1
|
Kappler U, Nasreen M, McEwan A. New insights into the molecular physiology of sulfoxide reduction in bacteria. Adv Microb Physiol 2019; 75:1-51. [PMID: 31655735 DOI: 10.1016/bs.ampbs.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sulfoxides occur in biology as products of the S-oxygenation of small molecules as well as in peptides and proteins and their formation is often associated with oxidative stress and can affect biological function. In bacteria, sulfoxide damage can be reversed by different types of enzymes. Thioredoxin-dependent peptide methionine sulfoxide reductases (MSR proteins) repair oxidized methionine residues and are found in all Domains of life. In bacteria MSR proteins are often found in the cytoplasm but in some bacteria, including pathogenic Neisseria, Streptococci, and Haemophilus they are extracytoplasmic. Mutants lacking MSR proteins are often sensitive to oxidative stress and in pathogens exhibit decreased virulence as indicated by reduced survival in host cell or animal model systems. Molybdenum enzymes are also known to reduce S-oxides and traditionally their physiological role was considered to be in anaerobic respiration using dimethylsulfoxide (DMSO) as an electron acceptor. However, it now appears that some enzymes (MtsZ) of the DMSO reductase family of Mo enzymes use methionine sulfoxide as preferred physiological substrate and thus may be involved in scavenging/recycling of this amino acid. Similarly, an enzyme (MsrP/YedY) of the sulfite oxidase family of Mo enzymes has been shown to be involved in repair of methionine sulfoxides in periplasmic proteins. Again, some mutants deficient in Mo-dependent sulfoxide reductases exhibit reduced virulence, and there is evidence that these Mo enzymes and some MSR systems are induced by hypochlorite produced by the innate immune system. This review describes recent advances in the understanding of the molecular microbiology of MSR systems and the broadening of the role of Mo-dependent sulfoxide reductase to encompass functions beyond anaerobic respiration.
Collapse
Affiliation(s)
- Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Marufa Nasreen
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alastair McEwan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Dhouib R, Othman DSMP, Lin V, Lai XJ, Wijesinghe HGS, Essilfie AT, Davis A, Nasreen M, Bernhardt PV, Hansbro PM, McEwan AG, Kappler U. A Novel, Molybdenum-Containing Methionine Sulfoxide Reductase Supports Survival of Haemophilus influenzae in an In vivo Model of Infection. Front Microbiol 2016; 7:1743. [PMID: 27933034 PMCID: PMC5122715 DOI: 10.3389/fmicb.2016.01743] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/18/2016] [Indexed: 01/07/2023] Open
Abstract
Haemophilus influenzae is a host adapted human mucosal pathogen involved in a variety of acute and chronic respiratory tract infections, including chronic obstructive pulmonary disease and asthma, all of which rely on its ability to efficiently establish continuing interactions with the host. Here we report the characterization of a novel molybdenum enzyme, TorZ/MtsZ that supports interactions of H. influenzae with host cells during growth in oxygen-limited environments. Strains lacking TorZ/MtsZ showed a reduced ability to survive in contact with epithelial cells as shown by immunofluorescence microscopy and adherence/invasion assays. This included a reduction in the ability of the strain to invade human epithelial cells, a trait that could be linked to the persistence of H. influenzae. The observation that in a murine model of H. influenzae infection, strains lacking TorZ/MtsZ were almost undetectable after 72 h of infection, while ∼3.6 × 103 CFU/mL of the wild type strain were measured under the same conditions is consistent with this view. To understand how TorZ/MtsZ mediates this effect we purified and characterized the enzyme, and were able to show that it is an S- and N-oxide reductase with a stereospecificity for S-sulfoxides. The enzyme converts two physiologically relevant sulfoxides, biotin sulfoxide and methionine sulfoxide (MetSO), with the kinetic parameters suggesting that MetSO is the natural substrate of this enzyme. TorZ/MtsZ was unable to repair sulfoxides in oxidized Calmodulin, suggesting that a role in cell metabolism/energy generation and not protein repair is the key function of this enzyme. Phylogenetic analyses showed that H. influenzae TorZ/MtsZ is only distantly related to the Escherichia coli TorZ TMAO reductase, but instead is a representative of a new, previously uncharacterized clade of molybdenum enzyme that is widely distributed within the Pasteurellaceae family of pathogenic bacteria. It is likely that MtsZ/TorZ has a similar role in supporting host/pathogen interactions in other members of the Pasteurellaceae, which includes both human and animal pathogens.
Collapse
Affiliation(s)
- Rabeb Dhouib
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Dk. Seti Maimonah Pg Othman
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Victor Lin
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Xuanjie J. Lai
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Hewa G. S. Wijesinghe
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Ama-Tawiah Essilfie
- Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, New LambtonNSW, Australia
| | - Amanda Davis
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
- Department of Chemistry and Biochemistry, The University of Arizona, TucsonAZ, USA
| | - Marufa Nasreen
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Paul V. Bernhardt
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Philip M. Hansbro
- Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, New LambtonNSW, Australia
| | - Alastair G. McEwan
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Ulrike Kappler
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| |
Collapse
|
3
|
Okamura T, Yamada T, Hasenaka Y, Yamashita S, Onitsuka K. Unexpected Reaction Promoted by NH+···O=Mo Hydrogen Bonds in Nonpolar Solvents. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Taka‐aki Okamura
- Department of Macromolecular Science Graduate School of Science Osaka University 560‐0043 Toyonaka Osaka Japan
| | - Takayoshi Yamada
- Department of Macromolecular Science Graduate School of Science Osaka University 560‐0043 Toyonaka Osaka Japan
| | - Yuki Hasenaka
- Department of Macromolecular Science Graduate School of Science Osaka University 560‐0043 Toyonaka Osaka Japan
| | - Satoshi Yamashita
- Department of Macromolecular Science Graduate School of Science Osaka University 560‐0043 Toyonaka Osaka Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science Graduate School of Science Osaka University 560‐0043 Toyonaka Osaka Japan
| |
Collapse
|
4
|
Abstract
Escherichia coli is a versatile facultative anaerobe that can respire on a number of terminal electron acceptors, including oxygen, fumarate, nitrate, and S- and N-oxides. Anaerobic respiration using S- and N-oxides is accomplished by enzymatic reduction of these substrates by dimethyl sulfoxide reductase (DmsABC) and trimethylamine N-oxide reductase (TorCA). Both DmsABC and TorCA are membrane-associated redox enzymes that couple the oxidation of menaquinol to the reduction of S- and N-oxides in the periplasm. DmsABC is membrane bound and is composed of a membrane-extrinsic dimer with a 90.4-kDa catalytic subunit (DmsA) and a 23.1-kDa electron transfer subunit (DmsB). These subunits face the periplasm and are held to the membrane by a 30.8-kDa membrane anchor subunit (DmsC). The enzyme provides the scaffold for an electron transfer relay composed of a quinol binding site, five [4Fe-4S] clusters, and a molybdo-bis(molybdopterin guanine dinucleotide) (present nomenclature: Mo-bis-pyranopterin) (Mo-bisMGD) cofactor. TorCA is composed of a soluble periplasmic subunit (TorA, 92.5 kDa) containing a Mo-bis-MGD. TorA is coupled to the quinone pool via a pentaheme c subunit (TorC, 40.4 kDa) in the membrane. Both DmsABC and TorCA require system-specific chaperones (DmsD or TorD) for assembly, cofactor insertion, and/or targeting to the Tat translocon. In this chapter, we discuss the complex regulation of the dmsABC and torCAD operons, the poorly understood paralogues, and what is known about the assembly and translocation to the periplasmic space by the Tat translocon.
Collapse
|
5
|
Hasenaka Y, Okamura TA, Tatsumi M, Inazumi N, Onitsuka K. Behavior of anionic molybdenum(IV, VI) and tungsten(IV, VI) complexes containing bulky hydrophobic dithiolate ligands and intramolecular NH···S hydrogen bonds in nonpolar solvents. Dalton Trans 2015; 43:15491-502. [PMID: 25190301 DOI: 10.1039/c4dt01646g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum(IV, VI) and tungsten(IV, VI) complexes, (Et4N)2[M(IV)O{1,2-S2-3,6-(RCONH)2C6H2}2] and (Et4N)2[M(VI)O2{1,2-S2-3,6-(RCONH)2C6H2}2] (M = Mo, W; R = (4-(t)BuC6H4)3C), with bulky hydrophobic dithiolate ligands containing NH···S hydrogen bonds were synthesized. These complexes are soluble in nonpolar solvents like toluene, which allows the detection of unsymmetrical coordination structures and elusive intermolecular interactions in solution. The (1)H NMR spectra of the complexes in toluene-d8 revealed an unsymmetrical coordination structure, and proximity of the counterions to the anion moiety was suggested at low temperatures. The oxygen-atom-transfer reaction between the molybdenum(IV) complex and Me3NO in toluene was considerably accelerated in nonpolar solvents, and this increase was attributed to the favorable access of the substrate to the active center in the hydrophobic environment.
Collapse
Affiliation(s)
- Yuki Hasenaka
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | |
Collapse
|
6
|
The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1048-85. [PMID: 23376630 DOI: 10.1016/j.bbabio.2013.01.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 01/05/2023]
Abstract
Over the past two decades, prominent importance of molybdenum-containing enzymes in prokaryotes has been put forward by studies originating from different fields. Proteomic or bioinformatic studies underpinned that the list of molybdenum-containing enzymes is far from being complete with to date, more than fifty different enzymes involved in the biogeochemical nitrogen, carbon and sulfur cycles. In particular, the vast majority of prokaryotic molybdenum-containing enzymes belong to the so-called dimethylsulfoxide reductase family. Despite its extraordinary diversity, this family is characterized by the presence of a Mo/W-bis(pyranopterin guanosine dinucleotide) cofactor at the active site. This review highlights what has been learned about the properties of the catalytic site, the modular variation of the structural organization of these enzymes, and their interplay with the isoprenoid quinones. In the last part, this review provides an integrated view of how these enzymes contribute to the bioenergetics of prokaryotes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
7
|
Chen KI, McEwan AG, Bernhardt PV. Cobalt hexaamine mediated electrocatalytic voltammetry of dimethyl sulfoxide reductase: driving force effects on catalysis. J Biol Inorg Chem 2010; 16:227-34. [DOI: 10.1007/s00775-010-0719-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/11/2010] [Indexed: 11/28/2022]
|
8
|
Gupta S, Roy S, Mandal TN, Das K, Ray S, Butcher RJ, Kar SK. Synthesis, characterization and spectrochemical studies on a few binuclear µ-oxo molybdenum(V) complexes of pyrimidine derived Schiff base ligands. J CHEM SCI 2010. [DOI: 10.1007/s12039-010-0028-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Chen KI, McEwan AG, Bernhardt PV. Mediated electrochemistry of dimethyl sulfoxide reductase from Rhodobacter capsulatus. J Biol Inorg Chem 2008; 14:409-19. [DOI: 10.1007/s00775-008-0458-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 11/26/2008] [Indexed: 11/29/2022]
|
10
|
Léger C, Bertrand P. Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies. Chem Rev 2008; 108:2379-438. [DOI: 10.1021/cr0680742] [Citation(s) in RCA: 531] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Jormakka M, Yokoyama K, Yano T, Tamakoshi M, Akimoto S, Shimamura T, Curmi P, Iwata S. Molecular mechanism of energy conservation in polysulfide respiration. Nat Struct Mol Biol 2008; 15:730-7. [PMID: 18536726 PMCID: PMC2887006 DOI: 10.1038/nsmb.1434] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 04/23/2008] [Indexed: 11/09/2022]
Abstract
Bacterial polysulfide reductase (PsrABC) is an integral membrane protein complex responsible for quinone-coupled reduction of polysulfide, a process important in extreme environments such as deep-sea vents and hot springs. We determined the structure of polysulfide reductase from Thermus thermophilus at 2.4-A resolution, revealing how the PsrA subunit recognizes and reduces its unique polyanionic substrate. The integral membrane subunit PsrC was characterized using the natural substrate menaquinone-7 and inhibitors, providing a comprehensive representation of a quinone binding site and revealing the presence of a water-filled cavity connecting the quinone binding site on the periplasmic side to the cytoplasm. These results suggest that polysulfide reductase could be a key energy-conserving enzyme of the T. thermophilus respiratory chain, using polysulfide as the terminal electron acceptor and pumping protons across the membrane via a previously unknown mechanism.
Collapse
Affiliation(s)
- Mika Jormakka
- Department of Biophysics, University of New South Wales, Barker Street, Sydney, NSW2052, Australia
- Structural Biology Program, Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag No. 6, Sydney NSW 2042, Australia
- Faculty of Medicine, Central Clinical School, University of Sydney, Sydney NSW 2006, Australia
| | - Ken Yokoyama
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- ICORP ATP-synthesis Regulation Project, Japan Science and Technology Agency, 2-41 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Takahiro Yano
- ICORP ATP-synthesis Regulation Project, Japan Science and Technology Agency, 2-41 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Masatada Tamakoshi
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Satoru Akimoto
- ICORP ATP-synthesis Regulation Project, Japan Science and Technology Agency, 2-41 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Tatsuro Shimamura
- Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- ERATO Human Receptor Crystallography Project, Kawasaki, Kanagawa 210-0855, Japan
| | - Paul Curmi
- Department of Biophysics, University of New South Wales, Barker Street, Sydney, NSW2052, Australia
| | - So Iwata
- ERATO Human Receptor Crystallography Project, Kawasaki, Kanagawa 210-0855, Japan
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, Exhibition Road, London SW7 2AZ, United Kingdom
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
12
|
Cobb N, Hemann C, Polsinelli GA, Ridge JP, McEwan AG, Hille R. Spectroscopic and kinetic studies of Y114F and W116F mutants of Me2SO reductase from Rhodobacter capsulatus. J Biol Chem 2007; 282:35519-29. [PMID: 17921142 DOI: 10.1074/jbc.m704458200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutants of the active site residues Trp-116 and Tyr-114 of the molybdenum-containing Me(2)SO reductase from Rhodobacter capsulatus have been examined spectroscopically and kinetically. The Y114F mutant has an increased rate constant for oxygen atom transfer from Me(2)SO to reduced enzyme, the result of lower stability of the E(red).Me(2)SO complex. The absorption spectrum of this species (but not that of either oxidized or reduced enzyme) is significantly perturbed in the mutant relative to wild-type enzyme, consistent with Tyr-114 interacting with bound Me(2)SO. The as-isolated W116F mutant is only five-coordinate, with one of the two equivalents of the pyranopterin cofactor found in the enzyme dissociated from the molybdenum and replaced by a second Mo=O group. Reduction of the mutant with sodium dithionite and reoxidation with Me(2)SO, however, regenerates the long-wavelength absorbance of functional enzyme, although the wavelength maximum is shifted to 670 nm from the 720 nm of wild-type enzyme. This "redox-cycled" mutant exhibits a Me(2)SO reducing activity and overall reaction mechanism similar to that of wild-type enzyme but rapidly reverts to the inactive five-coordinate form in the course of turnover.
Collapse
Affiliation(s)
- Nathan Cobb
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
13
|
Kail BW, Basu P. Solvent effects in the geometric reorganization of an oxo-molybdenum(v) system. Dalton Trans 2006:1419-23. [PMID: 16518511 DOI: 10.1039/b508543h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have previously postulated a serine gated electron transfer hypothesis (Inorg. Chem, 2002, 41, 1281-1291) to possibly be involved in gating electron transfer between the Mo(V) and Mo(IV) states. In this study we explored the effect of solvent dielectric upon the rate and mechanism of isomerization of an oxo-Mo(V) core in attempt to understand the effect of solvent polarity to the isomerization reaction. To this end, the data suggests that there may be significant entropic contributions to the reorganization of metal center as a function of the local dielectric constant. Furthermore, we note that there is a change in the observed rate as well as the mechanism of the geometric rearrangement when it is examined in polar and non-polar environments. More specifically, in low dielectric media, the reaction proceeds either via a fast dissociation which is then followed by a twist mechanism or by a dissociation that is synchronized with the twist mechanism.
Collapse
Affiliation(s)
- Brian W Kail
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | | |
Collapse
|
14
|
Cobb N, Conrads T, Hille R. Mechanistic Studies of Rhodobacter sphaeroides Me2SO Reductase. J Biol Chem 2005; 280:11007-17. [PMID: 15649898 DOI: 10.1074/jbc.m412050200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of the molybdenum-containing dimethyl sulfoxide reductase from Rhodobacter sphaeroides have yielded new insight into its catalytic mechanism. A series of reductive titrations, performed over the pH range 6-10, reveal that the absorption spectrum of reduced enzyme is highly sensitive to pH. The reaction of reduced enzyme with dimethyl sulfoxide is found to be clearly biphasic throughout the pH range 6-8 with a fast, initial substrate-binding phase and substrate-concentration independent catalytic phase. The intermediate formed at the completion of the fast phase has the characteristic absorption spectrum of the established dimethyl sulfoxide-bound species. Quantitative reductive and oxidative titrations of the enzyme demonstrate that the molybdenum center takes up only two reducing equivalents, implying that the two pyranopterin equivalents of the molybdenum center are not formally redox active. Finally, the visible spectrum associated with the catalytically relevant "high-g split" Mo(V) species has been determined. Spectral deconvolution and EPR quantitation of enzyme-monitored turnover experiments with trimethylamine N-oxide as substrate reveal that no substrate-bound intermediate accumulates and that Mo(V) content remains near unity for the duration of the reaction. Similar experiments with dimethyl sulfoxide show that significant quantities of both the Mo(V) species and the dimethyl sulfoxide-bound complex accumulate during the course of reaction. Accumulation of the substrate-bound complex in the steady-state with dimethyl sulfoxide arises from partial reversal of the physiological reaction in which the accumulating product, dimethyl sulfide, reacts with oxidized enzyme to yield the substrate-bound intermediate, a process that significantly slows turnover.
Collapse
Affiliation(s)
- Nathan Cobb
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210-1218, USA
| | | | | |
Collapse
|
15
|
McCrindle SL, Kappler U, McEwan AG. Microbial Dimethylsulfoxide and Trimethylamine-N-Oxide Respiration. Adv Microb Physiol 2005; 50:147-98. [PMID: 16221580 DOI: 10.1016/s0065-2911(05)50004-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the last two decades, the biochemistry and genetics of dimethylsulfoxide (DMSO) and trimethylamine-N-oxide (TMAO) respiration has been characterised, particularly in Escherichia coli marine bacteria of the genus Shewanella and the purple phototrophic bacteria, Rhodobacter sphaeroides and R. capsulatus. All of the enzymes (or catalytic subunits) involved the final step in DMSO and TMAO respiration contain a pterin molybdenum cofactor and are members of the DMSO reductase family of molybdoenzymes. In E. coli, the dimethylsulfoxide reductase (DmsABC) can be purified from membranes as a complex, which exhibits quinol-DMSO oxidoreductase activity. The enzyme is anchored to the membrane via the DmsC subunit and its catalytic subunit DmsA is now considered to face the periplasm. Electron transfer to DmsA involves the DmsB subunit, which is a polyferredoxin related to subunits found in other molybdoenzymes such as nitrate reductase and formate dehydrogenase. A characteristic of the DmsAB-type DMSO reductase is its ability to reduce a variety of S- and N-oxides. E. coli contains a trimethylamine-N-oxide reductase (TorA) that is highly specific for N-oxides. This enzyme is located in the periplasm and is connected to the quinone pool via a membrane-bound penta-haem cytochrome (TorC). DorCA in purple phototrophic bacteria of the genus Rhodobacter is very similar to TorCA with the critical difference that DorA catalyses reduction of both DMSO and TMAO. It is known as a DMSO reductase because the S-oxide is the best substrate. Crystal structures of DorA and TorA have revealed critical differences at the Mo active site that may explain the differences between substrate specificity between the two enzymes. DmsA, TorA and DorA possess a "twin arginine" N-terminal signal sequence consistent with their secretion via the TAT secretory system and not the Sec system. The enzymes are secreted with their bound prosthetic groups: this take place in the cytoplasm and the biogenesis involves a chaperone protein, which is cognate for each enzyme. Expression of the DMSO and TMAO respiratory operons is induced in response to a fall in oxygen tension. dmsABC expression is positively controlled by the oxygen-responsive transcription factor, Fnr and ModE, a transcription factor that binds molybdate. In contrast, torCAD expression is not under Fnr- or ModE-control but is dependent upon a sensor histidine kinase-response regulator pair, TorSR, which activate gene expression under conditions of low oxygen tension in the presence of N- or S-oxide. Regulation of dorCDA expression is similar to that seen for torCAD but it appears that the expression of the sensor histidine kinase-response regulator pair, DorSR is regulated by Fnr and there is an additional tier of regulation involving the ModE-homologue MopB, molybdate and the transcription factor DorX. Analysis of microbial genomes has revealed the presence of dms and tor operons in a wide variety of bacteria and in some archaea and duplicate dms and tor operons have been identified in E. coli. Challenges ahead will include the determination of the significance of the presence of the dms operon in bacterial pathogens and the determination of the significance of DMSO respiration in the global turnover of marine organo-sulfur compounds.
Collapse
Affiliation(s)
- Sharon L McCrindle
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane 4072, Australia
| | | | | |
Collapse
|