1
|
Zeng J, Song K, Wang J, Wen H, Zhou J, Ni T, Lu H, Yu Y. Characterization and optimization of 5´ untranslated region containing poly-adenine tracts in Kluyveromyces marxianus using machine-learning model. Microb Cell Fact 2024; 23:7. [PMID: 38172836 PMCID: PMC10763412 DOI: 10.1186/s12934-023-02271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The 5´ untranslated region (5´ UTR) plays a key role in regulating translation efficiency and mRNA stability, making it a favored target in genetic engineering and synthetic biology. A common feature found in the 5´ UTR is the poly-adenine (poly(A)) tract. However, the effect of 5´ UTR poly(A) on protein production remains controversial. Machine-learning models are powerful tools for explaining the complex contributions of features, but models incorporating features of 5´ UTR poly(A) are currently lacking. Thus, our goal is to construct such a model, using natural 5´ UTRs from Kluyveromyces marxianus, a promising cell factory for producing heterologous proteins. RESULTS We constructed a mini-library consisting of 207 5´ UTRs harboring poly(A) and 34 5´ UTRs without poly(A) from K. marxianus. The effects of each 5´ UTR on the production of a GFP reporter were evaluated individually in vivo, and the resulting protein abundance spanned an approximately 450-fold range throughout. The data were used to train a multi-layer perceptron neural network (MLP-NN) model that incorporated the length and position of poly(A) as features. The model exhibited good performance in predicting protein abundance (average R2 = 0.7290). The model suggests that the length of poly(A) is negatively correlated with protein production, whereas poly(A) located between 10 and 30 nt upstream of the start codon (AUG) exhibits a weak positive effect on protein abundance. Using the model as guidance, the deletion or reduction of poly(A) upstream of 30 nt preceding AUG tended to improve the production of GFP and a feruloyl esterase. Deletions of poly(A) showed inconsistent effects on mRNA levels, suggesting that poly(A) represses protein production either with or without reducing mRNA levels. CONCLUSION The effects of poly(A) on protein production depend on its length and position. Integrating poly(A) features into machine-learning models improves simulation accuracy. Deleting or reducing poly(A) upstream of 30 nt preceding AUG tends to enhance protein production. This optimization strategy can be applied to enhance the yield of K. marxianus and other microbial cell factories.
Collapse
Affiliation(s)
- Junyuan Zeng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Kunfeng Song
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Jingqi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Haimei Wen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China.
| |
Collapse
|
2
|
Bühler M, Tuck AC. Scaling up dissection of functional RNA elements. Nat Struct Mol Biol 2020; 27:771-773. [PMID: 32747786 DOI: 10.1038/s41594-020-0482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | | |
Collapse
|
3
|
Vopálenský V, Sýkora M, Mašek T, Pospíšek M. Messenger RNAs of Yeast Virus-Like Elements Contain Non-templated 5' Poly(A) Leaders, and Their Expression Is Independent of eIF4E and Pab1. Front Microbiol 2019; 10:2366. [PMID: 31736885 PMCID: PMC6831550 DOI: 10.3389/fmicb.2019.02366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/30/2019] [Indexed: 02/01/2023] Open
Abstract
We employed virus-like elements (VLEs) pGKL1,2 from Kluyveromyces lactis as a model to investigate the previously neglected transcriptome of the broader group of yeast cytoplasmic linear dsDNA VLEs. We performed 5′ and 3′ RACE analyses of all pGKL1,2 mRNAs and found them not 3′ polyadenylated and containing frequently uncapped 5′ poly(A) leaders that are not complementary to VLE genomic DNA. The degree of 5′ capping and/or 5′ mRNA polyadenylation is specific to each gene and is controlled by the corresponding promoter region. The expression of pGKL1,2 transcripts is independent of eIF4E and Pab1 and is enhanced in lsm1Δ and pab1Δ strains. We suggest a model of primitive pGKL1,2 gene expression regulation in which the degree of 5′ mRNA capping and 5′ non-template polyadenylation, together with the presence of negative regulators such as Pab1 and Lsm1, play important roles. Our data also support a hypothesis of a close relationship between yeast linear VLEs and poxviruses.
Collapse
Affiliation(s)
- Václav Vopálenský
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Michal Sýkora
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Mašek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Pospíšek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
4
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
5
|
Pandey PR, Sarwade RD, Khalique A, Seshadri V. Interaction of HuDA and PABP at 5'UTR of mouse insulin2 regulates insulin biosynthesis. PLoS One 2018; 13:e0194482. [PMID: 29590218 PMCID: PMC5874046 DOI: 10.1371/journal.pone.0194482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/05/2018] [Indexed: 11/18/2022] Open
Abstract
Understanding the regulation of insulin biosynthesis is important as it plays a central role in glucose metabolism. The mouse insulin gene2 (Ins2) has two splice variants; long (Ins2L) and short (Ins2S), that differ only in their 5’UTR sequence and Ins2S is the major transcript which translate more efficiently as compared to Ins2L. Here, we show that cellular factors bind preferentially to the Ins2L 5’UTR, and that PABP and HuD can bind to Ins2 splice variants and regulate its translation. In vitro binding assay with insulin 5’UTR and different HuD isoforms indicate that the ‘N’ terminal region of HuD is important for RNA binding and insulin translation repression. Using reporter assay we showed that specifically full-length HuD A isoform represses translation of reporter containing insulin 5’UTR. We further show that PABP and HuD interact with each other in RNA-dependent manner and this interaction is affected by glucose and PDI (5’UTR associated translation activator). These results suggest that PABP interacts with HuD in basal glucose conditions making translation inhibitory complex, however upon glucose stimulation this association is affected and PABP is acted upon by PDI resulting in stimulation of insulin translation. Together, our findings snapshot the mechanism of post-transcriptional regulation of insulin biosynthesis.
Collapse
Affiliation(s)
- Poonam R. Pandey
- National Centre for Cell Science, Ganeshkhind, Pune, India
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Rucha D. Sarwade
- National Centre for Cell Science, Ganeshkhind, Pune, India
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Abdul Khalique
- National Centre for Cell Science, Ganeshkhind, Pune, India
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | | |
Collapse
|
6
|
Wang X, Hou J, Quedenau C, Chen W. Pervasive isoform-specific translational regulation via alternative transcription start sites in mammals. Mol Syst Biol 2016; 12:875. [PMID: 27430939 PMCID: PMC4965872 DOI: 10.15252/msb.20166941] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 12/02/2022] Open
Abstract
Transcription initiated at alternative sites can produce mRNA isoforms with different 5'UTRs, which are potentially subjected to differential translational regulation. However, the prevalence of such isoform-specific translational control across mammalian genomes is currently unknown. By combining polysome profiling with high-throughput mRNA 5' end sequencing, we directly measured the translational status of mRNA isoforms with distinct start sites. Among 9,951 genes expressed in mouse fibroblasts, we identified 4,153 showed significant initiation at multiple sites, of which 745 genes exhibited significant isoform-divergent translation. Systematic analyses of the isoform-specific translation revealed that isoforms with longer 5'UTRs tended to translate less efficiently. Further investigation of cis-elements within 5'UTRs not only provided novel insights into the regulation by known sequence features, but also led to the discovery of novel regulatory sequence motifs. Quantitative models integrating all these features explained over half of the variance in the observed isoform-divergent translation. Overall, our study demonstrated the extensive translational regulation by usage of alternative transcription start sites and offered comprehensive understanding of translational regulation by diverse sequence features embedded in 5'UTRs.
Collapse
Affiliation(s)
- Xi Wang
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Jingyi Hou
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Claudia Quedenau
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Wei Chen
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Kini HK, Silverman IM, Ji X, Gregory BD, Liebhaber SA. Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs. RNA (NEW YORK, N.Y.) 2016; 22:61-74. [PMID: 26554031 PMCID: PMC4691835 DOI: 10.1261/rna.053447.115] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
The functions of the major mammalian cytoplasmic poly(A) binding protein, PABPC1, have been characterized predominantly in the context of its binding to the 3' poly(A) tails of mRNAs. These interactions play important roles in post-transcriptional gene regulation by enhancing translation and mRNA stability. Here, we performed transcriptome-wide CLIP-seq analysis to identify additional PABPC1 binding sites within genomically encoded mRNA sequences that may impact on gene regulation. From this analysis, we found that PABPC1 binds directly to the canonical polyadenylation signal in thousands of mRNAs in the mouse transcriptome. PABPC1 binding also maps to translation initiation and termination sites bracketing open reading frames, exemplified most dramatically in replication-dependent histone mRNAs. Additionally, a more restricted subset of PABPC1 interaction sites comprised A-rich sequences within the 5' UTRs of mRNAs, including Pabpc1 mRNA itself. Functional analyses revealed that these PABPC1 interactions in the 5' UTR mediate both auto- and trans-regulatory translational control. In total, these findings reveal a repertoire of PABPC1 binding that is substantially broader than previously recognized with a corresponding potential to impact and coordinate post-transcriptional controls critical to a broad array of cellular functions.
Collapse
Affiliation(s)
- Hemant K Kini
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Ian M Silverman
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xinjun Ji
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
8
|
Translation initiation: a regulatory role for poly(A) tracts in front of the AUG codon in Saccharomyces cerevisiae. Genetics 2011; 189:469-78. [PMID: 21840854 PMCID: PMC3189813 DOI: 10.1534/genetics.111.132068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The 5'-UTR serves as the loading dock for ribosomes during translation initiation and is the key site for translation regulation. Many genes in the yeast Saccharomyces cerevisiae contain poly(A) tracts in their 5'-UTRs. We studied these pre-AUG poly(A) tracts in a set of 3274 recently identified 5'-UTRs in the yeast to characterize their effect on in vivo protein abundance, ribosomal density, and protein synthesis rate in the yeast. The protein abundance and the protein synthesis rate increase with the length of the poly(A), but exhibit a dramatic decrease when the poly(A) length is ≥12. The ribosomal density also reaches the lowest level when the poly(A) length is ≥12. This supports the hypothesis that a pre-AUG poly(A) tract can bind to translation initiation factors to enhance translation initiation, but a long (≥12) pre-AUG poly(A) tract will bind to Pab1p, whose binding size is 12 consecutive A residues in yeast, resulting in repression of translation. The hypothesis explains why a long pre-AUG poly(A) leads to more efficient translation initiation than a short one when PABP is absent, and why pre-AUG poly(A) is short in the early genes but long in the late genes of vaccinia virus.
Collapse
|
9
|
Nie M, Htun H. Different modes and potencies of translational repression by sequence-specific RNA-protein interaction at the 5'-UTR. Nucleic Acids Res 2006; 34:5528-40. [PMID: 17023487 PMCID: PMC1635260 DOI: 10.1093/nar/gkl584] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To determine whether sequence-specific RNA–protein interaction at the 5′-untranslated region (5′-UTR) can potently repress translation in mammalian cells, a bicistronic translational repression assay was developed to permit direct assessment of RNA–protein interaction and translational repression in transiently transfected living mammalian cells. Changes in cap-dependent yellow fluorescent protein (YFP) and internal ribosome entry sequence (IRES)-dependent cyan fluorescent protein (CFP) translation were monitored by fluorescence microscopy. Selective repression of YFP or coordinate repression of both YFP and CFP translation occurred, indicating two distinct modes by which RNA-binding proteins repress translation through the 5′-UTR. Interestingly, a single-stranded RNA-binding protein from Bacillus subtilis, tryptophan RNA-binding attenuation protein (TRAP), showed potent translational repression, dependent on the level of TRAP expression and position of its cognate binding site within the bicistronic reporter transcript. As the first of its class to be examined in mammalian cells, its potency in repression of translation through the 5′-UTR may be a general feature for this class of single-stranded RNA-binding proteins. Finally, a one-hybrid screen based on translational repression through the 5′-UTR identified linkers supporting full-translational repression as well as a range of partial repression by TRAP within the context of a fusion protein.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Obstetrics and Gynecology, Molecular Biology InstituteUniversity of California Los Angeles-Jonsson Comprehensive Cancer Center, 22-168 CHS, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Box 951740, Los Angeles, CA 90095-1740, USA
- Department of Molecular and Medical Pharmacology, Molecular Biology InstituteUniversity of California Los Angeles-Jonsson Comprehensive Cancer Center, 22-168 CHS, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Box 951740, Los Angeles, CA 90095-1740, USA
| | - Han Htun
- Department of Obstetrics and Gynecology, Molecular Biology InstituteUniversity of California Los Angeles-Jonsson Comprehensive Cancer Center, 22-168 CHS, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Box 951740, Los Angeles, CA 90095-1740, USA
- Department of Molecular and Medical Pharmacology, Molecular Biology InstituteUniversity of California Los Angeles-Jonsson Comprehensive Cancer Center, 22-168 CHS, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Box 951740, Los Angeles, CA 90095-1740, USA
- To whom correspondence should be addressed. Tel: +1 310 206 3015; Fax: +1 310 206 3670;
| |
Collapse
|
10
|
Patel GP, Ma S, Bag J. The autoregulatory translational control element of poly(A)-binding protein mRNA forms a heteromeric ribonucleoprotein complex. Nucleic Acids Res 2005; 33:7074-89. [PMID: 16356927 PMCID: PMC1316114 DOI: 10.1093/nar/gki1014] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Repression of poly(A)-binding protein (PABP) mRNA translation involves the binding of PABP to the adenine-rich autoregulatory sequence (ARS) in the 5′-untranslated region of its own mRNA. In this report, we show that the ARS forms a complex in vitro with PABP, and two additional polypeptides of 63 and 105 kDa. The 63 and 105 kDa polypeptides were identified, as IMP1, an ortholog of chicken zip-code binding polypeptide, and UNR, a PABP binding polypeptide, respectively, by mass spectrometry of the ARS RNA affinity purified samples. Using a modified ribonucleoprotein (RNP) immunoprecipitation procedure we further show that indeed, both IMP1 and UNR bind to the ARS containing reporter RNA in vivo. Although both IMP1 and UNR could bind independently to the ARS RNA in vitro, their RNA-binding ability was stimulated by PABP. Mutational analyses of the ARS show that the presence of four of the six oligo(A) regions of the ARS was sufficient to repress translation and the length of the conserved pyrimidine spacers between the oligo(A) sequences was important for ARS function. The ability of mutant ARS RNAs to form the PABP, IMP1 and UNR containing RNP complex correlates well with the translational repressor activity of the ARS. There is also a direct relationship between the length of the poly(A) RNAs and their ability to form a trimeric complex with PABP, and to repress mRNA translation. UV crosslinking studies suggest that the ARS is less efficient than a poly(A) RNA of similar length, to bind to PABP. We show here that the ARS cannot efficiently form a trimeric complex with PABP; therefore, additional interactions with IMP1 and UNR to form a heteromeric RNP complex may be required for maximal repression of PABP mRNA translation under physiological conditions.
Collapse
Affiliation(s)
| | | | - Jnanankur Bag
- To whom correspondence should be addressed. Tel: +1 519 824 4120 (Ext. 53390); Fax: +1 519 837 2075;
| |
Collapse
|
11
|
Kühn U, Wahle E. Structure and function of poly(A) binding proteins. ACTA ACUST UNITED AC 2004; 1678:67-84. [PMID: 15157733 DOI: 10.1016/j.bbaexp.2004.03.008] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 03/30/2004] [Accepted: 03/31/2004] [Indexed: 01/01/2023]
Abstract
Poly (A) tails are found at the 3' ends of almost all eukaryotic mRNAs. They are bound by two different poly (A) binding proteins, PABPC in the cytoplasm and PABPN1 in the nucleus. PABPC functions in the initiation of translation and in the regulation of mRNA decay. In both functions, an interaction with the m7G cap at the 5' end of the message plays an important role. PABPN1 is involved in the synthesis of poly (A) tails, increasing the processivity of poly (A) polymerase and contributing to defining the length of a newly synthesized poly (A) tail.
Collapse
Affiliation(s)
- Uwe Kühn
- Institut für Biochemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Stasse. 3, D-06120 Halle, Germany
| | | |
Collapse
|
12
|
Melo EO, Dhalia R, Martins de Sa C, Standart N, de Melo Neto OP. Identification of a C-terminal poly(A)-binding protein (PABP)-PABP interaction domain: role in cooperative binding to poly (A) and efficient cap distal translational repression. J Biol Chem 2003; 278:46357-68. [PMID: 12952955 DOI: 10.1074/jbc.m307624200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The poly(A)-binding protein (PABP), bound to the 3' poly(A) tail of eukaryotic mRNAs, plays critical roles in mRNA translation and stability. PABP autoregulates its synthesis by binding to a conserved A-rich sequence present in the 5'-untranslated region of PABP mRNA and repressing its translation. PABP is composed of two parts: the highly conserved N terminus, containing 4 RNA recognition motifs (RRMs) responsible for poly(A) and eIF4G binding; and the more variable C terminus, which includes the recently described PABC domain, and promotes intermolecular interaction between PABP molecules as well as cooperative binding to poly(A). Here we show that, in vitro, GST-PABP represses the translation of reporter mRNAs containing 20 or more A residues in their 5'-untranslated regions and remains effective as a repressor when an A61 tract is placed at different distances from the cap, up to 126 nucleotides. Deletion of the PABP C terminus, but not the PABC domain alone, significantly reduces its ability to inhibit translation when bound to sequences distal to the cap, but not to proximal ones. Moreover, cooperative binding by multiple PABP molecules to poly(A) requires the C terminus, but not the PABC domain. Further analysis using pull-down assays shows that the interaction between PABP molecules, mediated by the C terminus, does not require the PABC domain and is enhanced by the presence of RRM 4. In vivo, fusion proteins containing parts of the PABP C terminus fused to the viral coat protein MS2 have an enhanced ability to prevent the expression of chloramphenicol acetyltransferase reporter mRNAs containing the MS2 binding site at distal distances from the cap. Altogether, our results identify a proline- and glutamine-rich linker located between the RRMs and the PABC domain as being strictly required for PABP/PABP interaction, cooperative binding to poly(A) and enhanced translational repression of reporter mRNAs in vitro and in vivo.
Collapse
Affiliation(s)
- Eduardo O Melo
- Departamento de Biologia Celular, Universidade de Brasilia, Brasilia DF 70910-900, Brazil
| | | | | | | | | |
Collapse
|