1
|
Gil‐Martínez A, Galiana‐Roselló C, Lázaro‐Gómez A, Mulet‐Rivero L, González‐García J. Deciphering the Interplay Between G-Quadruplexes and Natural/Synthetic Polyamines. Chembiochem 2025; 26:e202400873. [PMID: 39656761 PMCID: PMC12002122 DOI: 10.1002/cbic.202400873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The interplay between polyamines and G-quadruplexes has been largely overlooked in the literature, even though polyamines are ubiquitous metabolites in living cells and G-quadruplexes are transient regulatory elements, being both of them key regulators of biological processes. Herein, we compile the investigations connecting G-quadruplexes and biogenic polyamines to understand the biological interplay between them. Moreover, we overview the main works focused on synthetic ligands containing polyamines designed to target G-quadruplexes, aiming to unravel the structural motifs for designing potent and selective G4 ligands.
Collapse
Affiliation(s)
- Ariadna Gil‐Martínez
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Cristina Galiana‐Roselló
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
- Príncipe Felipe Research CenterEduardo Primo Yúfera, 346012ValenciaSpain
| | - Andrea Lázaro‐Gómez
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Laura Mulet‐Rivero
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Jorge González‐García
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| |
Collapse
|
2
|
Falanga AP, Terracciano M, Oliviero G, Roviello GN, Borbone N. Exploring the Relationship between G-Quadruplex Nucleic Acids and Plants: From Plant G-Quadruplex Function to Phytochemical G4 Ligands with Pharmaceutic Potential. Pharmaceutics 2022; 14:2377. [PMID: 36365194 PMCID: PMC9698481 DOI: 10.3390/pharmaceutics14112377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 10/31/2023] Open
Abstract
G-quadruplex (G4) oligonucleotides are higher-order DNA and RNA secondary structures of enormous relevance due to their implication in several biological processes and pathological states in different organisms. Strategies aiming at modulating human G4 structures and their interrelated functions are first-line approaches in modern research aiming at finding new potential anticancer treatments or G4-based aptamers for various biomedical and biotechnological applications. Plants offer a cornucopia of phytocompounds that, in many cases, are effective in binding and modulating the thermal stability of G4s and, on the other hand, contain almost unexplored G4 motifs in their genome that could inspire new biotechnological strategies. Herein, we describe some G4 structures found in plants, summarizing the existing knowledge of their functions and biological role. Moreover, we review some of the most promising G4 ligands isolated from vegetal sources and report on the known relationships between such phytochemicals and G4-mediated biological processes that make them potential leads in the pharmaceutical sector.
Collapse
Affiliation(s)
- Andrea P. Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Institute of Applied Sciences and Intelligent Systems, Italian National Council of Research (ISASI-CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
3
|
Nishio M, Tsukakoshi K, Ikebukuro K. G-quadruplex: Flexible conformational changes by cations, pH, crowding and its applications to biosensing. Biosens Bioelectron 2021; 178:113030. [PMID: 33524709 DOI: 10.1016/j.bios.2021.113030] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
G-quadruplex (G4) is a non-canonical structure that is formed in G-rich sequences of nucleic acids. G4s play important roles in vivo, such as telomere maintenance, transcription, and DNA replication. There are three typical topologies of G4: parallel, anti-parallel, and hybrid. In general, metal cations, such as potassium and sodium, stabilize G4s through coordination in the G-quartet. While G4s have some functions in vivo, there are many reports of developed applications that use G4s. As various conformations of G4s could form from one sequence depending on varying conditions, many researchers have developed G4-based sensors. Furthermore, G4 is a great scaffold of aptamers since many aptamers folded into G4s have also been reported. However, there are some challenges about its practical use due to the difference between practical sample conditions and experimental ones. G4 conformations are dramatically altered by the surrounding conditions, such as metal cations, pH, and crowding. Many studies have been conducted to characterize G4 conformations under various conditions, not only to use G4s in practical applications but also to reveal its function in vivo. In this review, we summarize recent studies that have investigated the effects of surrounding conditions (e.g., metal cations, pH, and crowding) on G4 conformations and the application of G4s mainly in biosensor fields, and in others.
Collapse
Affiliation(s)
- Maui Nishio
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
4
|
Musumeci D, Mokhir A, Roviello GN. Synthesis and nucleic acid binding evaluation of a thyminyl l-diaminobutanoic acid-based nucleopeptide. Bioorg Chem 2020; 100:103862. [PMID: 32428744 DOI: 10.1016/j.bioorg.2020.103862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 01/09/2023]
Abstract
Herein we present the synthesis of a l-diaminobutanoic acid (DABA)-based nucleopeptide (3), with an oligocationic backbone, realized by solid phase peptide synthesis using thymine-bearing DABA moieties alternating in the sequence with free ones. CD studies evidenced the ability of this oligothymine nucleopeptide, well soluble in aqueous solution, to alter the secondary structure particularly of complementary RNA (poly rA vs poly rU) and inosine-rich RNAs, like poly rI and poly rIC, and showed its preference in binding double vs single-stranded DNAs. Furthermore, ESI mass spectrometry revealed that 3 bound also G-quadruplex (G4) DNAs, with either parallel or antiparallel topologies (adopted in our experimental conditions by c-myc and tel22, respectively). However, it caused detectable changes only in the CD of c-myc (whose parallel G4 structure was also thermally stabilized by ~3 °C), while leaving unaltered the antiparallel structure of tel22. Interestingly, CD and UV analyses suggested that 3 induced a hybrid mixed parallel/antiparallel G4 DNA structure in a random-coil tel22 DNA obtained under salt-free buffer conditions. Titration of the random-coil telomeric DNA with 3 gave quantitative information on the stoichiometry of the obtained complex. Overall, the findings of this work suggest that DABA-based nucleopeptides are synthetic nucleic acid analogues potentially useful in antigene and antisense strategies. Nevertheless, the hexathymine DABA-nucleopeptide shows an interesting behaviour as molecular tool per se thanks to its efficacy in provoking G4 induction in random coil G-rich DNA, as well as for the possibility to bind and stabilize c-myc oncogene in a G4 structure.
Collapse
Affiliation(s)
- Domenica Musumeci
- Department of Chemical Sciences, Federico II University, Via Cintia 21, 80126 Naples, Italy; Istituto di Biostrutture e Bioimmagini IBB - CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Friedrich Alexander University, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Giovanni N Roviello
- Istituto di Biostrutture e Bioimmagini IBB - CNR, Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
5
|
Lightfoot HL, Hagen T, Tatum NJ, Hall J. The diverse structural landscape of quadruplexes. FEBS Lett 2019; 593:2083-2102. [PMID: 31325371 DOI: 10.1002/1873-3468.13547] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
G-quadruplexes are secondary structures formed in G-rich sequences in DNA and RNA. Considerable research over the past three decades has led to in-depth insight into these unusual structures in DNA. Since the more recent exploration into RNA G-quadruplexes, such structures have demonstrated their in cellulo existence, function and roles in pathology. In comparison to Watson-Crick-based secondary structures, most G-quadruplexes display highly redundant structural characteristics. However, numerous reports of G-quadruplex motifs/structures with unique features (e.g. bulges, long loops, vacancy) have recently surfaced, expanding the repertoire of G-quadruplex scaffolds. This review addresses G-quadruplex formation and structure, including recent reports of non-canonical G-quadruplex structures. Improved methods of detection will likely further expand this collection of novel structures and ultimately change the face of quadruplex-RNA targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Timo Hagen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Natalie J Tatum
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| |
Collapse
|
6
|
Abstract
G-quadruplex DNAzymes are short DNA aptamers with repeating G4 quartets bound in a non-covalent complex with hemin. These G4/Hemin structures exhibit versatile peroxidase-like catalytic activity with a wide range of potential applications in biosensing and biotechnology. Current efforts are aimed at gaining a better understanding of the molecular mechanism of DNAzyme catalysis as well as devising strategies for improving their catalytic efficiency. Multimerisation of discrete units of G-quadruplexes to form multivalent DNAzyes is an emerging design strategy aimed at enhancing the peroxidase activities of DNAzymes. While this approach holds promise of generating more active multivalent G-quadruplex DNAzymes, few examples have been studied and it is not clear what factors determine the enhancement of catalytic activities of multimeric DNAzymes. In this study, we report the design and characterisation of multimers of five G-quadruplex sequences (AS1411, Bcl-2, c-MYC, PS5.M and PS2.M). Our results show that multimerisation of G-quadruplexes that form parallel structure (AS1411, Bcl-2, c-MYC) leads to significant rate enhancements characteristic of cooperative and/or synergistic interactions between the monomeric units. In contrast, multimerisation of DNA sequences that form non-parallel structures (PS5.M and PS2.M) did not exhibit similar levels of synergistic increase in activities. These results show that design of multivalent G4/Hemin structures could lead to a new set of versatile and efficient DNAzymes with enhanced capacity to catalyse peroxidase-mimic reactions.
Collapse
|
7
|
Rocha RO, Wilson RA. Essential, deadly, enigmatic: Polyamine metabolism and roles in fungal cells. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Lightfoot HL, Hagen T, Cléry A, Allain FHT, Hall J. Control of the polyamine biosynthesis pathway by G 2-quadruplexes. eLife 2018; 7:e36362. [PMID: 30063205 PMCID: PMC6067879 DOI: 10.7554/elife.36362] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/13/2018] [Indexed: 12/16/2022] Open
Abstract
G-quadruplexes are naturally-occurring structures found in RNAs and DNAs. Regular RNA G-quadruplexes are highly stable due to stacked planar arrangements connected by short loops. However, reports of irregular quadruplex structures are increasing and recent genome-wide studies suggest that they influence gene expression. We have investigated a grouping of G2-motifs in the UTRs of eight genes involved in polyamine biosynthesis, and concluded that several likely form novel metastable RNA G-quadruplexes. We performed a comprehensive biophysical characterization of their properties, comparing them to a reference G-quadruplex. Using cellular assays, together with polyamine-depleting and quadruplex-stabilizing ligands, we discovered how some of these motifs regulate and sense polyamine levels, creating feedback loops during polyamine biosynthesis. Using high-resolution 1H-NMR spectroscopy, we demonstrated that a long-looped quadruplex in the AZIN1 mRNA co-exists in salt-dependent equilibria with a hairpin structure. This study expands the repertoire of regulatory G-quadruplexes and demonstrates how they act in unison to control metabolite homeostasis.
Collapse
Affiliation(s)
- Helen Louise Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| | - Timo Hagen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| | - Antoine Cléry
- Department of Biology, Institute of Molecular Biology and BiophysicsETH ZurichZurichSwitzerland
- Biomolecular NMR spectroscopy platformETH ZurichZurichSwitzerland
| | | | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| |
Collapse
|
9
|
Narayanaswamy N, Unnikrishnan M, Gupta M, Govindaraju T. Fluorescence reporting of G-quadruplex structures and modulating their DNAzyme activity using polyethylenimine-pyrene conjugate. Bioorg Med Chem Lett 2015; 25:2395-400. [PMID: 25913200 DOI: 10.1016/j.bmcl.2015.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/19/2015] [Accepted: 04/03/2015] [Indexed: 01/25/2023]
Abstract
Four-stranded G-quadruplex structure is one of the most important non-canonical secondary structures of DNA formed by guanine (G)-rich sequences. G-rich DNA sequences are known to occur in the human genome, especially in the telomere 3' end and in oncogene promoters such as c-MYC and c-KIT. In this context, we designed pyrene-conjugated polyethylenimine (PEI-Py) as a fluorescence reporter for the recognition and detection of G-quadruplex structures of G-rich deoxyoligonucleotides and human telomere and gene promoter sequences, under ambient conditions. PEI-Py exhibited prominent pyrene excimer emission in the presence of G-quadruplex structures of G-rich deoxyoligonucleotides and biologically relevant DNA sequences. PEI-Py further displayed the modulation of DNAzyme activity of various G-quadruplex structures in the presence of hemin and hydrogen peroxide.
Collapse
Affiliation(s)
- Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bengaluru 560064, India
| | - Manju Unnikrishnan
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bengaluru 560064, India
| | - Mona Gupta
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bengaluru 560064, India
| | - T Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bengaluru 560064, India.
| |
Collapse
|
10
|
The flanking sequence contributes to the immobilisation of spermine at the G-quadruplex in the NHE (nuclease hypersensitivity element) III1 of the c-Myc promoter. FEBS Lett 2014; 588:1949-54. [PMID: 24735723 DOI: 10.1016/j.febslet.2014.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 11/23/2022]
Abstract
Defining the molecular basis of the DNA sequence selectivity of polyamine binding is central to understanding polyamine-dependent gene expression. We have studied, by selective NMR experiments, the variation of spermine mobility and conformation in the presence of G-quadruplexes formed by sequences of the purine-rich strand of the c-Myc promoter, nuclease hypersensitivity element III1 (NHE III1). All the NHE quadruplexes restrict spermine mobility and induce a spermine conformational change but the most effective immobilisation occurs when all five G-tracts of the NHE III1 are present. This suggests structure within the nucleotides flanking the G-quadruplex has a role in immobilising spermine.
Collapse
|
11
|
Qi C, Zhang N, Yan J, Liu X, Bing T, Mei H, Shangguan D. Activity enhancement of G-quadruplex/hemin DNAzyme by spermine. RSC Adv 2014. [DOI: 10.1039/c3ra45429k] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
12
|
Brzezinska J, Gdaniec Z, Popenda L, Markiewicz WT. Polyaminooligonucleotide: NMR structure of duplex DNA containing a nucleoside with spermine residue, N-[4,9,13-triazatridecan-1-yl]-2'-deoxycytidine. Biochim Biophys Acta Gen Subj 2013; 1840:1163-70. [PMID: 24361616 DOI: 10.1016/j.bbagen.2013.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/26/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND The nature of the polyamine-DNA interactions at a molecular level is not clearly understood. METHODS In order to shed light on the binding preferences of polyamine with nucleic acids, the NMR solution structure of the DNA duplex containing covalently bound spermine was determined. RESULTS The structure of 4-N-[4,9,13-triazatridecan-1-yl]-2'-deoxycytidine (dCSp) modified duplex was compared to the structure of the reference duplex. Both duplexes are regular right-handed helices with all attributes of the B-DNA form. The spermine chain which is located in a major groove and points toward the 3' end of the modified strand does not perturb the DNA structure. CONCLUSION In our study the charged polyamine alkyl chain was found to interact with the DNA surface. In the majority of converged structures we identified the presumed hydrogen bonding interactions between O6 and N7 atoms of G4 and the first internal -NH2(+)- amino group. Additional interaction was found between the second internal -NH2(+)- amino group and the oxygen atom of the phosphate of C3 residue. GENERAL SIGNIFICANCE The knowledge of the location and nature of a structure-specific binding site for spermine in DNA should be valuable in understanding gene expression and in the design of new therapeutic drugs.
Collapse
Affiliation(s)
- Jolanta Brzezinska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, PL-61704 Poznan, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, PL-61704 Poznan, Poland.
| | - Lukasz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, PL-61704 Poznan, Poland
| | - Wojciech T Markiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, PL-61704 Poznan, Poland.
| |
Collapse
|
13
|
Keniry MA, Owen EA. Insight into the molecular recognition of spermine by DNA quadruplexes from an NMR study of the association of spermine with the thrombin-binding aptamer. J Mol Recognit 2013; 26:308-17. [PMID: 23657986 DOI: 10.1002/jmr.2274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/22/2013] [Accepted: 02/23/2013] [Indexed: 01/22/2023]
Abstract
The preferred residence sites and the conformation of DNA-bound polyamines are central to understanding the regulatory roles of polyamines. To this end, we have used a series of selective (13)C-edited and selective total correlation spectroscopy-edited one-dimensional (1D) nuclear Overhauser effect spectroscopy NMR experiments to determine a number of intramolecular (1)H nuclear Overhauser effect (NOE) connectivities in (13)C-labelled spermine bound to the thrombin-binding aptamer. The results provide evidence that the aptamer-bound spermine adopts a conformation that optimizes electrostatic and hydrogen bond contacts with the aptamer backbone. The distance between the nitrogen atoms of the central aminobutyl is reduced by an increase in the population of gauche conformers at the C6-C7 bonds, which results in either a curved or S-shaped spermine conformation. Molecular modelling contributes insight toward the mode of spermine binding of these spermine structures within the narrow grooves of DNA quadruplexes. In each case, the N5 ammonium group makes hydrogen bonds with two nearby phosphates across the narrow groove. Our results have implications for the understanding of chromatin structure and the rational design of quadruplex-binding drugs.
Collapse
Affiliation(s)
- Max A Keniry
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
| | | |
Collapse
|
14
|
Elahi MY, Bathaie S, Mousavi M, Hoshyar R, Ghasemi S. A new DNA-nanobiosensor based on G-quadruplex immobilized on carbon nanotubes modified glassy carbon electrode. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Ruhayel RA, Langner JS, Oke MJ, Berners-Price SJ, Zgani I, Farrell NP. Chimeric platinum-polyamines and DNA binding. Kinetics of DNA interstrand cross-link formation by dinuclear platinum complexes with polyamine linkers. J Am Chem Soc 2012; 134:7135-46. [PMID: 22443454 DOI: 10.1021/ja301397h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The first observation of a polyamine-DNA interaction using 2D [(1)H, (15)N] HSQC NMR spectroscopy allows study of the role of the linker in polynuclear platinum-DNA interactions and a novel "anchoring" of the polyamine by Pt-DNA bond formation allows examination of the details of conformational B → Z transitions induced by the polyamine. The kinetics and mechanism of the stepwise formation of 5'-5' 1,4-GG interstrand cross-links (IXLs) by fully (15)N-labeled [{trans-PtCl((15)NH(3))(2)}(2){μ-((15)NH(2)(CH(2))(6)(15)NH(2)(CH(2))(6)(15)NH(2))}](3+) (1,1/t,t-6,6, 1) and [{trans-PtCl((15)NH(3))(2)}(2){μ-((15)NH(2)(CH(2))(6)(15)NH(2)(CH(2))(2)(15)NH(2)(CH(2))(6)(15)NH(2))}](4+) (1,1/t,t-6,2,6, 1') with the self-complementary oligonucleotide 5'-{d(ATATGTACATAT)(2)} (duplex I) are compared to the analogous reaction with 1,0,1/t,t,t (BBR3464) under identical conditions (pH 5.4, 298 K). Initial electrostatic interactions with the DNA are delocalized and followed by aquation to form the monoaqua monochloro species. The rate constant for monofunctional adduct formation, k(MF), for 1 (0.87 M(-1) s(-1)) is 3.5 fold higher than for 1,0,1/t,t,t (0.25 M(-1) s(-1); the value could not be calculated for 1' due to peak overlap). The evidence suggests that several conformers of the bifunctional adduct form, whereas for 1,0,1/t,t,t only two discrete conformers were observed. The combined effect of the conformers observed for 1 and 1' may play a crucial role in the increased potency of these novel complexes compared to 1,0,1/t,t,t. Treated as a single final product, the rate of formation of the 5'-5' 1,4-GG IXL, k(CH), for 1 (k(CH) = 4.37 × 10(-5) s(-1)) is similar to that of 1,0,1/t,t,t, whereas the value for 1' is marginally higher (k(CH) = 5.4 × 10(-5) s(-1)).
Collapse
Affiliation(s)
- Rasha A Ruhayel
- School of Biomedical, Biomolecular & Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | | | | | | | | | | |
Collapse
|
16
|
Utilizing G-quadruplex formation to target 8-oxoguanine in telomeric sequences. Bioorg Med Chem Lett 2011; 21:6357-61. [DOI: 10.1016/j.bmcl.2011.08.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 11/24/2022]
|
17
|
Sun H, Xiang J, Liu Y, Li L, Li Q, Xu G, Tang Y. A stabilizing and denaturing dual-effect for natural polyamines interacting with G-quadruplexes depending on concentration. Biochimie 2011; 93:1351-6. [DOI: 10.1016/j.biochi.2011.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 06/07/2011] [Indexed: 01/31/2023]
|
18
|
Fu Y, Wang X, Zhang J, Xiao Y, Li W, Wang J. Orderly microaggregates of G-/C-rich oligonucleotides associated with spermine. Biomacromolecules 2011; 12:747-56. [PMID: 21235226 DOI: 10.1021/bm101372h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Spermine-induced orderly assembling properties of G-/C-rich oligonucleotides are investigated in dilute and crowding conditions. The first time we report that the parallel G-quadruplexes is preferential to condense into anisotropic microaggregates in the presence of spermine, whereas the hybrid-type and the antiparallel G-quadruplexes have no significant interactions with spermine; and spermine can induce the condensation of i-motif C-rich oligonucleotides other than the random coiled C-rich strands. Moreover, the condensation of C-rich oligonucleotides can be reversibly regulated by pH and temperature. G-/C-rich oligonucleotides exhibit the cholesteric liquid crystalline phase at low strand concentration in the presence of spermine under crowding conditions. The results illuminate that the parallel G-quadruplex and i-motifs are probably necessity conformations for G-/C-rich oligonucleotides that involved in the regulation of chromosome organization in living cells.
Collapse
Affiliation(s)
- Yan Fu
- Key Laboratory for Green Chemical Technology MOE, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Jastrzab R, Lomozik L. Estimation of the Effectiveness of the Phosphate Group in Binary Phosphoserine/Biogenic Amine Systems in Aqueous Solution. J SOLUTION CHEM 2009. [DOI: 10.1007/s10953-009-9424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Kumar N, Basundra R, Maiti S. Elevated polyamines induce c-MYC overexpression by perturbing quadruplex-WC duplex equilibrium. Nucleic Acids Res 2009; 37:3321-31. [PMID: 19324889 PMCID: PMC2691834 DOI: 10.1093/nar/gkp196] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The biological role of quadruplexes and polyamines has been independently associated with cancer. However, quadruplex-polyamine mediated transcriptional regulation remain unaddressed. Herein, using c-MYC quadruplex model, we have attempted to understand quadruplex–polyamine interaction and its role in transcriptional regulation. We initially employed biophysical approach involving CD, UV and FRET to understand the role of polyamines (spermidine and spermine) on conformation, stability, molecular recognition of quadruplex and to investigate the effect of polyamines on quadruplex–Watson Crick duplex transition. Our study demonstrates that polyamines affect the c-MYC quadruplex conformation, perturb its recognition properties and delays duplex formation. The relative free energy difference (ΔΔG°) between the duplex and quadruplex structure indicate that polyamines stabilize and favor c-MYC quadruplex over duplex. Further, we investigated the influence of polyamine mediated perturbation of this equilibrium on c-MYC expression. Our results suggest that polyamines induce structural transition of c-MYC quadruplex to a transcriptionally active motif with distinctive molecular recognition property, which drives c-MYC expression. These findings may allow exploiting quadruplex–polyamines interaction for developing antiproliferative strategies to combat aberrant gene expression.
Collapse
Affiliation(s)
| | | | - Souvik Maiti
- *To whom correspondence should be addressed. Tel: +91 11 2766 6156; Fax: +91 11 2766 7471; ,
| |
Collapse
|
21
|
|
22
|
Franceschin M, Lombardo CM, Pascucci E, D’Ambrosio D, Micheli E, Bianco A, Ortaggi G, Savino M. The number and distances of positive charges of polyamine side chains in a series of perylene diimides significantly influence their ability to induce G-quadruplex structures and inhibit human telomerase. Bioorg Med Chem 2008; 16:2292-304. [DOI: 10.1016/j.bmc.2007.11.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/16/2007] [Accepted: 11/23/2007] [Indexed: 11/30/2022]
|
23
|
Keniry MA, Owen EA. An investigation of the dynamics of spermine bound to duplex and quadruplex DNA by (13)C NMR spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:637-46. [PMID: 17598053 DOI: 10.1007/s00249-007-0136-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 01/14/2007] [Accepted: 01/17/2007] [Indexed: 11/30/2022]
Abstract
A detailed analysis of the (13)C relaxation of (13)C-labelled spermine bound to duplex and quadruplex DNA is presented. T(1), T(2) and heteronuclear NOE data were collected at four (13)C frequencies (75.4, 125.7, 150.9 and 201.2 MHz). The data were analyzed in terms of a frequency-dependent order parameter, S (2)(omega), to estimate the generalized order parameter and the contributions to the relaxation from different motional frequencies in the picosecond-nanosecond timescale and from any exchange processes that may be occurring on the microsecond-millisecond timescale. The relaxation data was surprisingly similar for spermine bound to two different duplexes and a linear parallel quadruplex. Analysis of the relaxation data from these complexes confirmed the conclusions of previous studies that the dominant motion of spermine is independent of the macroscopic tumbling of the DNA and has an effective correlation time of approximately 50 ps. In contrast, spermine bound to a folded antiparallel quadruplex had faster relaxation rates, especially R (2). As with the other complexes, a fast internal motion of the order of 50 ps makes a substantial contribution to the relaxation. The generalized order parameter for spermine bound to duplex DNA and the linear quadruplex is small but is larger for spermine bound to the folded quadruplex. In the latter case, there is evidence for exchange between at least two populations of spermine occurring on the microsecond-millisecond timescale.
Collapse
Affiliation(s)
- Max A Keniry
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | | |
Collapse
|
24
|
Lomozik L, Jastrzab R. Interference of Copper(II) ions with Non-covalent Interactions in Uridine or Uridine 5′-Monophosphate Systems with Adenosine, Cytidine, Thymidine and their Monophosphates in Aqueous Solution. J SOLUTION CHEM 2007. [DOI: 10.1007/s10953-006-9114-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Gasowska A. Coordination Centres of Purine Nucleotides: Adenosine-5′-diphosphate and Adenosine-5′-triphosphate in their Reactions with Nickel(II), Cobalt(II) and Tetramines. Z Anorg Allg Chem 2006. [DOI: 10.1002/zaac.200600114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Interactions of 1,12-diamino-4,9-dioxadodecane (OSpm) and Cu(II) ions with pyrimidine and purine nucleotides: adenosine-5'-monophosphate (AMP) and cytidine-5'-monophosphate (CMP). J Inorg Biochem 2006; 100:1781-9. [PMID: 16899296 DOI: 10.1016/j.jinorgbio.2006.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 06/21/2006] [Accepted: 06/25/2006] [Indexed: 11/21/2022]
Abstract
The interactions of Cu(II) ions with adenosine-5'-monophosphate (AMP), cytidine-5'-monophosphate (CMP) and 1,12-diamino-4,9-dioxadodecane (OSpm) were studied. A potentiometric method was applied to determine the composition and stability constants of complexes formed, while the mode of interactions was analysed by spectral methods (ultraviolet and visible spectroscopy (UV-Vis), electron paramagnetic resonance (EPR), (13)C NMR, (31)P NMR). In metal-free systems, molecular complexes nucleotide-polyamine (NMP)H(x)(OSpm) were formed. The endocyclic nitrogen atoms of the purine ring N(1), N(7), the nitrogen atom of the pyrimidine ring N(3), the oxygen atoms of the phosphate group of the nucleotide and the protonated nitrogen atoms of the polyamine were the reaction centres. The mode of interaction of the metal ion with OSpm and the nucleotides (AMP or CMP) in the coordination compounds was established. In the system Cu(II)/OSpm the dinuclear complex Cu(2)(OSpm) forms, while in the ternary systems Cu(II)/nucleotide/OSpm the species type MH(x)LL' and MLL' appear. In the MH(x)LL' type species, the main centres of copper (II) ion binding in the nucleotide are the phosphate groups. The protonated amino groups of OSpm are involved in non-covalent interaction with the nitrogen atoms N(1), N(7) or N(3) of the purine or pyrimidine ring, whereas at higher pH, deprotonated nitrogen atoms of polyamine are engaged in metallation in MLL' species.
Collapse
|
27
|
Lomozik L, Jastrzab R. Noncovalent Interaction of Uridine 5′-Monophosphate with Adenosine, Cytidine, and Thymidine, as well as Adenosine 5′-Monophosphate and Cytidine 5′-Monophosphate in Aqueous Solution. J SOLUTION CHEM 2006. [DOI: 10.1007/s10953-006-9376-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Lomozik L, Gasowska A, Bregier-Jarzebowska R, Jastrzab R. Coordination chemistry of polyamines and their interactions in ternary systems including metal ions, nucleosides and nucleotides. Coord Chem Rev 2005. [DOI: 10.1016/j.ccr.2005.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|