1
|
Zuiderweg ERP, Bertelsen EB, Rousaki A, Mayer MP, Gestwicki JE, Ahmad A. Allostery in the Hsp70 chaperone proteins. Top Curr Chem (Cham) 2013; 328:99-153. [PMID: 22576356 PMCID: PMC3623542 DOI: 10.1007/128_2012_323] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Heat shock 70-kDa (Hsp70) chaperones are essential to in vivo protein folding, protein transport, and protein re-folding. They carry out these activities using repeated cycles of binding and release of client proteins. This process is under allosteric control of nucleotide binding and hydrolysis. X-ray crystallography, NMR spectroscopy, and other biophysical techniques have contributed much to the understanding of the allosteric mechanism linking these activities and the effect of co-chaperones on this mechanism. In this chapter these findings are critically reviewed. Studies on the allosteric mechanisms of Hsp70 have gained enhanced urgency, as recent studies have implicated this chaperone as a potential drug target in diseases such as Alzheimer's and cancer. Recent approaches to combat these diseases through interference with the Hsp70 allosteric mechanism are discussed.
Collapse
Affiliation(s)
- Erik R P Zuiderweg
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
2
|
Hacker SM, Hardt N, Buntru A, Pagliarini D, Möckel M, Mayer TU, Scheffner M, Hauck CR, Marx A. Fingerprinting differential active site constraints of ATPases. Chem Sci 2013. [DOI: 10.1039/c3sc21916j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
3
|
Srinivasan SR, Gillies A, Chang L, Thompson AD, Gestwicki JE. Molecular chaperones DnaK and DnaJ share predicted binding sites on most proteins in the E. coli proteome. MOLECULAR BIOSYSTEMS 2012; 8:2323-33. [PMID: 22732719 PMCID: PMC3462289 DOI: 10.1039/c2mb25145k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In Escherichia coli, the molecular chaperones DnaK and DnaJ cooperate to assist the folding of newly synthesized or unfolded polypeptides. DnaK and DnaJ bind to hydrophobic motifs in these proteins and they also bind to each other. Together, this system is thought to be sufficiently versatile to act on the entire proteome, which creates interesting challenges in understanding the interactions between DnaK, DnaJ and their thousands of potential substrates. To address this question, we computationally predicted the number and frequency of DnaK- and DnaJ-binding motifs in the E. coli proteome, guided by free energy-based binding consensus motifs. This analysis revealed that nearly every protein is predicted to contain multiple DnaK- and DnaJ-binding sites, with the DnaJ sites occurring approximately twice as often. Further, we found that an overwhelming majority of the DnaK sites partially or completely overlapped with the DnaJ-binding motifs. It is well known that high concentrations of DnaJ inhibit DnaK-DnaJ-mediated refolding. The observed overlapping binding sites suggest that this phenomenon may be explained by an important balance in the relative stoichiometry of DnaK and DnaJ. To test this idea, we measured the chaperone-assisted folding of two denatured substrates and found that the distribution of predicted DnaK- and DnaJ-binding sites was indeed a good predictor of the optimal stoichiometry required for folding. These studies provide insight into how DnaK and DnaJ might cooperate to maintain global protein homeostasis.
Collapse
Affiliation(s)
| | - Anne Gillies
- Chemical Biology Graduate Program, University of Michigan Ann Arbor, MI 48109
| | - Lyra Chang
- Chemical Biology Graduate Program, University of Michigan Ann Arbor, MI 48109
| | - Andrea D. Thompson
- Chemical Biology Graduate Program, University of Michigan Ann Arbor, MI 48109
| | - Jason E. Gestwicki
- Chemical Biology Graduate Program, University of Michigan Ann Arbor, MI 48109
- Department of Pathology and Biological Chemistry and the Life Sciences Institute, University of Michigan Ann Arbor, MI 48109
| |
Collapse
|
4
|
Chang L, Thompson AD, Ung P, Carlson HA, Gestwicki JE. Mutagenesis reveals the complex relationships between ATPase rate and the chaperone activities of Escherichia coli heat shock protein 70 (Hsp70/DnaK). J Biol Chem 2010; 285:21282-91. [PMID: 20439464 DOI: 10.1074/jbc.m110.124149] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli 70-kDa heat shock protein, DnaK, is a molecular chaperone that engages in a variety of cellular activities, including the folding of proteins. During this process, DnaK binds its substrates in coordination with a catalytic ATPase cycle. Both the ATPase and protein folding activities of DnaK are stimulated by its co-chaperones, DnaJ and GrpE. However, it is not yet clear how changes in the stimulated ATPase rate of DnaK impact the folding process. In this study, we performed mutagenesis throughout the nucleotide-binding domain of DnaK to generate a collection of mutants in which the stimulated ATPase rates varied from 0.7 to 13.6 pmol/microg/min(-1). We found that this range was largely established by differences in the ability of the mutants to be stimulated by one or both of the co-chaperones. Next, we explored how changes in ATPase rate might impact refolding of denatured luciferase in vitro and found that the two activities were poorly correlated. Unexpectedly, we found several mutants that refold luciferase normally in the absence of significant ATP turnover, presumably by increasing the flexibility of DnaK. Finally, we tested whether DnaK mutants could complement growth of DeltadnaK E. coli cells under heat shock and found that the ability to refold luciferase was more predictive of in vivo activity than ATPase rate. This study provides insights into how flexibility and co-chaperone interactions affect DnaK-mediated ATP turnover and protein folding.
Collapse
Affiliation(s)
- Lyra Chang
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
Heat shock proteins act as molecular chaperones, facilitating protein folding in cells of living organisms. Their role is particularly important in parasites because environmental changes associated with their life cycles place a strain on protein homoeostasis. Not surprisingly, some heat shock proteins are essential for the survival of the most virulent malaria parasite, Plasmodium falciparum. This justifies the need for a greater understanding of the specific roles and regulation of malarial heat shock proteins. Furthermore, heat shock proteins play a major role during invasion of the host by the parasite and mediate in malaria pathogenesis. The identification and development of inhibitor compounds of heat shock proteins has recently attracted attention. This is important, given the fact that traditional antimalarial drugs are increasingly failing, as a consequence of parasite increasing drug resistance. Heat shock protein 90 (Hsp90), Hsp70/Hsp40 partnerships and small heat shock proteins are major malaria drug targets. This review examines the structural and functional features of these proteins that render them ideal drug targets and the challenges of targeting these proteins towards malaria drug design. The major antimalarial compounds that have been used to inhibit heat shock proteins include the antibiotic, geldanamycin, deoxyspergualin and pyrimidinones. The proposed mechanisms of action of these molecules and the pathways they inhibit are discussed.
Collapse
Affiliation(s)
- Addmore Shonhai
- Department of Biochemistry & Microbiology, Zululand University, Kwadlangezwa, South Africa.
| |
Collapse
|
6
|
Liang WC, Lin MG, Chi MC, Hu HY, Lo HF, Chang HP, Lin LL. Deletion analysis of the C-terminal region of a molecular chaperone DnaK from Bacillus licheniformis. Arch Microbiol 2009; 191:583-93. [DOI: 10.1007/s00203-009-0485-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/14/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
|
7
|
Swain JF, Dinler G, Sivendran R, Montgomery DL, Stotz M, Gierasch LM. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol Cell 2007; 26:27-39. [PMID: 17434124 PMCID: PMC1894942 DOI: 10.1016/j.molcel.2007.02.020] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/24/2007] [Accepted: 02/20/2007] [Indexed: 11/16/2022]
Abstract
Hsp70 chaperones assist in protein folding, disaggregation, and membrane translocation by binding to substrate proteins with an ATP-regulated affinity that relies on allosteric coupling between ATP-binding and substrate-binding domains. We have studied single- and two-domain versions of the E. coli Hsp70, DnaK, to explore the mechanism of interdomain communication. We show that the interdomain linker controls ATPase activity by binding to a hydrophobic cleft between subdomains IA and IIA. Furthermore, the domains of DnaK dock only when ATP binds and behave independently when ADP is bound. Major conformational changes in both domains accompany ATP-induced docking: of particular importance, some regions of the substrate-binding domain are stabilized, while those near the substrate-binding site become destabilized. Thus, the energy of ATP binding is used to form a stable interface between the nucleotide- and substrate-binding domains, which results in destabilization of regions of the latter domain and consequent weaker substrate binding.
Collapse
Affiliation(s)
- Joanna F. Swain
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, Amherst, Massachusetts 01003 USA
| | - Gizem Dinler
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003 USA
| | - Renuka Sivendran
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, Amherst, Massachusetts 01003 USA
| | - Diana L. Montgomery
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003 USA
| | - Mathias Stotz
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, Amherst, Massachusetts 01003 USA
| | - Lila M. Gierasch
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, Amherst, Massachusetts 01003 USA
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003 USA
- *To whom correspondence should be addressed at: , phone: 413-545-6094, fax: 413-545-1289
| |
Collapse
|
8
|
Flechtner JB, Cohane KP, Mehta S, Slusarewicz P, Leonard AK, Barber BH, Levey DL, Andjelic S. High-Affinity Interactions between Peptides and Heat Shock Protein 70 Augment CD8+ T Lymphocyte Immune Responses. THE JOURNAL OF IMMUNOLOGY 2006; 177:1017-27. [DOI: 10.4049/jimmunol.177.2.1017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Moro F, Fernández-Sáiz V, Muga A. The allosteric transition in DnaK probed by infrared difference spectroscopy. Concerted ATP-induced rearrangement of the substrate binding domain. Protein Sci 2005; 15:223-33. [PMID: 16384998 PMCID: PMC2242457 DOI: 10.1110/ps.051732706] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The biological activity of DnaK, the bacterial representative of the Hsp70 protein family, is regulated by the allosteric interaction between its nucleotide and peptide substrate binding domains. Despite the importance of the nucleotide-induced cycling of DnaK between substrate-accepting and releasing states, the heterotropic allosteric mechanism remains as yet undefined. To further characterize this mechanism, the nucleotide-induced absorbance changes in the vibrational spectrum of wild-type DnaK was characterized. To assign the conformation sensitive absorption bands, two deletion mutants (one lacking the C-terminal alpha-helical subdomain and another comprising only the N-terminal ATPase domain), and a single-point DnaK mutant (T199A) with strongly reduced ATPase activity, were investigated by time-resolved infrared difference spectroscopy combined with the use of caged-nucleotides. The results indicate that (1) ATP, but not ADP, binding promotes a conformational change in both subdomains of the peptide binding domain that can be individually resolved; (2) these conformational changes are kinetically coupled, most likely to ensure a decrease in the affinity of DnaK for peptide substrates and a concomitant displacement of the lid away from the peptide binding site that would promote efficient diffusion of the released peptide to the medium; and (3) the alpha-helical subdomain contributes to stabilize the interdomain interface against the thermal challenge and allows bidirectional transmission of the allosteric signal between the ATPase and substrate binding domains at stress temperatures (42 degrees C).
Collapse
Affiliation(s)
- Fernando Moro
- Unidad de Biofísica (CSIC/UPV-EHU) y Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
| | | | | |
Collapse
|
10
|
Swain JF, Schulz EG, Gierasch LM. Direct comparison of a stable isolated Hsp70 substrate-binding domain in the empty and substrate-bound states. J Biol Chem 2005; 281:1605-11. [PMID: 16275641 DOI: 10.1074/jbc.m509356200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hsp70 family of molecular chaperones acts to prevent protein misfolding, import proteins into organelles, unravel protein aggregates, and enhance cell survival under stress conditions. These activities are all mediated by recognition of diverse hydrophobic sequences via a C-terminal substrate-binding domain. ATP-binding/hydrolysis by the N-terminal ATPase domain regulates the interconversion of the substrate-binding domain between low and high affinity conformations. The empty state of the substrate-binding domain has been difficult to study because of its propensity to bind nearly any available protein chain, even if only modestly hydrophobic. We have generated a new stable construct of the substrate-binding domain from the Escherichia coli Hsp70, DnaK, which has enabled us to compare the empty and peptide-bound conformations using NMR chemical shift analysis and hydrogen-deuterium exchange. We have determined that the empty state is, overall, quite similar to the peptide-bound state, contrary to a previous report. Peptide binding leads to a subtle alteration in the packing of the alpha-helical lid relative to the beta-subdomain. Significantly, we have shown that the chemical shifts of the substrate-binding domain and the ATPase domain do not change when they are placed together in a two-domain construct, whether or not peptide is bound, suggesting that, in the absence of nucleotide, the two domains of E. coli DnaK do not interact. We conclude that the isolated substrate-binding domain exists in a stable high affinity state in the absence of influence from a nucleotide-bound ATPase domain.
Collapse
Affiliation(s)
- Joanna F Swain
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
11
|
Chesnokova LS, Witt SN. Switches, catapults, and chaperones: steady-state kinetic analysis of Hsp70-substrate interactions. Biochemistry 2005; 44:11224-33. [PMID: 16101306 DOI: 10.1021/bi050787b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hsp70 chaperones are heterotropic allosteric systems in which ATP and misfolded or aggregated polypeptides are the activating ligands. To gain insight into the mechanism by which ATP and polypeptides regulate Hsp70 chaperone activity, the effect of a short peptide on the K(M) for ATP was analyzed using the Escherichia coli Hsp70 called DnaK. In the absence of peptide, the K(-P)(M) for ATP is 52 +/- 11 nM, whereas this value jumps to 14.6 +/- 1.6 microM in the presence of saturating peptide. This finding supports a mechanism in which ATP binding drives the chaperone in one direction and peptide binding pushes the chaperone back in the opposite direction (and thus increases K(M)), according to ATP + DnaK.P <==> ATP.DnaK.P <==> ATP.DnaK* + P, where ATP.DnaK.P is an intermediate from which competing ATP hydrolysis occurs (ATP.DnaK.P --> ADP.DnaK.P). We show that this branched mechanism can even explain how DnaK hydrolyzes ATP in the absence of peptide and that the true rate constant for DnaK-mediated ATP hydrolysis (k(hy)) in the absence of peptide may be as high as 0.5 s(-)(1) (rather than 5 x 10(-)(4) s(-)(1) as often stated in the literature). What happens is that a conformational equilibrium outcompetes ATP hydrolysis and effectively reduces the concentration of the intermediate by a factor of a thousand, resulting in the following relation: k(cat) = k(hy)/1000 = 5 x 10(-)(4) s(-)(1). How polypeptide substrates and the co-chaperone DnaJ modulate DnaK to achieve its theoretical maximal rate of ATP hydrolysis, which we suggest is 0.5 s(-)(1), is discussed.
Collapse
Affiliation(s)
- Liudmila S Chesnokova
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130-3932, USA
| | | |
Collapse
|
12
|
Shonhai A, Boshoff A, Blatch GL. Plasmodium falciparum heat shock protein 70 is able to suppress the thermosensitivity of an Escherichia coli DnaK mutant strain. Mol Genet Genomics 2005; 274:70-8. [PMID: 15973516 DOI: 10.1007/s00438-005-1150-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
Heat shock protein 70 (Hsp 70) and heat shock protein 40 (Hsp 40) are molecular chaperones that ensure that the proteins of the cell are properly folded and functional under both normal and stressful conditions. The malaria parasite Plasmodium falciparum is known to overproduce a heat shock protein 70 (PfHsp 70) in response to thermal stress; however, the in vivo function of this protein still needs to be explored. Using in vivo complementation assays, we found that PfHsp 70 was able to suppress the thermosensitivity of an Escherichia coli dnaK 756 strain, but not that of the corresponding deletion strain (DeltadnaK 52) or dnaK 103 strain, which produces a truncated DnaK. Constructs were generated that encoded the ATPase domain of PfHsp 70 fused to the substrate-binding domain (SBD) of E. coli DnaK (referred to as PfK), and the ATPase domain of E. coli DnaK coupled to the SBD of PfHsp 70 (KPf). PfK was unable to suppress the thermosensitivity of any of the E. coli strains. In contrast, KPf was able to suppress the thermosensitivity in the E. coli dnaK 756 strain. We also identified two key amino acid residues (V 401 and Q 402) in the linker region between the ATPase domain and SBD that are essential for the in vivo function of PfHsp 70. This is the first example of an Hsp70 from a eukaryotic parasite that can suppress thermosensitivity in a prokaryotic system. In addition, our results also suggest that interdomain communication is critical for the function of the PfHsp 70 and PfHsp 70-DnaK chimeras. We discuss the implications of these data for the mechanism of action of the Hsp70-Hsp 40 chaperone machinery.
Collapse
Affiliation(s)
- Addmore Shonhai
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| | | | | |
Collapse
|
13
|
D'Silva P, Liu Q, Walter W, Craig EA. Regulated interactions of mtHsp70 with Tim44 at the translocon in the mitochondrial inner membrane. Nat Struct Mol Biol 2004; 11:1084-91. [PMID: 15489862 DOI: 10.1038/nsmb846] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 08/27/2004] [Indexed: 02/07/2023]
Abstract
Preproteins synthesized on cytosolic ribosomes, but destined for the mitochondrial matrix, pass through the presequence translocase of the inner membrane. Translocation is driven by the import motor, having at its core the essential chaperone mtHsp70 (Ssc1 in yeast). MtHsp70 is tethered to the translocon channel at the matrix side of the inner membrane by the peripheral membrane protein Tim44. A key question in mitochondrial import is how the mtHsp70-Tim44 interaction is regulated. Here we report that Tim44 interacts with both the ATPase and peptide-binding domains of mtHsp70. Disruption of these interactions upon binding of polypeptide substrates requires concerted conformational changes involving both domains of mtHsp70. Our results fit a model in which regulated interactions between Tim44 and mtHsp70, controlled by polypeptide binding, are required for efficient translocation across the mitochondrial inner membrane in vivo.
Collapse
Affiliation(s)
- Patrick D'Silva
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
14
|
Revington M, Holder TM, Zuiderweg ERP. NMR study of nucleotide-induced changes in the nucleotide binding domain of Thermus thermophilus Hsp70 chaperone DnaK: implications for the allosteric mechanism. J Biol Chem 2004; 279:33958-67. [PMID: 15175340 DOI: 10.1074/jbc.m313967200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present an NMR investigation of the nucleotide-dependent conformational properties of a 44-kDa nucleotide binding domain (NBD) of an Hsp70 protein. Conformational changes driven by ATP binding and hydrolysis in the N-terminal NBD are believed to allosterically regulate substrate affinity in the C-terminal substrate binding domain. Several crystal structures of Hsc70 NBDs in different nucleotide states have, however, not shown significant structural differences. We have previously reported the NMR assignments of the backbone resonances of the NBD of the bacterial Hsp70 homologue Thermus thermophilus DnaK in the ADP-bound state. In this study we show, by assigning the NBD with the ATP/transition state analogue, ADP.AlFx, bound, that it closely mimics the ATP-bound state. Chemical shift difference mapping of the two nucleotide states identified differences in a cluster of residues at the interface between subdomains 1A and 1B. Further analysis of the spectra revealed that the ATP state exhibited a single conformation, whereas the ADP state was in slow conformational exchange between a form similar to the ATP state and another state unique to the ADP-bound form. A model is proposed of the allosteric mechanism based on the nucleotide state altering the balance of a dynamic equilibrium between the open and closed states. The observed chemical shift perturbations were concentrated in an area close to a previously described J-domain binding channel, confirming the importance of that region in the allosteric mechanism.
Collapse
Affiliation(s)
- Matthew Revington
- Biophysics Research Division and Department of Biological Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|