1
|
Xiao Z, Huang C, Ge H, Wang Y, Duan X, Wang G, Zheng L, Dong J, Huang X, Zhang Y, An H, Xu W, Wang Y. Proximity Labeling Facilitates Defining the Proteome Neighborhood of Photosystem II Oxygen Evolution Complex in a Model Cyanobacterium. Mol Cell Proteomics 2022; 21:100440. [PMID: 36356940 PMCID: PMC9764255 DOI: 10.1016/j.mcpro.2022.100440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Ascorbate peroxidase (APEX)-based proximity labeling coupled with mass spectrometry has a great potential for spatiotemporal identification of proteins proximal to a protein complex of interest. Using this approach is feasible to define the proteome neighborhood of important protein complexes in a popular photosynthetic model cyanobacterium Synechocystis sp. PCC6803 (hereafter named as Synechocystis). To this end, we developed a robust workflow for APEX2-based proximity labeling in Synechocystis and used the workflow to identify proteins proximal to the photosystem II (PS II) oxygen evolution complex (OEC) through fusion APEX2 with a luminal OEC subunit, PsbO. In total, 38 integral membrane proteins (IMPs) and 93 luminal proteins were identified as proximal to the OEC. A significant portion of these proteins are involved in PS II assembly, maturation, and repair, while the majority of the rest were not previously implicated with PS II. The IMPs include subunits of PS II and cytochrome b6/f, but not of photosystem I (except for PsaL) and ATP synthases, suggesting that the latter two complexes are spatially separated from the OEC with a distance longer than the APEX2 labeling radius. Besides, the topologies of six IMPs were successfully predicted because their lumen-facing regions exclusively contain potential APEX2 labeling sites. The luminal proteins include 66 proteins with a predicted signal peptide and 57 proteins localized also in periplasm, providing important targets to study the regulation and selectivity of protein translocation. Together, we not only developed a robust workflow for the application of APEX2-based proximity labeling in Synechocystis and showcased the feasibility to define the neighborhood proteome of an important protein complex with a short radius but also discovered a set of the proteins that potentially interact with and regulate PS II structure and function.
Collapse
Affiliation(s)
- Zhen Xiao
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Duan
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gaojie Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Limin Zheng
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinghui Dong
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongyu An
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Fuchino K, Wasser D, Soppa J. Genome Copy Number Quantification Revealed That the Ethanologenic Alpha-Proteobacterium Zymomonas mobilis Is Polyploid. Front Microbiol 2021; 12:705895. [PMID: 34408736 PMCID: PMC8365228 DOI: 10.3389/fmicb.2021.705895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022] Open
Abstract
The alpha-proteobacterium Zymomonas mobilis is a promising biofuel producer, based on its native metabolism that efficiently converts sugars to ethanol. Therefore, it has a high potential for industrial-scale biofuel production. Two previous studies suggested that Z. mobilis strain Zm4 might not be monoploid. However, a systematic analysis of the genome copy number is still missing, in spite of the high potential importance of Z. mobilis. To get a deep insight into the ploidy level of Z. mobilis and its regulation, the genome copy numbers of three strains were quantified. The analyses revealed that, during anaerobic growth, the lab strain Zm6, the Zm6 type strain obtained from DSMZ (German Collection of Microorganisms), and the lab strain Zm4, have copy numbers of 18.9, 22.3 and 16.2, respectively, of an origin-adjacent region. The copy numbers of a terminus-adjacent region were somewhat lower with 9.3, 15.8, and 12.9, respectively. The values were similar throughout the growth curves, and they were only slightly downregulated in late stationary phase. During aerobic growth, the copy numbers of the lab strain Zm6 were much higher with around 40 origin-adjacent copies and 17 terminus-adjacent copies. However, the cells were larger during aerobic growth, and the copy numbers per μm3 cell volume were rather similar. Taken together, this first systematic analysis revealed that Z. mobilis is polyploid under regular laboratory growth conditions. The copy number is constant during growth, in contrast to many other polyploid bacteria. This knowledge should be considered in further engineering of the strain for industrial applications.
Collapse
Affiliation(s)
- Katsuya Fuchino
- Institute for Molecular Biosciences, Goethe-University, Frankfurt, Germany.,Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Daniel Wasser
- Institute for Molecular Biosciences, Goethe-University, Frankfurt, Germany
| | - Jörg Soppa
- Institute for Molecular Biosciences, Goethe-University, Frankfurt, Germany
| |
Collapse
|
3
|
Inactivation of the conserved open reading frame ycf34 of Synechocystis sp. PCC 6803 interferes with the photosynthetic electron transport chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2016-26. [DOI: 10.1016/j.bbabio.2012.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/30/2012] [Accepted: 06/01/2012] [Indexed: 11/17/2022]
|
4
|
Abstract
Organisms employ one of several different enzyme systems to mature cytochromes c. The biosynthetic process involves the periplasmic reduction of cysteine residues in the heme c attachment motif of the apocytochrome, transmembrane transport of heme b and stereospecific covalent heme attachment via thioether bonds. The biogenesis System II (or Ccs system) is employed by β-, δ- and ε-proteobacteria, Gram-positive bacteria, Aquificales and cyanobacteria, as well as by algal and plant chloroplasts. System II comprises four (sometimes only three) membrane-bound proteins: CcsA (or ResC) and CcsB (ResB) are the components of the cytochrome c synthase, whereas CcdA and CcsX (ResA) function in the generation of a reduced heme c attachment motif. Some ε-proteobacteria contain CcsBA fusion proteins constituting single polypeptide cytochrome c synthases especially amenable for functional studies. This minireview highlights the recent findings on the structure, function and specificity of individual System II components and outlines the future challenges that remain to our understanding of the fascinating post-translational protein maturation process in more detail.
Collapse
Affiliation(s)
- Jörg Simon
- Institute of Microbiology and Genetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.
| | | |
Collapse
|
5
|
Lange C, Zerulla K, Breuert S, Soppa J. Gene conversion results in the equalization of genome copies in the polyploid haloarchaeon Haloferax volcanii. Mol Microbiol 2011; 80:666-77. [PMID: 21338422 DOI: 10.1111/j.1365-2958.2011.07600.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Haloferax volcanii is highly polyploid and contains about 20 copies of the major chromosome. A heterozygous strain was constructed that contained two different types of genomes: the leuB locus contained either the wild-type leuB gene or a leuB:trpA gene introduced by gene replacement. As the trpA locus is devoid of the wild-type trpA gene, growth in the absence of both amino acids is only possible when both types of genomes are simultaneously present, exemplifying gene redundancy and the potential to form heterozygous cells as one possible evolutionary advantage of polyploidy. The heterozygous strain was grown (i) in the presence of tryptophan, selecting for the presence of leuB, (ii) in the presence of leucine selecting for leuB:trpA and (iii) in the absence of selection. Both types of genomes were quantified with real-time PCR. The first condition led to a complete loss of leuB:trpA-containing genomes, while under the second condition leuB-containing genomes were lost. Also in the absence of selection gene conversion led to a fast equalization of genomes and resulted in homozygous leuB-containing cells. Gene conversion leading to genome equalization can explain the escape from 'Muller's ratchet' as well as the ease of mutant construction using polyploid haloarchaea.
Collapse
Affiliation(s)
- Christian Lange
- Johann Wolfgang Goethe University, Institute for Molecular Biosciences, Max-von-Laue-Strasse 9, 60438 Frankfurt a.M., Germany
| | | | | | | |
Collapse
|
6
|
Kern M, Eisel F, Scheithauer J, Kranz RG, Simon J. Substrate specificity of three cytochrome c haem lyase isoenzymes from Wolinella succinogenes: unconventional haem c binding motifs are not sufficient for haem c attachment by NrfI and CcsA1. Mol Microbiol 2009; 75:122-37. [PMID: 19919672 DOI: 10.1111/j.1365-2958.2009.06965.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bacterial c-type cytochrome maturation is dependent on a complex enzymic machinery. The key reaction is catalysed by cytochrome c haem lyase (CCHL) that usually forms two thioether bonds to attach haem b to the cysteine residues of a haem c binding motif (HBM) which is, in most cases, a CX(2)CH sequence. Here, the HBM specificity of three distinct CCHL isoenzymes (NrfI, CcsA1 and CcsA2) from the Epsilonproteobacterium Wolinella succinogenes was investigated using either W. succinogenes or Escherichia coli as host organism. Several reporter c-type cytochromes were employed including cytochrome c nitrite reductases (NrfA) from E. coli and Campylobacter jejuni that differ in their active-site HBMs (CX(2)CK or CX(2)CH). W. succinogenes CcsA2 was found to attach haem to standard CX(2)CH motifs in various cytochromes whereas other HBMs were not recognized. NrfI was able to attach haem c to the active-site CX(2)CK motif of both W. succinogenes and E. coli NrfA, but not to NrfA from C. jejuni. Different apo-cytochrome variants carrying the CX(15)CH motif, assumed to be recognized by CcsA1 during maturation of the octahaem cytochrome MccA, were not processed by CcsA1 in either W. succinogenes or E. coli. It is concluded that the dedicated CCHLs NrfI and CcsA1 attach haem to non-standard HBMs only in the presence of further, as yet uncharacterized structural features. Interestingly, it proved impossible to delete the ccsA2 gene from the W. succinogenes genome, a finding that is discussed in the light of the available genomic, proteomic and functional data on W. succinogenes c-type cytochromes.
Collapse
Affiliation(s)
- Melanie Kern
- Institute of Microbiology and Genetics, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | | | | | | | | |
Collapse
|
7
|
Hamel PP, Dreyfuss BW, Xie Z, Gabilly ST, Merchant S. Essential histidine and tryptophan residues in CcsA, a system II polytopic cytochrome c biogenesis protein. J Biol Chem 2003; 278:2593-603. [PMID: 12427766 DOI: 10.1074/jbc.m208651200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three distinct systems (I, II, and III) for catalysis of heme attachment to c-type apocytochromes are known. The CcsA and Ccs1 proteins are required in system II for the assembly of bacterial and plastid cytochromes c. A tryptophan-rich signature motif (WWD), also occurring in CcmC and CcmF found in system I, and three histidinyl residues, all strictly conserved in CcsA suggest a function in heme handling. Topological analysis of plastid CcsA in bacteria using the PhoA and LacZalpha reporters placed the WWD motif, the conserved residues His(212) and His(347) on the lumen side of the membrane, whereas His(309) was assigned a location on the stromal side. Functional analysis of CcsA through site-directed mutagenesis enabled the designation of the initiation codon of the ccsA gene and established the functional importance of the WWD signature motif and the absolute requirement of all three histidines for the assembly of plastid c-type cytochromes. In a ccsA mutant, a 200-kDa Ccs1-containing complex is absent from solubilized thylakoid membranes, suggesting that CcsA operates together with Ccs1. We propose a model where the WWD motif and histidine residues function in relaying heme from stroma to lumen and we postulate the existence of a cytochrome c assembly machinery containing CcsA, Ccs1 and additional components.
Collapse
Affiliation(s)
- Patrice P Hamel
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
8
|
Wilde A, Fiedler B, Börner T. The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light. Mol Microbiol 2002; 44:981-8. [PMID: 12010493 DOI: 10.1046/j.1365-2958.2002.02923.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We analysed the effects of inactivation of the phytochrome genes cph1 and cph2 on the phototactic migration of the cyanobacterium Synechocystis sp. PCC 6803 under different light qualities. Motility towards white, green, red and far red light was not altered in several independently raised cph1, cph2 and cph1/cph2 double mutants. Blue light (lambda = 400-500 nm) did not induce motility in wild-type and cph1 mutant cells, whereas cph2 and cph1/cph2 double mutants moved towards the blue light. Inhibition of the photosynthetic electron transport by DCMU influenced the motility of cph2 mutants under blue light, but not under white, red and far red light. RNA blot hybridizations did not indicate an altered transcript accumulation of the pilin-encoding pilA1 gene under blue light. We propose that the Cph2 protein is part of a light-stimulated signal transduction chain inhibiting the movement of Synechocystis sp. PCC 6803 cells towards blue light.
Collapse
Affiliation(s)
- Annegret Wilde
- Humboldt-Universität zu Berlin, Institut für Biologie, Chausseestr. 117, 10115 Berlin, Germany
| | | | | |
Collapse
|
9
|
Wilde A, Lünser K, Ossenbühl F, Nickelsen J, Börner T. Characterization of the cyanobacterial ycf37: mutation decreases the photosystem I content. Biochem J 2001; 357:211-6. [PMID: 11415451 PMCID: PMC1221943 DOI: 10.1042/0264-6021:3570211] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have constructed and analysed a cyanobacterial mutant that lacks the putative homologue of ycf37, the chloroplast open reading frame 37, which is conserved in different algae, but missing in the plastome of higher plants. In this report we show that Ycf37 of Synechocystis sp. PCC 6803 contains three tetratrico-peptide repeat (TPR) units resembling the structural organization of Ycf3, a protein that has been suggested to function as a chaperone during photosystem (PS) I complex formation. We demonstrate a light-activated transcript accumulation of this gene. Inactivation of ycf37 leads to a lower PSI/PSII ratio and a higher phycocyanin/chlorophyll ratio in Synechocystis cells. The observed alterations in the ycf37 mutants and the structural organization of the gene product suggest a functional role in PSI stability or assembly.
Collapse
Affiliation(s)
- A Wilde
- Institut für Biologie, Humboldt-Universität Berlin, Chausseestrasse 117, 10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
10
|
Hübschmann T, Börner T, Hartmann E, Lamparter T. Characterization of the Cph1 holo-phytochrome from Synechocystis sp. PCC 6803. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2055-63. [PMID: 11277928 DOI: 10.1046/j.1432-1327.2001.02083.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cph1 gene from the unicellular cyanobacterium Synechoycstis sp. PCC 6803 encodes a protein with the characteristics of plant phytochromes and histidine kinases of two-component phospho-relay systems. Spectral and biochemical properties of Cph1 have been intensely studied in vitro using protein from recombinant systems, but virtually nothing is known about the situation in the natural host. In the present study, His6-tagged Cph1 was isolated from Synechocystis cells. The cph1-his gene was expressed either under the control of the natural cph1 promoter or over-expressed using the strong promoter of the psbA2 gene. Upon purification with nickel affinity chromatography, the presence of Cph1 in extracts was confirmed by immunoblotting and Zn2+-induced fluorescence. The Cph1 extracts exhibited a red/far-red photoactivity characteristic of phytochromes. Difference spectra were identical with those of the phycocyanobilin adduct of recombinant Cph1, implying that phycocyanobilin is the chromophore of Cph1 in Synechocystis.
Collapse
Affiliation(s)
- T Hübschmann
- Humboldt Universität Berlin, Institut für Biologie/Genetik, Berlin, Germany. thomas=
| | | | | | | |
Collapse
|
11
|
Abstract
The synthesis of holocytochromes in plastids is a catalyzed process. Several proteins, including plastid CcsA, Ccs1, possibly CcdA and a thioredoxin, plus at least two additional Ccs factors, are required in sub-stoichiometric amounts for the conversion of apocytochromes f and c(6) to their respective holoforms. CcsA, proposed to be a heme delivery factor, and Ccs1, an apoprotein chaperone, are speculated to interact physically in vivo. The formation of holocytochrome b(6) is a multi-step pathway in which at least four, as yet unidentified, Ccb factors are required for association of the b(H) heme. The specific requirement of reduced heme for in vitro synthesis of a cytochrome b(559)-derived holo-beta(2) suggests that cytochrome b synthesis in PSII might also be catalyzed in vivo.
Collapse
Affiliation(s)
- S S Nakamoto
- Department of Chemistry and Biochemistry, University of California, Box 951569, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
12
|
Abstract
Cytochromes of c-type contain covalently bound haem and in bacteria are located on the periplasmic side of the cytoplasmic membrane. More than eight different gene products have been identified as being specifically required for the synthesis of cytochromes c in Gram-negative bacteria. Corresponding genes are not found in the genome sequences of Gram-positive bacteria. Using two random mutagenesis approaches, we have searched for cytochrome c biogenesis genes in the Gram-positive bacterium Bacillus subtilis. Three genes, resB, resC and ccdA, were identified. CcdA has been found previously and is required for a late step in cytochrome c synthesis and also plays a role in spore synthesis. No function has previously been assigned for ResB and ResC but these predicted membrane proteins show sequence similarity to proteins required for cytochrome c synthesis in chloroplasts. Attempts to inactivate resB and resC in B. subtilis have indicated that these genes are essential for growth. We demonstrate that various nonsense mutations in resB or resC can block synthesis of cytochromes c with no effect on other types of cytochromes and little effect on sporulation and growth. The results strongly support the recent proposal that Gram-positive bacteria, cyanobacteria, epsilon-proteobacteria, and chloroplasts have a similar type of machinery for cytochrome c synthesis (System II), which is very different from those of most Gram-negative bacteria (System I) and mitochondria (System III).
Collapse
Affiliation(s)
- N E Le Brun
- Department of Microbiology, Lund University, SE-223 62 Lund, Sweden
| | | | | |
Collapse
|
13
|
Simon J, Gross R, Einsle O, Kroneck PM, Kröger A, Klimmek O. A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes. Mol Microbiol 2000; 35:686-96. [PMID: 10672190 DOI: 10.1046/j.1365-2958.2000.01742.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wolinella succinogenes can grow by anaerobic respiration with nitrate or nitrite using formate as electron donor. Two forms of nitrite reductase were isolated from the membrane fraction of W. succinogenes. One form consisted of a 58 kDa polypeptide (NrfA) that was identical to the periplasmic nitrite reductase. The other form consisted of NrfA and a 22 kDa polypeptide (NrfH). Both forms catalysed nitrite reduction by reduced benzyl viologen, but only the dimeric form catalysed nitrite reduction by dimethylnaphthoquinol. Liposomes containing heterodimeric nitrite reductase, formate dehydrogenase and menaquinone catalysed the electron transport from formate to nitrite; this was coupled to the generation of an electrochemical proton potential (positive outside) across the liposomal membrane. It is concluded that the electron transfer from menaquinol to the catalytic subunit (NrfA) of W. succinogenes nitrite reductase is mediated by NrfH. The structural genes nrfA and nrfH were identified in an apparent operon (nrfHAIJ) with two additional genes. The gene nrfA encodes the precursor of NrfA carrying an N-terminal signal peptide (22 residues). NrfA (485 residues) is predicted to be a hydrophilic protein that is similar to the NrfA proteins of Sulfurospirillum deleyianum and of Escherichia coli. NrfH (177 residues) is predicted to be a membrane-bound tetrahaem cytochrome c belonging to the NapC/NirT family. The products of nrfI and nrfJ resemble proteins involved in cytochrome c biogenesis. The C-terminal third of NrfI (902 amino acid residues) is similar to CcsA proteins from Gram-positive bacteria, cyanobacteria and chloroplasts. The residual N-terminal part of NrfI resembles Ccs1 proteins. The deduced NrfJ protein resembles the thioredoxin-like proteins (ResA) of Helicobacter pylori and of Bacillus subtilis, but lacks the common motif CxxC of ResA. The properties of three deletion mutants of W. succinogenes (DeltanrfJ, DeltanrfIJ and DeltanrfAIJ) were studied. Mutants DeltanrfAIJ and DeltanrfIJ did not grow with nitrite as terminal electron acceptor or with nitrate in the absence of NH4+ and lacked nitrite reductase activity, whereas mutant DeltanrfJ showed wild-type properties. The NrfA protein formed by mutant DeltanrfIJ seemed to lack part of the haem C, suggesting that NrfI is involved in NrfA maturation.
Collapse
Affiliation(s)
- J Simon
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Tichy M, Vermaas W. Accumulation of pre-apocytochrome f in a Synechocystis sp. PCC 6803 mutant impaired in cytochrome c maturation. J Biol Chem 1999; 274:32396-401. [PMID: 10542282 DOI: 10.1074/jbc.274.45.32396] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c maturation involves heme transport and covalent attachment of heme to the apoprotein. The 5' end of the ccsB gene, which is involved in the maturation process and resembles the ccs1 gene from Chlamydomonas reinhardtii, was replaced by a chloramphenicol resistance cartridge in the cyanobacterium Synechocystis sp. PCC 6803. The resulting Delta(M1-A24) mutant lacking the first 24 ccsB codons grew only under anaerobic conditions. The mutant retained about 20% of the wild-type amount of processed cytochrome f with heme attached, apparently assembled in a functional cytochrome b(6)f complex. Moreover, the mutant accumulated unprocessed apocytochrome f in its membrane fraction. A pseudorevertant was isolated that regained the ability to grow under aerobic conditions. The locus of the second-site mutation was mapped to ccsB, and the mutation resulted in the formation of a new potential start codon in the intergenic region, between the chloramphenicol resistance marker and ccsB, in frame with the remaining part of ccsB. In this pseudorevertant the amount of holocyt f increased, whereas that of unprocessed apocytochrome f decreased. We suggest that the original deletion mutant Delta(M1-A24) expresses an N-terminally truncated version of the protein. The stable accumulation of unprocessed apocytochrome f in membranes of the Delta(M1-A24) mutant may be explained by its association with truncated and only partially functional CcsB protein resulting in protection from degradation. Our attempt to delete the first 244 codons of ccsB in Synechocystis sp. PCC 6803 was not successful, suggesting that this would lead to a lack of functional cytochrome b(6)f complex. The results suggest that the CcsB protein is an apocytochrome chaperone, which together with CcsA may constitute part of cytochrome c lyase.
Collapse
Affiliation(s)
- M Tichy
- Department of Plant Biology, Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601, USA
| | | |
Collapse
|