1
|
Haro R, Walunjkar N, Jorapur S, Slamovits CH. Long-read DNA sequencing reveals the organization of the mitochondrial genome in the early-branching dinoflagellate Oxyrrhis marina. Protist 2024; 175:126071. [PMID: 39603112 DOI: 10.1016/j.protis.2024.126071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/01/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The mitochondrial genomes of dinoflagellate protists are remarkable for their highly fragmented and heterogeneous organization. Early attempts to determine their structure without 'next-generation' DNA sequencing failed to recover a defined genome. Still, it coincided in showing that the proteins coding genes, three in total, and parts of the ribosomal RNA genes were spread across a diffuse assortment of small linear fragments. In contrast, a recent study employed Illumina sequencing to assemble a 326 kbp long single-molecule, circular mitochondrial genome in the symbiotic dinoflagellate Breviolum minutum. Here, we used a combination of short- and long-read massively-parallel DNA sequencing to analyze further the mitochondrial DNA of the early-branching dinoflagellate Oxyrrhis marina. We found that the mitochondrial genome of O. marina consists of 3 linear chromosomes sized 15.9, 33.8 and 40.6 kbp for a total of 90.3 kbp. It contains the cox1, cox3 and cob genes, the same three proteins encoded in the mitochondrion of all myzozoans (Apicomplexa and Dinophyceae), some fragments of ribosomal RNA genes as well as many non-functional gene fragments and extensive noncoding DNA. Our analysis unveiled segments syntenic patterns and rearrangements encompassing coding and non-coding regions, suggesting that recombination is a pervasive process driving the evolution of these genomes.
Collapse
Affiliation(s)
- Ronie Haro
- Institute for Comparative Genomics and Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St, Halifax, Nova Scotia, Canada.
| | - Nikita Walunjkar
- Department of Biological Sciences, Indian Institute of Science Education and Research, 77QG+F7Q, IISER Bhopal Rd, Bhopal, India.
| | - Soham Jorapur
- Department of Biological Sciences, Indian Institute of Science Education and Research, 77QG+F7Q, IISER Bhopal Rd, Bhopal, India.
| | - Claudio H Slamovits
- Department of Biological Sciences, Indian Institute of Science Education and Research, 77QG+F7Q, IISER Bhopal Rd, Bhopal, India.
| |
Collapse
|
2
|
Keeling PJ, Mtawali M, Trznadel M, Livingston SJ, Wakeman KC. Parallel functional reduction in the mitochondria of apicomplexan parasites. Eur J Protistol 2024; 94:126065. [PMID: 38492251 DOI: 10.1016/j.ejop.2024.126065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
Extreme functional reduction of mitochondria has taken place in parallel in many distantly related lineages of eukaryotes, leading to a number of recurring metabolic states with variously lost electron transport chain (ETC) complexes, loss of the tricarboxylic acid (TCA) cycle, and/or loss of the mitochondrial genome. The resulting mitochondria-related organelles (MROs) are generally structurally reduced and in the most extreme cases barely recognizable features of the cell with no role in energy metabolism whatsoever (e.g., mitosomes, which generally only make iron-sulfur clusters). Recently, a wide diversity of MROs were discovered to be hiding in plain sight: in gregarine apicomplexans. This diverse group of invertebrate parasites has been known and observed for centuries, but until recent applications of culture-free genomics, their mitochondria were unremarkable. The genomics, however, showed that mitochondrial function has reduced in parallel in multiple gregarine lineages to several different endpoints, including the most reduced mitosomes. Here we review this remarkable case of parallel evolution of MROs, and some of the interesting questions this work raises.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada.
| | - Mahara Mtawali
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada
| | - Morelia Trznadel
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada
| | - Samuel J Livingston
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada
| | - Kevin C Wakeman
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| |
Collapse
|
3
|
Shoguchi E, Shinzato C, Hisata K, Satoh N, Mungpakdee S. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans. Genome Biol Evol 2015. [PMID: 26199191 PMCID: PMC4558855 DOI: 10.1093/gbe/evv137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures.
Collapse
Affiliation(s)
- Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Sutada Mungpakdee
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
4
|
Masuda I, Matsuzaki M, Kita K. Extensive frameshift at all AGG and CCC codons in the mitochondrial cytochrome c oxidase subunit 1 gene of Perkinsus marinus (Alveolata; Dinoflagellata). Nucleic Acids Res 2010; 38:6186-94. [PMID: 20507907 PMCID: PMC2952869 DOI: 10.1093/nar/gkq449] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diverse mitochondrial (mt) genetic systems have evolved independently of the more uniform nuclear system and often employ modified genetic codes. The organization and genetic system of dinoflagellate mt genomes are particularly unusual and remain an evolutionary enigma. We determined the sequence of full-length cytochrome c oxidase subunit 1 (cox1) mRNA of the earliest diverging dinoflagellate Perkinsus and show that this gene resides in the mt genome. Apparently, this mRNA is not translated in a single reading frame with standard codon usage. Our examination of the nucleotide sequence and three-frame translation of the mRNA suggest that the reading frame must be shifted 10 times, at every AGG and CCC codon, to yield a consensus COX1 protein. We suggest two possible mechanisms for these translational frameshifts: a ribosomal frameshift in which stalled ribosomes skip the first bases of these codons or specialized tRNAs recognizing non-triplet codons, AGGY and CCCCU. Regardless of the mechanism, active and efficient machinery would be required to tolerate the frameshifts predicted in Perkinsus mitochondria. To our knowledge, this is the first evidence of translational frameshifts in protist mitochondria and, by far, is the most extensive case in mitochondria.
Collapse
Affiliation(s)
- Isao Masuda
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
5
|
Strüder-Kypke MC, Lynn DH. Comparative analysis of the mitochondrial cytochromecoxidase subunit I (COI) gene in ciliates (Alveolata, Ciliophora) and evaluation of its suitability as a biodiversity marker. SYST BIODIVERS 2010. [DOI: 10.1080/14772000903507744] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Borza T, Redmond EK, Laflamme M, Lee RW. MITOCHONDRIAL DNA IN THE OOGAMOCHLAMYS CLADE (CHLOROPHYCEAE): HIGH GC CONTENT AND UNIQUE GENOME ARCHITECTURE FOR GREEN ALGAE(1). JOURNAL OF PHYCOLOGY 2009; 45:1323-34. [PMID: 27032590 DOI: 10.1111/j.1529-8817.2009.00753.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Most mitochondrial genomes in the green algal phylum Chlorophyta are AT-rich, circular-mapping DNA molecules. However, mitochondrial genomes from the Reinhardtii clade of the Chlorophyceae lineage are linear and sometimes fragmented into subgenomic forms. Moreover, Polytomella capuana, from the Reinhardtii clade, has an elevated GC content (57.2%). In the present study, we examined mitochondrial genome conformation and GC bias in the Oogamochlamys clade of the Chlorophyceae, which phylogenetic data suggest is closely related to the Reinhardtii clade. Total DNA from selected Oogamochlamys taxa, including four Lobochlamys culleus (H. Ettl) Pröschold, B. Marin, U. G. Schlöss. et Melkonian strains, Lobochlamys segnis (H. Ettl) Pröschold, B. Marin, U. G. Schlöss. et Melkonian, and Oogamochlamys gigantea (O. Dill) Pröschold, B. Marin, U. G. Schlöss. et Melkonian, was subjected to Southern blot analyses with cob and cox1 probes, and the results suggest that the mitochondrial genome of these taxa is represented by multiple-sized linear DNA fragments with overlapping homologies. On the basis of these data, we propose that linear mitochondrial DNA with a propensity to become fragmented arose in an ancestor common to the Reinhardtii and Oogamochlamys clades or even earlier in the evolutionary history of the Chlorophyceae. Analyses of partial cob and cox1 sequences from these Oogamochlamys taxa revealed an unusually high GC content (49.9%-65.1%) and provided evidence for the accumulation of cob and cox1 pseudogenes and truncated sequences in the mitochondrial genome of all L. culleus strains examined.
Collapse
Affiliation(s)
- Tudor Borza
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada
| | - Erin K Redmond
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada
| | - Mark Laflamme
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada
| | - Robert W Lee
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada
| |
Collapse
|
7
|
Chantangsi C, Leander BS. An SSU rDNA barcoding approach to the diversity of marine interstitial cercozoans, including descriptions of four novel genera and nine novel species. Int J Syst Evol Microbiol 2009; 60:1962-1977. [PMID: 19749031 DOI: 10.1099/ijs.0.013888-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Environmental DNA surveys have revealed a great deal of hidden diversity within the Cercozoa. An investigation into the biodiversity of heterotrophic flagellates in marine benthic habitats of British Columbia, Canada, demonstrated the presence of several undescribed taxa with morphological features that resemble the cercozoan genera Cryothecomonas and Protaspis. Nine novel species of marine interstitial cercozoans are described that are distributed into five genera, four of which are new. Phylogenetic analyses of small subunit rDNA sequences derived from two uncultured isolates of Protaspis obliqua and nine novel cercozoan species (within four novel genera) provided organismal anchors that helped establish the cellular identities of several different environmental sequence clades. These data, however, also showed that the rarity of distinctive morphological features in cryomonads, and other groups of cercozoans, makes the identification and systematics of the group very difficult. Therefore, a DNA barcoding approach was applied as a diagnostic tool for species delimitation that used a 618 bp region at the 5' end of the SSU rDNA sequence. Nucleotide sequence analysis of this region showed high intergeneric sequence divergences of about 7% and very low intraspecific sequence divergences of 0-0.5%; phylogenetic analyses inferred from this barcoding region showed very similar tree topologies to those inferred from the full-length sequence of the gene. Overall, this study indicated that the 618 bp barcoding region of SSU rDNA sequences is a useful molecular signature for understanding the biodiversity and interrelationships of marine benthic cercozoans.
Collapse
Affiliation(s)
- Chitchai Chantangsi
- Departments of Zoology and Botany, University of British Columbia, Biological Sciences Bldg, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - Brian S Leander
- Departments of Zoology and Botany, University of British Columbia, Biological Sciences Bldg, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
8
|
Waller RF, Jackson CJ. Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 2009; 31:237-45. [PMID: 19204978 DOI: 10.1002/bies.200800164] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mitochondrial genomes represent relict bacterial genomes derived from a progenitor alpha-proteobacterium that gave rise to all mitochondria through an ancient endosymbiosis. Evolution has massively reduced these genomes, yet despite relative simplicity their organization and expression has developed considerable novelty throughout eukaryotic evolution. Few organisms have reengineered their mitochondrial genomes as thoroughly as the protist lineage of dinoflagellates. Recent work reveals dinoflagellate mitochondrial genomes as likely the most gene-impoverished of any free-living eukaryote, encoding only two to three proteins. The organization and expression of these genomes, however, is far from the simplicity their gene content would suggest. Gene duplication, fragmentation, and scrambling have resulted in an inflated and complex genome organization. Extensive RNA editing then recodes gene transcripts, and trans-splicing is required to assemble full-length transcripts for at least one fragmented gene. Even after these processes, messenger RNAs (mRNAs) lack canonical start codons and most transcripts have abandoned stop codons altogether.
Collapse
Affiliation(s)
- Ross F Waller
- School of Botany, University of Melbourne, Melbourne, Victoria, Australia.
| | | |
Collapse
|
9
|
Dinoflagellates: a mitochondrial genome all at sea. Trends Genet 2008; 24:328-35. [PMID: 18514360 DOI: 10.1016/j.tig.2008.04.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 04/25/2008] [Accepted: 04/28/2008] [Indexed: 11/23/2022]
Abstract
Dinoflagellate algae are notorious for their highly unusual organization of nuclear and chloroplast genomes. Early studies on the dinoflagellate mitochondrial genome indicated that it encodes the same three protein-coding genes found in Plasmodium spp., but with a complex organization and transcript editing. Recent work has extended this view, showing that the dinoflagellate mitochondrial genome contains a wide array of gene fragments and genes interspersed with noncoding inverted repeats. The genome seems to require noncanonical start and stop codons, as well as high levels of editing, trans-splicing and the addition of oligonucleotide caps at the 5' and 3' ends of transcripts. Despite its small coding content, the dinoflagellate mitochondrial genome is one of the most complex known.
Collapse
|
10
|
Jackson CJ, Norman JE, Schnare MN, Gray MW, Keeling PJ, Waller RF. Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria. BMC Biol 2007; 5:41. [PMID: 17897476 PMCID: PMC2151934 DOI: 10.1186/1741-7007-5-41] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 09/27/2007] [Indexed: 11/10/2022] Open
Abstract
Background Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs) within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes. Results From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight conserved components of the highly fragmented large and small subunit rRNAs. Unlike in apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced to generate full-length mRNAs. RNA substitutional editing, a process previously identified for mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression. Conclusion The dinoflagellate mitochondrial genome shares the same gene complement and fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several unique characteristics. Most notable are the expansion of gene copy numbers and their arrangements within the genome, RNA editing, loss of stop codons, and use of trans-splicing.
Collapse
Affiliation(s)
| | - John E Norman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | - Murray N Schnare
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Ross F Waller
- School of Botany, the University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
11
|
Slamovits CH, Saldarriaga JF, Larocque A, Keeling PJ. The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both apicomplexan and dinoflagellate mitochondrial genomes. J Mol Biol 2007; 372:356-68. [PMID: 17655860 DOI: 10.1016/j.jmb.2007.06.085] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/18/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
The mitochondrial genome and the expression of the genes within it have evolved to be highly unusual in several lineages. Within alveolates, apicomplexans and dinoflagellates share the most reduced mitochondrial gene content on record, but differ from one another in organisation and function. To clarify how these characteristics originated, we examined mitochondrial genome form and expression in a key lineage that arose close to the divergence of apicomplexans and dinoflagellates, Oxyrrhis marina. We show that Oxyrrhis is a basal member of the dinoflagellate lineage whose mitochondrial genome has some unique characteristics while sharing others with apicomplexans or dinoflagellates. Specifically, Oxyrrhis has the smallest gene complement known, with several rRNA fragments and only two protein coding genes, cox1 and a cob-cox3 fusion. The genome appears to be highly fragmented, like that of dinoflagellates, but genes are frequently arranged as tandem copies, reminiscent of the repeating nature of the Plasmodium genome. In dinoflagellates and Oxyrrhis, genes are found in many arrangements, but the Oxyrrhis genome appears to be more structured, since neighbouring genes or gene fragments are invariably the same: cox1 and the cob-cox3 fusion were never found on the same genomic fragment. Analysing hundreds of cDNAs for both genes and circularized mRNAs from cob-cox3 showed that neither uses canonical start or stop codons, although a UAA terminator is created in the cob-cox3 fusion mRNA by post-transcriptional oligoadenylation. mRNAs from both genes also use a novel 5' oligo(U) cap. Extensive RNA editing is characteristic of dinoflagellates, but we find no editing in Oxyrrhis. Overall, the combination of characteristics found in the Oxyrrhis genome allows us to plot the sequence of many events that led to the extreme organisation of apicomplexan and dinoflalgellate mitochondrial genomes.
Collapse
MESH Headings
- Animals
- Base Sequence
- Codon, Initiator/genetics
- Codon, Terminator/genetics
- DNA, Complementary/genetics
- DNA, Mitochondrial/genetics
- Dinoflagellida/classification
- Dinoflagellida/cytology
- Dinoflagellida/enzymology
- Dinoflagellida/genetics
- Evolution, Molecular
- Gene Expression Regulation
- Genes, Protozoan/genetics
- Genome, Protozoan/genetics
- Mitochondria/enzymology
- Mitochondria/genetics
- Molecular Sequence Data
- Phylogeny
- RNA Caps/chemistry
- RNA Editing
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- Transcription, Genetic
Collapse
|
12
|
Abstract
Over the past several decades, our knowledge of the origin and evolution of mitochondria has been greatly advanced by determination of complete mitochondrial genome sequences. Among the most informative mitochondrial genomes have been those of protists (primarily unicellular eukaryotes), some of which harbor the most gene-rich and most eubacteria-like mitochondrial DNAs (mtDNAs) known. Comparison of mtDNA sequence data has provided insights into the radically diverse trends in mitochondrial genome evolution exhibited by different phylogenetically coherent groupings of eukaryotes, and has allowed us to pinpoint specific protist relatives of the multicellular eukaryotic lineages (animals, plants, and fungi). This comparative genomics approach has also revealed unique and fascinating aspects of mitochondrial gene expression, highlighting the mitochondrion as an evolutionary playground par excellence.
Collapse
Affiliation(s)
- Michael W Gray
- Robert Cedergren Center, Program in Evolutionary Biology, Canadian Institute for Advanced Research, Canada.
| | | | | |
Collapse
|
13
|
Lin S, Zhang H, Spencer DF, Norman JE, Gray MW. Widespread and extensive editing of mitochondrial mRNAS in dinoflagellates. J Mol Biol 2002; 320:727-39. [PMID: 12095251 DOI: 10.1016/s0022-2836(02)00468-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report evidence of extensive substitutional editing of mitochondrial mRNAs in the dinoflagellate species Pfiesteria piscicida, Prorocentrum minimum and Crypthecodinium cohnii, based on a comparison of genomic and corresponding cDNA sequences determined for two mitochondrial DNA-encoded genes, cox1 (cytochrome oxidase subunit 1) and cob (apocytochrome b). In the cox1 mRNA, we identify 72 substitutions at 40 sites in 39 codons, whereas in cob mRNA, we infer 86 editing events at 51 sites in 48 codons. Editing, which takes place in distinct clusters, changes approximately 2% of the total sequence, occurs predominantly at first and second positions of codons, and involves mostly (but not exclusively) A-->G (47%), U-->C (23%) and C-->U (17%) substitutions. In all but four of the 158 cases, editing changes the identity of the specified amino acid. At 21 (cox1) and 26 (cob) sites, the same nucleotide change is observed at the same position in at least two of the species investigated. At about one-third of the sites, editing results in an amino acid change that increases similarity between the dinoflagellate Cox1 and Cob sequences and their homologs in other organisms; presumably editing at these sites is of particular functional significance. Overall, about half of the editing events either maintain or increase similarity between the dinoflagellate protein sequences and their non-dinoflagellate homologs, while a further one-third of the alterations are "dinoflagellate-specific" (i.e. they involve a change to an amino acid residue selectively conserved in at least two of the dinoflagellate species at a given position). The nature, pattern and phylogenetic distribution of the inferred edits implies either that more than one type of previously described editing process operates on a given transcript in dinoflagellate mitochondria, or that a mechanistically unique type of mitochondrial mRNA editing has evolved within the dinoflagellate lineage.
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| | | | | | | | | |
Collapse
|
14
|
Chaput H, Wang Y, Morse D. Polyadenylated transcripts containing random gene fragments are expressed in dinoflagellate mitochondria. Protist 2002; 153:111-22. [PMID: 12125753 DOI: 10.1078/1434-4610-00090] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An AT-rich cDNA isolated from a Gonyaulax library was identified as a putative mitochondrial cytochrome oxidase subunit 3 (cox3) by sequence comparisons. Transcripts hybridizing to this cox3 probe are abundant, are found in poly(A) enriched RNA fractions and have a variable length when tested by Northern blot analysis. A PCR analysis of 21 cox3 clones, designed to measure the length of 5' and 3' ends separately, indicated that the greatest variability in length was found at the 3' end. The variable length of the 3' end may be due to polyadenylation at random sites or to a reduced stringency for polyadenylation signals. Eight cox3 cDNAs were completely sequenced, and were found to differ by up to thirteen bases in the regions of overlap. Curiously, the longest cDNA contained a 350 base pair fragment of a dinoflagellate cox1 gene and a 600 bp fragment of a cytochrome b (cob) gene in the region 3' to the cox3 sequence. Gene fragments or multiple copies of the cox3 and cob sequences may be abundant in the mitochondrial genome since Southern blots, using these sequences separately as probes, show multiple restriction fragments with several enzymes.
Collapse
Affiliation(s)
- Hélène Chaput
- Département de Sciences Biologiques, Université de Montréal, Canada
| | | | | |
Collapse
|
15
|
Burger G, Zhu Y, Littlejohn TG, Greenwood SJ, Schnare MN, Lang BF, Gray MW. Complete sequence of the mitochondrial genome of Tetrahymena pyriformis and comparison with Paramecium aurelia mitochondrial DNA. J Mol Biol 2000; 297:365-80. [PMID: 10715207 DOI: 10.1006/jmbi.2000.3529] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the complete nucleotide sequence of the Tetrahymena pyriformis mitochondrial genome and a comparison of its gene content and organization with that of Paramecium aurelia mtDNA. T. pyriformis mtDNA is a linear molecule of 47,172 bp (78.7 % A+T) excluding telomeric sequences (identical tandem repeats of 31 bp at each end of the genome). In addition to genes encoding the previously described bipartite small and large subunit rRNAs, the T. pyriformis mitochondrial genome contains 21 protein-coding genes that are clearly homologous to genes of defined function in other mtDNAs, including one (yejR) that specifies a component of a cytochrome c biogenesis pathway. As well, T. pyriformis mtDNA contains 22 open reading frames of unknown function larger than 60 codons, potentially specifying proteins ranging in size from 74 to 1386 amino acid residues. A total of 13 of these open reading frames ("ciliate-specific") are found in P. aurelia mtDNA, whereas the remaining nine appear to be unique to T. pyriformis; however, of the latter, five are positionally equivalent and of similar size in the two ciliate mitochondrial genomes, suggesting they may also be homologous, even though this is not evident from sequence comparisons. Only eight tRNA genes encoding seven distinct tRNAs are found in T. pyriformis mtDNA, formally confirming a long-standing proposal that most T. pyriformis mitochondrial tRNAs are nucleus-encoded species imported from the cytosol. Atypical features of mitochondrial gene organization and expression in T. pyriformis mtDNA include split and rearranged large subunit rRNA genes, as well as a split nad1 gene (encoding subunit 1 of NADH dehydrogenase of respiratory complex I) whose two segments are located on and transcribed from opposite strands, as is also the case in P. aurelia. Gene content and arrangement are very similar in T. pyriformis and P. aurelia mtDNAs, the two differing by a limited number of duplication, inversion and rearrangement events. Phylogenetic analyses using concatenated sequences of several mtDNA-encoded proteins provide high bootstrap support for the monophyly of alveolates (ciliates, dinoflagellates and apicomplexans) and slime molds.
Collapse
Affiliation(s)
- G Burger
- Program in Evolutionary Biology, Canadian Institute for Advanced Research Département de Biochimie, Montréal, Québec, H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|