range from 0.2 μM to 3.1 μM. Because BmKbpp potently inhibits the growth of some antibiotics-resistant pathogens, and shows very weak hemolytic activity, it has considerable potentials for therapeutic applications. Moreover, we found that BmKbpp markedly inhibits the superoxide production in granulocytes or HL-60 cells at the concentrations of submicromolar level; this suggests that BmKbpp can act as a signaling molecule involving innate immune regulation at low concentrations. The C-terminal region of BmKbpp (BmKbpp-C) shows 72% similarity to the peptide K-12, a bradykinin-potentiating peptide. We found that both BmKbpp and BmKbpp-C possess bradykinin-potentiating activity, and the activity of BmKbpp-C is stronger than that of BmKbpp. PCR amplification for the genomic gene of BmBpp showed that it is not a continuous sequence in the genome; it suggests that BmKbpp could come from a recombination event in transcript level. Taken together, our data suggest that multi-functionalization of a single peptide, which is probably mediated by trans-splicing, could be a new mechanism for the functional diversification of scorpion venom peptides.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- Department of Biological Science and Technology, School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | | | | | | | | |
Collapse
|
8
|
Panagopoulos I. Absence of the JAZF1/SUZ12 chimeric transcript in the immortalized non-neoplastic endometrial stromal cell line T HESCs. Oncol Lett 2010; 1:947-950. [PMID: 22870092 DOI: 10.3892/ol.2010.185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/18/2010] [Indexed: 11/05/2022] Open
Abstract
Endometrial stromal sarcomas are rare malignancies, accounting for less than 10% of uterine sarcomas. The most characteristic chromosomal aberration of this tumor type is the translocation t(7;17)(p15-p21;q12-q21) leading to the fusion of two zinc finger genes, JAZF1 and SUZ12. Recently, the presence of the neoplastic JAZF1/SUZ12 fusion transcript was reported in normal cells of human endometrium. One of the positive samples for the JAZF1/SUZ12 transcript was the immortalized T HESCs cell line. This cell line was derived from the stromal cells obtained from an adult female with myomas and immortalized by transfection of a human telomerase gene. Since T HESCs has a normal karyotype and no fusion of the two genes occurs at the genomic level, the JAZF1/SUZ12 transcript was proposed to be generated by regulated trans-splicing between precursor RNAs for JAZF1 and SUZ12. However, no confirmatory reports currently exist. To determine whether the results could be reproduced, the T HESCs cell line was subjected to three different RT-PCR amplifications for the JAZF1/SUZ12 fusion transcript. RT-PCR assays did not amplify JUZF1/SUZ12 cDNA fragments in the T HESCs cell line, whereas the same assays easily generated JUZF1/SUZ12-amplified transcripts in an endometrial stromal cell sarcoma carrying the t(7;17) chromosomal aberration. Thus, the presence, if any, of a JUZF1/SUZ12 chimeric transcript in the immortalized normal T HESCs is not a constant, reproducible result.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Archaeological Research Laboratory, Stockholm University, Wallenberglaboratoriet, SE-106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Houseley J, Tollervey D. Apparent non-canonical trans-splicing is generated by reverse transcriptase in vitro. PLoS One 2010; 5:e12271. [PMID: 20805885 PMCID: PMC2923612 DOI: 10.1371/journal.pone.0012271] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 07/27/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Trans-splicing, the in vivo joining of two independently transcribed RNA molecules, is well characterized in lower eukaryotes, but was long thought absent from metazoans. However, recent bioinformatic analyses of EST sequences suggested widespread trans-splicing in mammals. These apparently spliced transcripts generally lacked canonical splice sites, leading us to question their authenticity. Particularly, the native ability of reverse transcriptase enzymes to template switch during transcription could produce apparently trans-spliced sequences. PRINCIPAL FINDINGS Here we report an in vitro system for the analysis of template switching in reverse transcription. Using highly purified RNA substrates, we show the reproducible occurrence of apparent trans-splicing between two RNA molecules. Other reported non-canonical splicing events such as exon shuffling and sense-antisense fusions were also readily detected. The latter caused the production of apparent antisense non-coding RNAs, which are also reported to be abundant in humans. CONCLUSIONS We propose that most reported examples of non-canonical splicing in metazoans arise through template switching by reverse transcriptase during cDNA preparation. We further show that the products of template switching can vary between reverse transcriptases, providing a simple diagnostic for identifying many of these experimental artifacts.
Collapse
Affiliation(s)
- Jonathan Houseley
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (JH); (DT)
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (JH); (DT)
| |
Collapse
|
10
|
Mucroporin, the first cationic host defense peptide from the venom of Lychas mucronatus. Antimicrob Agents Chemother 2008; 52:3967-72. [PMID: 18779362 DOI: 10.1128/aac.00542-08] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The misuse of antibiotics has led our age to a dangerous edge, as antibiotic-resistant pathogens appear to evolve more quickly than antibiotics are invented. Thus, new agents to treat bacterial infection are badly needed. Cationic host defense peptides are on the first line of a host defense system and are thought to be good candidates for treating bacterial infection. Here, a novel cationic host defense peptide, mucroporin, was cloned and characterized from the venom of Lychas mucronatus. The MIC for Staphylococcus aureus was 25 microg/ml, including antibiotic-resistant pathogens. Based on the molecular template of mucroporin, mucroporin-M1 was designed by amino acid substitution. The MIC for S. aureus was 5 microg/ml, including the antibiotic-resistant pathogens methicillin-resistant S. aureus, methicillin-resistant coagulase-negative Staphylococcus, penicillin-resistant S. aureus, and penicillin-resistant S. epidermidis. Moreover, mucroporin-M1 also inhibited gram-negative bacteria. The modes of action of mucroporin and mucroporin-M1 were both rapid killing by disrupting the cell membrane of bacteria, and the number of surviving bacteria was reduced by about 4 to 5 orders of magnitude immediately after peptide delivery. These results showed that mucroporin could be considered a potential anti-infective drug, especially for treating antibiotic-resistant pathogens.
Collapse
|
11
|
Roy SW, Irimia M. When good transcripts go bad: artifactual RT-PCR 'splicing' and genome analysis. Bioessays 2008; 30:601-5. [PMID: 18478540 DOI: 10.1002/bies.20749] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gene and intron prediction are essential for accurate inferences about genome evolution. Recently, two genome-wide studies searched for recent intron gains in humans, reaching very different conclusions: either of a complete absence of intron gain since early mammalian evolution, or of creation of numerous introns by genomic duplication in repetitive regions. We discuss one possible explanation: the underappreciated phenomenon of "template switching", by which reverse transcriptase may create artifactual splicing-like events in the preparation of cDNA/EST libraries, may cause complications in searches for newly gained introns in repetitive regions. We report large numbers of apparent template switching in transcript sequences from the intron-poor protists Trichomonas vaginalis and Giardia lamblia. Supplementary material for this article can be found on the BioEssays website (http://www.interscience.wiley.com/jpages/0265-9247/suppmat/index.html).
Collapse
Affiliation(s)
- Scott William Roy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
12
|
Hsp90n - An accidental product of a fortuitous chromosomal translocation rather than a regular Hsp90 family member of human proteome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1844-6. [PMID: 18638579 DOI: 10.1016/j.bbapap.2008.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 01/03/2023]
Abstract
Human cells express two isoforms of the Hsp90 protein, called Hsp90alpha and Hsp90beta. Although existence of the third form called Hsp90alphaDeltaN, or Hsp90N was reported in 1998, our investigation, based on the sequence analysis and attempts to reproduce previous results, demonstrate that there is no evidence that Hsp90N gene is present in human genome and no homologs of such a protein are present in other known eukaryotic genomes. We propose that Hsp90N was created as an artifact of a cDNA synthesis or that it is a chimeric protein, being a result of the chromosomal rearrangement that occurred in a single cell line, after this line was established.
Collapse
|
13
|
Pahari S, Mackessy SP, Kini RM. The venom gland transcriptome of the Desert Massasauga rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea). BMC Mol Biol 2007; 8:115. [PMID: 18096037 PMCID: PMC2242803 DOI: 10.1186/1471-2199-8-115] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 12/20/2007] [Indexed: 11/14/2022] Open
Abstract
Background Snake venoms are complex mixtures of pharmacologically active proteins and peptides which belong to a small number of superfamilies. Global cataloguing of the venom transcriptome facilitates the identification of new families of toxins as well as helps in understanding the evolution of venom proteomes. Results We have constructed a cDNA library of the venom gland of a threatened rattlesnake (a pitviper), Sistrurus catenatus edwardsii (Desert Massasauga), and sequenced 576 ESTs. Our results demonstrate a high abundance of serine proteinase and metalloproteinase transcripts, indicating that the disruption of hemostasis is a principle mechanism of action of the venom. In addition to the transcripts encoding common venom proteins, we detected two varieties of low abundance unique transcripts in the library; these encode for three-finger toxins and a novel toxin possibly generated from the fusion of two genes. We also observed polyadenylated ribosomal RNAs in the venom gland library, an interesting preliminary obsevation of this unusual phenomenon in a reptilian system. Conclusion The three-finger toxins are characteristic of most elapid venoms but are rare in viperid venoms. We detected several ESTs encoding this group of toxins in this study. We also observed the presence of a transcript encoding a fused protein of two well-characterized toxins (Kunitz/BPTI and Waprins), and this is the first report of this kind of fusion in a snake toxin transcriptome. We propose that these new venom proteins may have ancillary functions for envenomation. The presence of a fused toxin indicates that in addition to gene duplication and accelerated evolution, exon shuffling or transcriptional splicing may also contribute to generating the diversity of toxins and toxin isoforms observed among snake venoms. The detection of low abundance toxins, as observed in this and other studies, indicates a greater compositional similarity of venoms (though potency will differ) among advanced snakes than has been previously recognized.
Collapse
Affiliation(s)
- Susanta Pahari
- Center for Post Graduate Studies, Sri Bhagawan Mahaveer Jain College, 18/3, 9th Main, Jayanagar 3rd Block, Bangalore, India.
| | | | | |
Collapse
|
14
|
Flockerzi A, Maydt J, Frank O, Ruggieri A, Maldener E, Seifarth W, Medstrand P, Lengauer T, Meyerhans A, Leib-Mösch C, Meese E, Mayer J. Expression pattern analysis of transcribed HERV sequences is complicated by ex vivo recombination. Retrovirology 2007; 4:39. [PMID: 17550625 PMCID: PMC1904241 DOI: 10.1186/1742-4690-4-39] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 06/06/2007] [Indexed: 11/25/2022] Open
Abstract
Background The human genome comprises numerous human endogenous retroviruses (HERVs) that formed millions of years ago in ancestral species. A number of loci of the HERV-K(HML-2) family are evolutionarily much younger. A recent study suggested an infectious HERV-K(HML-2) variant in humans and other primates. Isolating such a variant from human individuals would be a significant finding for human biology. Results When investigating expression patterns of specific HML-2 proviruses we encountered HERV-K(HML-2) cDNA sequences without proviral homologues in the human genome, named HERV-KX, that could very well support recently suggested infectious HML-2 variants. However, detailed sequence analysis, using the software RECCO, suggested that HERV-KX sequences were produced by recombination, possibly arising ex vivo, between transcripts from different HML-2 proviral loci. Conclusion As RT-PCR probably will be instrumental for isolating an infectious HERV-K(HML-2) variant, generation of "new" HERV-K(HML-2) sequences by ex vivo recombination seems inevitable. Further complicated by an unknown amount of allelic sequence variation in HERV-K(HML-2) proviruses, newly identified HERV-K(HML-2) variants should be interpreted very cautiously.
Collapse
MESH Headings
- Base Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Endogenous Retroviruses/genetics
- Gene Expression
- Genome, Human
- Humans
- Molecular Sequence Data
- Phylogeny
- Proviruses/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Recombination, Genetic
- Sequence Analysis, DNA
- Sequence Homology
- Software
Collapse
Affiliation(s)
- Aline Flockerzi
- Department of Human Genetics, Medical Faculty, University of Saarland, Homburg, Germany
| | - Jochen Maydt
- Max Planck-Institute for Informatics, Saarbruecken, Germany
| | - Oliver Frank
- Medical Faculty Mannheim of the Ruprecht-Karls, University of Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Human Genetics, Medical Faculty, University of Saarland, Homburg, Germany
| | - Esther Maldener
- Department of Human Genetics, Medical Faculty, University of Saarland, Homburg, Germany
| | - Wolfgang Seifarth
- Medical Faculty Mannheim of the Ruprecht-Karls, University of Heidelberg, Germany
| | - Patrik Medstrand
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | | | - Andreas Meyerhans
- Institute of Virology, Medical Faculty, University of Saarland, Homburg, Germany
| | - Christine Leib-Mösch
- Medical Faculty Mannheim of the Ruprecht-Karls, University of Heidelberg, Germany
- GSF – National Research Center for Environment and Health, Institute of Molecular Virology, Neuherberg, Germany
| | - Eckart Meese
- Department of Human Genetics, Medical Faculty, University of Saarland, Homburg, Germany
| | - Jens Mayer
- Department of Human Genetics, Medical Faculty, University of Saarland, Homburg, Germany
| |
Collapse
|
15
|
Zeng XC, Luo F, Li WX. Molecular dissection of venom from Chinese scorpion Mesobuthus martensii: identification and characterization of four novel disulfide-bridged venom peptides. Peptides 2006; 27:1745-54. [PMID: 16513212 DOI: 10.1016/j.peptides.2006.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Revised: 01/21/2006] [Accepted: 01/23/2006] [Indexed: 11/28/2022]
Abstract
Scorpion venom is composed of a large repertoire of biologically active polypeptides. However, most of these peptides remain to be identified and characterized. In this paper, we report the identification and characterization of four novel disulfide-bridged venom peptides (named BmKBTx, BmKITx, BmKKx1 and BmKKx2, respectively) from the Chinese scorpion, Mesobuthus martensii (also named Buthus martensii Karsch). BmKBTx is composed of 58 amino acid residues and cross-linked by three disulfide bridges. The sequence of BmKBTx shows some similarities to that of the toxin, birtoxin, and its analogs. It is likely that BmKBTx is a beta-toxin active on Na+ channels, which is toxic to either insects or mammals. BmKITx is composed of 71 amino acid residues with four disulfide bridges. It is the longest venom peptide identified from M. martensii so far. BmKITx shows little sequence identity with scorpion alpha-toxins toxic to insects. It is likely that BmKITx is a new type of Na+ -channel specific toxin active on both insects and mammals. BmKKx1 contains 38 amino acid residues cross-linked by three disulfide bridges and shows 84% sequence identity with BmTx3, an inhibitor of A-type K+ channel and HERG currents. BmKKx1 has been classified as alpha-KTx-15.8. BmKKx2 is composed of 36 residues and stabilized by three disulfide bridges. BmKKx2 is a new member of the gamma-K+ -channel toxin subfamily (classified as gamma-KTx 2.2). The venoms of scorpions thus continue to provide novel toxins with potential novel actions on targets.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- State Key Laboratory of Virology, Department of Biotechnology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | |
Collapse
|
16
|
Zeng XC, Luo F, Li WX. Characterization of a novel cDNA encoding a short venom peptide derived from venom gland of scorpion Buthus martensii Karsch: trans-splicing may play an important role in the diversification of scorpion venom peptides. Peptides 2006; 27:675-81. [PMID: 16150513 DOI: 10.1016/j.peptides.2005.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 07/29/2005] [Accepted: 07/29/2005] [Indexed: 11/25/2022]
Abstract
A novel cDNA clone (named BmKT-u) which is a hybrid molecule of the 5'-terminal region of BmKT' cDNA and the 3'-terminal region of an undocumented cDNA (named BmKu), was isolated from a cDNA library made from the venom gland of scorpion Buthus martensii Karsch. BmKT-u codes for a 30 amino acid residue precursor peptide composed of a 20-residue signal sequence, and a putative 10-residue novel mature peptide. Northern blot hybridization showed BmKT-u cDNA is generated from a transcript. RT-PCR experiments excluded the possibility that BmKT-u cDNA is an artifact generated during reverse transcription. Genomic amplifications performed with three pairs of BmKT-u gene-specific primers showed the BmKT-u gene does not exist in the genome of the scorpion as a single transcriptional unit. Genomic cloning for BmKT' showed that the BmKT' gene contains an intron of 509 bp inserted into the region encoding the C-terminal region of the signal peptide. A sequence alignment comparison of the cDNA of BmKT-u with genomic BmKT' revealed that the junction site of the hybrid molecule is located at the 5'-splicing site of the intron. The data suggest that the BmKT-u transcript is a naturally occurring mature mRNA that is generated by trans-splicing. Trans-splicing may contribute to the diversity of venom peptides from venomous animals.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- State Key Laboratory of Virology, Institute of Virology, Department of Biotechnology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China.
| | | | | |
Collapse
|
17
|
Cocquet J, Chong A, Zhang G, Veitia RA. Reverse transcriptase template switching and false alternative transcripts. Genomics 2006; 88:127-31. [PMID: 16457984 DOI: 10.1016/j.ygeno.2005.12.013] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 12/20/2005] [Accepted: 12/20/2005] [Indexed: 11/26/2022]
Abstract
Reverse transcriptase (RT) can switch from one template to another in a homology-dependent manner. In the study of eukaryotic transcripts, this propensity of RT can produce an artificially deleted cDNA, which can be wrongly interpreted as an alternative transcript. Here, we have investigated the presence of such template-switching artifacts in cDNA databases, by scanning a collection of human splice sites (Information for the Coordinates of Exons, ICE database). We have confirmed several cases at the experimental level. Artifacts represent a significant portion of apparently spliced sequences using noncanonical splice signals but are rare in the context of the whole database. However, care should be taken in the annotation of alternative transcripts, especially when the RT used is poorly thermostable and when the putative intron is flanked by direct repeats, which are the substrate for template switching.
Collapse
Affiliation(s)
- Julie Cocquet
- INSERM U709, Hôpital Cochin, Pavillon Baudelocque, 123 Bd de Port Royal, 75014 Paris, France
| | | | | | | |
Collapse
|
18
|
Královicová J, Vorechovský I. Intergenic transcripts in genes with phase I introns. Genomics 2005; 85:431-40. [PMID: 15780746 DOI: 10.1016/j.ygeno.2004.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 12/03/2004] [Indexed: 10/25/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality-control mechanism that detects and degrades aberrant transcripts prematurely terminating translation. NMD may be elicited by intergenic transcripts that contain premature termination codons (PTCs), but chimeric mRNAs of genes that have introns of identical phase would be predicted to lack PTCs and escape NMD. We examined intron phase I-containing HLA class II genes for the presence of intergenic mRNAs and found an extraordinary diversity of correctly spliced and polyadenylated intergenic transcripts. They lacked a significant homology at the chimeric joins and had no PTCs. Their expression levels were very low and positively correlated with the expression of natural transcripts. In contrast, pair-wise mixtures of separately transcribed plasmids carrying full-length HLA-DQB1, -DQA1, -DRB1, and -DRA cDNAs produced only hybrid molecules that lacked canonical exon boundaries, had homologous chimeric joins, and occasionally contained PTCs, implicating in vitro artifacts generated by template switching of Taq polymerase and reverse transcriptase. A differential exon structure of hybrid molecules observed in vitro and in cellular RNA preparations suggests that intergenic mRNAs with canonical exon boundaries arise in vivo during exon joining and/or transcription. Since the observed intergenic mRNAs may encode mixed class II heterodimers that were previously shown to present antigens it will be interesting to determine functional properties of such molecules in future studies.
Collapse
Affiliation(s)
- Jana Královicová
- Division of Human Genetics, University of Southampton School of Medicine, Southampton University Hospital, MP808, Tremona Road, Southampton SO16 6YD, UK
| | | |
Collapse
|
19
|
Bartsch H, Voigtsberger S, Baumann G, Morano I, Luther HP. Detection of a novel sense-antisense RNA-hybrid structure by RACE experiments on endogenous troponin I antisense RNA. RNA (NEW YORK, N.Y.) 2004; 10:1215-1224. [PMID: 15272119 PMCID: PMC1370611 DOI: 10.1261/rna.5261204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 05/11/2004] [Indexed: 05/24/2023]
Abstract
Conformational changes in the troponin/tropomyosin complex significantly alter the mechanical properties of cardiac muscle. Phosphorylation of cardiac troponin I, part of the troponin/tropomyosin complex, reduces calcium affinity, which leads to increased relaxation of cardiac muscle. Because cardiac troponin I plays a central role in tuning the heart to different work demands, detailed knowledge of troponin I protein regulation is required. Our group previously detected naturally occurring antisense RNA for troponin I in human and rat hearts, and here, attempt to unravel the structure of rat cardiac troponin I antisense RNA. We performed rapid amplification of cDNA ends (RACE) experiments and discovered antisense sequences identical to a copy of the sense mRNA, which led us to conclude that the antisense RNA must be transcribed from troponin I mRNA in the cytoplasm. Moreover, we isolated RNA structures comprising sense and antisense sequences in one continuous molecule. As we found no homolog structures described in the literature, we called this "hybrid RNA." Because a duplex formation was demonstrated previously we concluded that hybrid RNA is a consequence of a tight interaction between sense and antisense troponin I RNA in vivo, which we discuss in the article.
Collapse
Affiliation(s)
- Holger Bartsch
- Medical Clinic I, Department of Cardiology, Humboldt-University (Charité), Ziegelstr. 5-9, D10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
20
|
Zeng XC, Wang SX, Zhu Y, Zhu SY, Li WX. Identification and functional characterization of novel scorpion venom peptides with no disulfide bridge from Buthus martensii Karsch. Peptides 2004; 25:143-50. [PMID: 15062994 DOI: 10.1016/j.peptides.2003.12.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 12/10/2003] [Accepted: 12/10/2003] [Indexed: 11/28/2022]
Abstract
The scorpion venom peptides with no disulfide bridge are rarely identified and poorly characterized so far. Here, we report the identification and characterization of four novel disulfide-bridge-free venom peptides (BmKa1, BmKa2, BmKb1 and BmKn2) from Buthus martensii Kasch. BmKa1 and BmKa2 are very acidic and hydrophilic, showing no any similarity to other proteins, whereas BmKb1 and BmKn2 both are basic, alpha-helical peptide with an amidated C-terminus, showing a little homology with other peptides. Functional tests with synthetic peptide showed that BmKn2 has strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, whereas BmKb1 has weak activity in inhibiting the growth of these bacteria.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- Department of Biotechnology, Institute of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China.
| | | | | | | | | |
Collapse
|
21
|
|