1
|
Cheng KJ, Shastry S, Campolargo JD, Hallock MJ, Pogorelov TV. Charge, Hydrophobicity, and Lipid Type Drive Antimicrobial Peptides' Unique Perturbation Ensembles. Biochemistry 2025; 64:1484-1500. [PMID: 40105792 DOI: 10.1021/acs.biochem.4c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Antimicrobial peptides (AMPs) have emerged as a promising solution to the escalating public health threat caused by multidrug-resistant bacteria. Although ongoing research efforts have established AMP's role in membrane permeabilization and leakage, the precise mechanisms driving these disruption patterns remain unclear. We leverage molecular dynamics (MD) simulations enhanced by membrane mimetic (HMMM) to systematically investigate how the physiochemical properties of magainin (+3) and pexiganan (+9) affect their localization, insertion, curvature perturbation, and membrane binding ensemble. Building on existing microbiology, NMR, circular dichroism, and fluorescence data, our analysis reveals that the lipid makeup is a key determinant in the binding dynamics and structural conformation of AMPs. We find that phospholipid type is crucial for peptide localization, demonstrated through magainin's predominant interaction with lipid tails and pexiganan's with polar headgroups in POPC/POPS membranes. The membrane curvature changes induced by pexiganan relative to magainin suggest that AMPs with larger charges have more potential in modulating bilayer bending. These insights advance our understanding of AMP-membrane interactions at the molecular level, offering guidance for the design of targeted antimicrobial therapies.
Collapse
Affiliation(s)
- Kevin J Cheng
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shashank Shastry
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Juan David Campolargo
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael J Hallock
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Taras V Pogorelov
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- National Center for Supercomputer Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Rice A, Zourou AC, Goodell EP, Fu R, Pastor RW, Cotten ML. Investigating How Lysophosphatidylcholine and Lysophosphatidylethanolamine Enhance the Membrane Permeabilization Efficacy of Host Defense Peptide Piscidin 1. J Phys Chem B 2025; 129:210-227. [PMID: 39681296 PMCID: PMC11816835 DOI: 10.1021/acs.jpcb.4c05845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Lysophospholipids (LPLs) and host defense peptides (HDPs) are naturally occurring membrane-active agents that disrupt key membrane properties, including the hydrocarbon thickness, intrinsic curvature, and molecular packing. Although the membrane activity of these agents has been widely examined separately, their combined effects are largely unexplored. Here, we use experimental and computational tools to investigate how lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), an LPL of lower positive spontaneous curvature, influence the membrane activity of piscidin 1 (P1), an α-helical HDP from fish. Four membrane systems are probed: 75:25 C16:0-C18:1 PC (POPC)/C16:0-C18:1 phosphoglycerol (POPG), 50:25:25 POPC/POPG/16:0 LPC, 75:25 C16:0-C18:1 PE (POPE)/POPG, and 50:25:25 POPE/POPG/14:0 LPE. Dye leakage, circular dichroism, and NMR experiments demonstrate that while the presence of LPLs alone does not induce leakage-proficient defects, it boosts the permeabilization capability of P1, resulting in an efficacy order of POPC/POPG/16:0 LPC > POPE/POPG/14:0 LPE > POPC/POPG > POPE/POPG. This enhancement occurs without altering the membrane affinity and conformation of P1. Molecular dynamics simulations feature two types of asymmetric membranes to represent the imbalanced ("area stressed") and balanced ("area relaxed") distribution of lipids and peptides in the two leaflets. The simulations capture the membrane thinning effects of P1, LPC, and LPE, and the positive curvature strain imposed by both LPLs is reflected in the lateral pressure profiles. They also reveal a higher number of membrane defects for the P1/LPC than P1/LPE combination, congruent with the permeabilization experiments. Altogether, these results show that P1 and LPLs disrupt membranes in a concerted fashion, with LPC, the more disruptive LPL, boosting the permeabilization of P1 more than LPE. This mechanistic knowledge is relevant to understanding biological processes where multiple membrane-active agents such as HDPs and LPLs are involved.
Collapse
Affiliation(s)
- Amy Rice
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Evan P. Goodell
- Department of Applied Science, William & Mary, Williamsburg, VA 23185
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, FL, 32310
| | - Richard W. Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Myriam L. Cotten
- Department of Applied Science, William & Mary, Williamsburg, VA 23185
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
3
|
Hassanpour M, Torabi SM, Afshar D, Kowsari MH, Meratan AA, Nikfarjam N. Tracing the Antibacterial Performance of Bis-Imidazolium-based Ionic Liquid Derivatives. ACS APPLIED BIO MATERIALS 2024; 7:1558-1568. [PMID: 38373341 DOI: 10.1021/acsabm.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Ionic liquid (IL) cationic species have recently captivated the attention of pharmacists, biochemists, and biomedical scientists as promising antibacterial agents to deal with the multidrug resistance bacteria crisis. The structure and functional groups of ILs influence their physiochemical properties and biological activities. However, a comprehensive study is required to fully understand the details of the antibacterial activity of ILs carrying various functional groups. Herein, dicationic ILs (DCILs) are reported based on imidazolium rings as efficient antibacterial agents. The DCILs carried various functionalities such as 2-hydroxybutyl (DCIL-1), 2-hydroxy-3-isopropoxypropyl (DCIL-2), 2-hydroxy-3-(methacryloyloxy)propyl (DCIL-3), 2-hydroxy-2-phenylethyl (DCIL-4), and 2-hydroxy-3-phenoxypropyl (DCIL-5). The structure-antibacterial activity relationships of the DCILs against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were comprehensively studied through antibacterial tests, morphology analysis, and adhesion tests. The experimental assays revealed an antibacterial efficacy order of DCIL-5 > DCIL-1 > DCIL-4 > DCIL-2 > DCIL-3. The all-atom molecular dynamics (MD) simulation showed a deep permeation of the hydrophobic -OPh functional group of DCIL-5 through the E. coli membrane model in agreement with the experimental observations. Current findings assist scientists in designing new task-specific DCILs for effective interactions with biological membranes for different applications.
Collapse
Affiliation(s)
- Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Seyed Mohammad Torabi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Davoud Afshar
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56111, Iran
| | - Mohammad Hossein Kowsari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
4
|
Khavani M, Mehranfar A, Mofrad MRK. Antimicrobial peptide interactions with bacterial cell membranes. J Biomol Struct Dyn 2024:1-14. [PMID: 38263741 DOI: 10.1080/07391102.2024.2304683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024]
Abstract
Antimicrobial peptides (AMPs) are potential alternatives for common antibiotics because of their greater activity and efficiency against a broad range of viruses, bacteria, fungi, and parasites. In this project, two antimicrobial peptides including magainin 2 and protegrin 1 with α-helix and β-sheet secondary structures were selected to investigate their interactions with different lipid bilayers such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), POPC/POPG (7:3), POPC/POPS (7:3), POPG/POPE(1:3), and POPG/POPE(3:1). The obtained structures of the AMPs illustrated that protegrin 1 cannot maintain its secondary structure in the solution phase in contrast to magainin 2. The head groups of the lipid units play a key role in the stability of the lipid bilayers. The head parts of the lipid membranes by increasing the internal H-bond contribute to membrane compactness. The POPG and POPS units inside the POPC/POPG and POPC/POPS membranes increase the order of the POPC units. The cationic residues of the AMPs form remarkable electrostatic interactions with the negatively charged membrane surfaces, which play a key role in the stabilization process of the peptide secondary structures. The Arg residues of protegrin 1 and the Gly1, Lys4, Lys10, Lys11, Lys14, and Glu19 of the magainin 2 have the most important roles in the complexation process. The values of Gibbs binding energies (ΔG) indicate that the complexation process between AMPs and different bacterial membranes is favorable from the thermodynamic viewpoint and AMPs could form stable complexes with the lipid bilayers. As a result of ΔG values, protegrin 1 forms a more stable complex with POPG/POPE(3:1), while the α-helix has more affinity to the POPG/POPE(1:3) bacterial membranes. Therefore, it can be considered that β-sheet and α-helix AMPs are more effective against gram-positive and gram-negative bacteria, respectively. The results of this study can provide useful details about the antimicrobial peptide interactions with the bacterial cell, which can be employed for designing new antimicrobial materials with greater efficiency.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California, USA
| | - Aliyeh Mehranfar
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
5
|
Huo HJ, Yang TZ, Gao CB, Cao M, Xue T, Fu Q, Li C. Molecular characterization, antibacterial activity and mechanism analyzation of three different piscidins from black rockfish, Sebastes schlegelii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104394. [PMID: 35283164 DOI: 10.1016/j.dci.2022.104394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Sebastes schlegelii (black rockfish) is a popular and economically important fish species in aquaculture. However, disease outbreaks have hindered the development of its cultivation. Antimicrobial peptides (AMPs) are a group of important components in fish innate immune system, that are active in the first line of defense against pathogens. The piscidin family, which are a group of fish-specific AMPs, have been isolated in a part of teleost but still poorly understood in S. schlegelii. In this study, three piscidin genes (Ss-piscidin1, 2, 3) are identified in S. schlegelii and their antibacterial activities and related mechanisms are analyzed. Three Ss-piscidins have conserved signal peptides but highly variable mature peptides and prodomains, and their mature regions all have predicted amphipathic and α-helical structures. Phylogenetic analysis shows that three Ss-piscidins cluster with different fish piscidin sequences into three sister clades, which correspond to three groups of fish piscidin family, respectively. Ss-piscidins have constitutive expressions in different tissues of healthy fish and enhanced expressions after Aeromonas salmonicida challenge. All three piscidins exhibit antibacterial activities, and are able to enhance bacterial membrane permeability and change bacterial morphology to different degrees, with a positive correlation observed among these activities. This suggests that three peptides exert their antibacterial activity through a "membrane-attack" mechanism. Moreover, hemolytic activities of three piscidins are also analyzed, and Ss-piscidin1, with low hemolytic ability and high antibacterial activity, is considered to be a possible candidate template for design of AMP drugs. Results in this study can promote a better understanding of immune responses in black rockfish and facilitate the future development of strategies in fish disease control in aquaculture.
Collapse
Affiliation(s)
- Hui Jun Huo
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Tian Zhen Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Cheng Bin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
6
|
Liu L, Wang C, Zhang M, Zhang Z, Wu Y, Zhang Y. An Efficient Evaluation System Accelerates α-Helical Antimicrobial Peptide Discovery and Its Application to Global Human Genome Mining. Front Microbiol 2022; 13:870361. [PMID: 35547131 PMCID: PMC9083330 DOI: 10.3389/fmicb.2022.870361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/23/2022] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial peptides (AMPs), as an important part of the innate immune system of an organism, is a kind of promising drug candidate for novel antibiotics due to their unique antibacterial mechanism. However, the discovery of novel AMPs is facing a great challenge due to the complexity of systematic experiments and the poor predictability of antimicrobial activity. Here, a novel and comprehensive screening system, the Multiple Descriptor Multiple Strategy (MultiDS), was proposed based on 59 physicochemical and structural parameters, three strategies, and four algorithms for the mining of α-helical AMPs. This approach was applied to mine the encrypted peptide antibiotics from the global human genome, including introns and exons. A library of approximately 70 billion peptides with 15–25 amino acid residues was screened by the MultiDS system and generated a list of peptides with the Multiple Descriptor Index (MD index) scores, which was the core part of the MultiDS system. Sixty peptides with top MD scores were chemically synthesized and experimentally tested their antimicrobial activity against 10 kinds of Gram-positive bacteria, Gram-negative bacteria (including drug-resistant pathogens). A total of fifty-nine out of 60 (98.3%) peptides exhibited antimicrobial activity (MIC ≤ 64 μg/mL), and 24 out of 60 (40%) peptides showed high activity (MIC ≤ 2 μg/mL), validating the MultiDS system was an effective and predictive screening tool with high hit rate and superior antimicrobial activity. For further investigation, AMPs S1, S2, and S3 with the highest MD scores were used to treat the skin infection mouse models in vivo caused by Escherichia coli, drug-resistance Escherichia coli, and Staphylococcus aureus, respectively. All of S1, S2, and S3 showed comparable therapeutic effects on promoting infection healing to or even better than the positive drug levofloxacin. A mechanism study discovered that rapid bactericidal action was caused by cell membrane disruption and content leakage. The MultiDS system not only provides a high-throughput approach that allows for the mining of candidate AMPs from the global genome sequence but also opens up a new route to accelerate the discovery of peptide antibiotics.
Collapse
Affiliation(s)
- Licheng Liu
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Caiyun Wang
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Mengyue Zhang
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Zixuan Zhang
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingying Wu
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yixuan Zhang
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
7
|
Chakraborty S, Chatterjee R, Chakravortty D. Evolving and assembling to pierce through: Evolutionary and structural aspects of antimicrobial peptides. Comput Struct Biotechnol J 2022; 20:2247-2258. [PMID: 35615024 PMCID: PMC9117813 DOI: 10.1016/j.csbj.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022] Open
Abstract
The burgeoning menace of antimicrobial resistance across the globe has necessitated investigations into other chemotherapeutic strategies to combat infections. Antimicrobial peptides, or host defense peptides, are a set of promising therapeutic candidates in this regard. Most of them cause membrane permeabilization and are a key component of the innate immune response to pathogenic invasion. It has also been reported that peptide self-assembly is a driving factor governing the microbicidal activity of these peptide candidates. While efforts have been made to develop novel synthetic peptides against various microbes, many clinical trials of such peptides have failed due to toxicity and hemolytic activity to the host. A function-guided rational peptide engineering, based on evolutionary principles, physicochemical properties and activity determinants of AMP activity, is expected to help in targeting specific microbes. Furthermore, it is important to develop a unified understanding of the evolution of AMPs in order to fully appreciate their importance in host defense. This review seeks to explore the evolution of AMPs and the physicochemical determinants of AMP activity. The specific interactions driving AMP self-assembly have also been reviewed, emphasizing implications of this self-assembly on microbicidal and immunomodulatory activity.
Collapse
Affiliation(s)
- Sukriyo Chakraborty
- Department of Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Science, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Science, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
8
|
Kopeikin PM, Zharkova MS, Kolobov AA, Smirnova MP, Sukhareva MS, Umnyakova ES, Kokryakov VN, Orlov DS, Milman BL, Balandin SV, Panteleev PV, Ovchinnikova TV, Komlev AS, Tossi A, Shamova OV. Caprine Bactenecins as Promising Tools for Developing New Antimicrobial and Antitumor Drugs. Front Cell Infect Microbiol 2020; 10:552905. [PMID: 33194795 PMCID: PMC7604311 DOI: 10.3389/fcimb.2020.552905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/28/2020] [Indexed: 02/01/2023] Open
Abstract
Proline-rich antimicrobial peptides (PR-AMPs) having a potent antimicrobial activity predominantly toward Gram-negative bacteria and negligible toxicity toward host cells, are attracting attention as new templates for developing antibiotic drugs. We have previously isolated and characterized several bactenecins that are promising in this respect, from the leukocytes of the domestic goat Capra hircus: ChBac5, miniChBac7.5N-α, and -β, as well as ChBac3.4. Unlike the others, ChBac3.4 shows a somewhat unusual pattern of activities for a mammalian PR-AMP: it is more active against bacterial membranes as well as tumor and, to the lesser extent, normal cells. Here we describe a SAR study of ChBac3.4 (RFRLPFRRPPIRIHPPPFYPPFRRFL-NH2) which elucidates its peculiarities and evaluates its potential as a lead for antimicrobial or anticancer drugs based on this peptide. A set of designed structural analogues of ChBac3.4 was explored for antibacterial activity toward drug-resistant clinical isolates and antitumor properties. The N-terminal region was found to be important for the antimicrobial action, but not responsible for the toxicity toward mammalian cells. A shortened variant with the best selectivity index toward bacteria demonstrated a pronounced synergy in combination with antibiotics against Gram-negative strains, albeit with a somewhat reduced ability to inhibit biofilm formation compared to native peptide. C-terminal amidation was examined for some analogues, which did not affect antimicrobial activity, but somewhat altered the cytotoxicity toward host cells. Interestingly, non-amidated peptides showed a slight delay in their impact on bacterial membrane integrity. Peptides with enhanced hydrophobicity showed increased toxicity, but in most cases their selectivity toward tumor cells also improved. While most analogues lacked hemolytic properties, a ChBac3.4 variant with two additional tryptophan residues demonstrated an appreciable activity toward human erythrocytes. The variant demonstrating the best tumor/nontumor cell selectivity was found to more actively initiate apoptosis in target cells, though its action was slower than that of the native ChBac3.4. Its antitumor effectiveness was successfully verified in vivo in a murine Ehrlich ascites carcinoma model. The obtained results demonstrate the potential of structural modification to manage caprine bactenecins’ selectivity and activity spectrum and confirm that they are promising prototypes for antimicrobial and anticancer drugs design.
Collapse
Affiliation(s)
- Pavel M Kopeikin
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Maria S Zharkova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexander A Kolobov
- Laboratory of Peptide Chemistry, State Research Institute of Highly Pure Biopreparations, Saint Petersburg, Russia
| | - Maria P Smirnova
- Laboratory of Peptide Chemistry, State Research Institute of Highly Pure Biopreparations, Saint Petersburg, Russia
| | - Maria S Sukhareva
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Ekaterina S Umnyakova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Vladimir N Kokryakov
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Dmitriy S Orlov
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Boris L Milman
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Sergey V Balandin
- Science-Educational Center, M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Pavel V Panteleev
- Science-Educational Center, M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V Ovchinnikova
- Science-Educational Center, M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aleksey S Komlev
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Olga V Shamova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
9
|
Pei X, Gong Z, Wu Q, Chen X, Wang L, Ma C, Xi X, Chen T, Shaw C, Zhou M. Characterisation of a novel peptide, Brevinin-1H, from the skin secretion of Amolops hainanensis and rational design of several analogues. Chem Biol Drug Des 2020; 97:273-282. [PMID: 32812694 DOI: 10.1111/cbdd.13779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/15/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022]
Abstract
As drug-resistant bacteria have become a serious health problem and have caused thousands of deaths, finding new antibiotics has become an urgent research priority. A novel antimicrobial peptide, named Brevinin-1H, was identified in the skin secretion of Amolops hainanensis through 'shotgun' cloning. It has broad-spectrum antimicrobial activity against tested micro-organisms and has anticancer cell activity. To improve its bioactivity and decrease its cytotoxicity, two structural analogues-Brevinin-1Ha and Brevinin-1HY-were designed based on the secondary structure of the natural peptide. Brevinin-1HY, in which tyrosine substituted Pro11 , had similar activity to the natural peptide against Gram-negative bacteria and cancer cells, but showed a dramatic increase in haemolytic activity and cytotoxicity at its minimum inhibitory concentration. Brevinin-1Ha, which transferred the Rana-box from the C-terminal to a central position, had significantly decreased haemolytic activity, but also in antimicrobial and anticancer activity. The present data suggest that increasing the proportion of α-helix structure in an AMP can increase its target micro-organism bioactivity to some extent.
Collapse
Affiliation(s)
- Xinjie Pei
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zijian Gong
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Qing Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
10
|
Salas-Ambrosio P, Tronnet A, Verhaeghe P, Bonduelle C. Synthetic Polypeptide Polymers as Simplified Analogues of Antimicrobial Peptides. Biomacromolecules 2020; 22:57-75. [PMID: 32786537 DOI: 10.1021/acs.biomac.0c00797] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides (AMPs) are naturally occurring macromolecules made of amino acids that are potent broad-spectrum antibiotics with potential as novel therapeutic agents. This review aims to summarize the fundamental principles concerning the structure and mechanism of action of these AMPs, in order to guide the design of polymeric analogues that organic chemistry can generate. Among those simplified analogues, this review particularly focuses on those made of amino acids called polypeptide polymers: they are showing great potential by providing one of the best biomimetic and bioactive structures for further biomaterials science applications.
Collapse
Affiliation(s)
| | - Antoine Tronnet
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| | - Pierre Verhaeghe
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| | - Colin Bonduelle
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| |
Collapse
|
11
|
Limwongyut J, Nie C, Moreland AS, Bazan GC. Molecular design of antimicrobial conjugated oligoelectrolytes with enhanced selectivity toward bacterial cells. Chem Sci 2020; 11:8138-8144. [PMID: 34123085 PMCID: PMC8163332 DOI: 10.1039/d0sc03679j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of cationic conjugated oligoelectrolytes (COEs) was designed to understand how variations in molecular dimensions impact the relative activity against bacteria and mammalian cells. These COEs kept a consistent distyrylbenzene framework but differed in the length of linker between the core and the cationic site and the length of substitute on the quaternary ammonium functioned group. Their antimicrobial efficacy, mammalian cell cytotoxicity, hemolytic activity, and cell association were determined. We find that hydrophobicity is a factor that controls the degree of COE association to cells, but in vitro efficacy and cytotoxicity depend on more subtle structural features. COE2-3C-C4butyl was found to be the optimal structure with a minimum inhibitory concentration (MIC) of 4 μg mL−1 against E. coli K12, low cytotoxicity against HepG2 cells and negligible hemolysis of red blood cells, even at 1024 μg mL−1. A time-kill kinetics study of COE2-3C-C4butyl against E. coli K12 demonstrates bactericidal activity. These findings provide the first systematic investigation of how COEs may be modulated to achieve low mammalian cell cytotoxicity with the long-range perspective of finding candidates suitable for developing a broad-spectrum antimicrobial agent. A series of cationic conjugated oligoelectrolytes (COEs) was designed to understand how variations in molecular dimensions impact the relative activity against bacteria and mammalian cells.![]()
Collapse
Affiliation(s)
- Jakkarin Limwongyut
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA
| | - Chenyao Nie
- Departments of Chemistry and Chemical Engineering, National University of Singapore 117543 Singapore
| | - Alex S Moreland
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA .,Departments of Chemistry and Chemical Engineering, National University of Singapore 117543 Singapore
| |
Collapse
|
12
|
Jiang Y, Mei C, Huang X, Gu Q, Song D. Antibacterial Activity and Mechanism of a Bacteriocin Derived from the Valine-Cecropin A(1–8)-Plantaricin ZJ5(1–18) Hybrid Peptide Against Escherichia coli O104. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-020-09636-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Monteiro ML, Lima DB, Menezes RRPPBD, Sampaio TL, Silva BP, Serra Nunes JV, Cavalcanti MM, Morlighem JE, Martins AMC. Antichagasic effect of hemocyanin derived from antimicrobial peptides of penaeus monodon shrimp. Exp Parasitol 2020; 215:107930. [PMID: 32464221 DOI: 10.1016/j.exppara.2020.107930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 11/20/2022]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, is responsible for the infection of millions of people worldwide and it is a public health problem, without an effective cure. Four fragments with antimicrobial potential from the hemocyanin of Penaeus monodon shrimp were identified using a computer software AMPA. The present study aimed to evaluate the antichagasic effect of these four peptides (Hmc364-382, Hmc666-678, Hmc185-197 and Hmc476-498). The peptides were tested against the epimastigote, trypomastigote and amastigote forms of Trypanosoma cruzi Y strain (benznidazole-resistant strain) and cytotoxicity in mammalian cells was evaluated against LLC-MK2 lineage cells. Two fragments (Hmc364-382, Hmc666-678) showed activity against the epimastigote and trypomastigote forms and their selectivity index (SI) was calculated. The Hmc364-382 peptide was considered the most promising (SI > 50) one and it was used for further studies, using flow cytometry analyses with specific molecular probes and scanning electron microscopy (SEM). Hmc364-382 was able to induce cell death in T. cruzi through necrosis, observed by loss of membrane integrity in flow cytometry analyses and pore formation in SEM. Overall, Hmc364-382 open perspectives to the development of new antichagasic agents.
Collapse
Affiliation(s)
- Marília Lopes Monteiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Dânya Bandeira Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | - Tiago Lima Sampaio
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Brenna Pinheiro Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - João Victor Serra Nunes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Mariana Maciel Cavalcanti
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Jean-Etienne Morlighem
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Alice Maria Costa Martins
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
14
|
Aragón-Muriel A, Ausili A, Sánchez K, Rojas A OE, Londoño Mosquera J, Polo-Cerón D, Oñate-Garzón J. Studies on the Interaction of Alyteserin 1c Peptide and Its Cationic Analogue with Model Membranes Imitating Mammalian and Bacterial Membranes. Biomolecules 2019; 9:biom9100527. [PMID: 31557903 PMCID: PMC6843542 DOI: 10.3390/biom9100527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 01/17/2023] Open
Abstract
Antimicrobial peptides (AMPs) are effector molecules of the innate immune system and have been isolated from multiple organisms. Their antimicrobial properties are due to the fact that they interact mainly with the anionic membrane of the microorganisms, permeabilizing it and releasing the cytoplasmic content. Alyteserin 1c (+2), an AMP isolated from Alytes obstetricans and its more cationic and hydrophilic analogue (+5) were synthesized using the solid phase method, in order to study the interaction with model membranes by calorimetric and spectroscopic assays. Differential scanning calorimetry (DSC) showed that both peptides had a strong effect when the membrane contained phosphatidylcholine (PC) alone or was mixed with phosphatidylglycerol (PG), increasing membrane fluidization. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to study the secondary structure of the peptide. Peptide +2 exhibited a transition from β-sheet/turns to β-sheet/α-helix structures after binding with model membranes, whereas peptide +5 had a transition from aggregation/unordered to β-sheet/α-helix structures after binding with membrane-contained PC. Interestingly, the latter showed a β-sheet structure predominantly in the presence of PG lipids. Additionally, molecular dynamics (MD) results showed that the carboxy-terminal of the peptide +5 has the ability to insert into the surface of the PC/PG membranes, resulting in the increase of the membrane fluidity.
Collapse
Affiliation(s)
- Alberto Aragón-Muriel
- Facultad de Ciencias Naturales y Exactas, Departmento de Química, Laboratorio of Investigación en Catalisis and Procesos (LICAP), Universidad del Valle, Cali 760001, Colombia.
| | - Alessio Ausili
- Departmento de Bioquímica y Biología Molecular-A, Facultad de Medicina Veterinaria, Campus of International Excellence Mare, Universidad de Murcia, E-30100 Murcia, Spain.
| | - Kevin Sánchez
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760031, Colombia.
| | - Oscar E Rojas A
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760031, Colombia.
| | - Juan Londoño Mosquera
- Facultad de Ciencias Naturales y Exactas, Departmento de Química, Laboratorio of Investigación en Catalisis and Procesos (LICAP), Universidad del Valle, Cali 760001, Colombia.
| | - Dorian Polo-Cerón
- Facultad de Ciencias Naturales y Exactas, Departmento de Química, Laboratorio of Investigación en Catalisis and Procesos (LICAP), Universidad del Valle, Cali 760001, Colombia.
| | - Jose Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760031, Colombia.
| |
Collapse
|
15
|
Stone TA, Cole GB, Ravamehr-Lake D, Nguyen HQ, Khan F, Sharpe S, Deber CM. Positive Charge Patterning and Hydrophobicity of Membrane-Active Antimicrobial Peptides as Determinants of Activity, Toxicity, and Pharmacokinetic Stability. J Med Chem 2019; 62:6276-6286. [PMID: 31194548 DOI: 10.1021/acs.jmedchem.9b00657] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Natural α-helical cationic antimicrobial peptide (CAP) sequences are predominantly amphipathic, with only ca. 2% containing four or more consecutive positively charged amino acids (Lys/Arg). We have designed synthetic CAPs that deviate from these natural sequences, as typified by the charge-clustered peptide KKKKKKAAFAAWAAFAA-NH2, (termed 6K-F17), which displays high antimicrobial activity with no toxicity to mammalian cells. We created a series of peptides varying in charge patterning, increasing the amphipathic character of 6K-F17 to mimic the design of natural CAPs (e.g., KAAKKFAKAWAKAFAA-NH2). Amphipathic sequences displayed increased antimicrobial activity against bacteria but were significantly more toxic to mammalian cells and more susceptible to protease degradation than their corresponding charge-clustered variants, suggesting that amphipathic sequences may be desirable in nature to allow for more versatile functions (i.e., antibacterial, antifungal, antipredator) and rapid clearance from vulnerable host cells. Our approach to clustering of charges may therefore allow for specialization against bacteria, in concert with prolonged peptide half-life.
Collapse
Affiliation(s)
- Tracy A Stone
- Department of Biochemistry , University of Toronto , Toronto , M5S 1A8 Ontario , Canada
| | - Gregory B Cole
- Division of Molecular Medicine , Research Institute, Hospital for Sick Children , Toronto M5G 0A4 Ontario , Canada
| | - Dorna Ravamehr-Lake
- Division of Molecular Medicine , Research Institute, Hospital for Sick Children , Toronto M5G 0A4 Ontario , Canada
| | - Huong Q Nguyen
- Division of Molecular Medicine , Research Institute, Hospital for Sick Children , Toronto M5G 0A4 Ontario , Canada
| | - Farheen Khan
- Division of Molecular Medicine , Research Institute, Hospital for Sick Children , Toronto M5G 0A4 Ontario , Canada
| | - Simon Sharpe
- Division of Molecular Medicine , Research Institute, Hospital for Sick Children , Toronto M5G 0A4 Ontario , Canada
| | - Charles M Deber
- Division of Molecular Medicine , Research Institute, Hospital for Sick Children , Toronto M5G 0A4 Ontario , Canada
| |
Collapse
|
16
|
Mechanistic predictions of the influence of collagen-binding domain sequences on human LL37 interactions with model lipids using quartz crystal microbalance with dissipation. Biointerphases 2019; 14:021006. [PMID: 31039613 DOI: 10.1116/1.5089759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Modifications of human-derived antimicrobial peptide LL37 with collagen binding domains (CBD-LL37) hold promise as alternatives to antibiotics due to their wider therapeutic ratio than unmodified LL37 when interacting with collagen substrates such as commercial wound dressings. However, CBD-LL37 lipid membrane interaction mechanisms (against both mammalian and bacterial lipids) are not well understood. Our goal was to develop a mechanistic explanation of how CBDs modulate peptide-lipid interactions leading to their observed bioactivities, in order to better understand their potential for clinical applications. The authors studied time- and concentration-dependent interactions of CBD-LL37 modified with collagenase (cCBD) and fibronectin (fCBD) CBDs, with zwitterionic and anionic supported lipid bilayers, in order to model mammalian erythrocytes and bacterial cells, respectively. Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to characterize peptide-lipid interactions at concentrations in the immunomodulatory (0.5-1.0 μM), antimicrobial (1.0-5.0 μM), and cytotoxic (5.0-10.0 μM) ranges. Their prior work with zwitterionic membranes demonstrated that cCBD-LL37 formed transmembrane pores while fCBD-LL37 underwent surface adsorption. Our goal in this study is to better interpret these results, by investigating the data at a wider concentration range and for two types of lipids, and by applying the Voigt-Kelvin viscoelastic model to calculate thickness and density changes of the peptide-lipid films as a function of time and concentration, thus providing information to help build detailed mechanisms of peptide/bilayer interactions. For pore-forming cCBD-LL37 and unmodified LL37, they found that there was a relationship between layer thicknesses and pore formation, which was attributed to different peptide orientation changes influenced by bilayer charge prior to pore formation. Specifically, cCBD-LL37 at 0.5 and 1.0 μM demonstrated higher thicknesses on zwitterionic than anionic membranes, indicating that prior to insertion into zwitterionic membranes, it orients perpendicular to the surface, which was also consistent with the higher dissipation changes observed on zwitterionic membranes. fCBD-LL37 demonstrated a bilayer adsorption mechanism with a preference toward anionic lipids. Adsorption of fCBD-LL37 onto anionic lipids demonstrated a rapid first adsorption step that transitioned depending on the number of fCBD-LL37 molecules on the bilayer. For this peptide at higher concentrations, greater dissipation changes were observed than for fCBD-LL37 physically adsorbed onto surfaces without bilayers. This suggests that peptide-peptide interactions promoted by the fCBD domain dominated after saturation. The development of a structure-function relationship for cCBD-LL37 and fCBD-LL37 demonstrates promise for using QCM-D predictions to inform the rational design of novel, antimicrobial, and noncytotoxic CBD-LL37 for clinical applications.
Collapse
|
17
|
Mant CT, Jiang Z, Gera L, Davis T, Nelson KL, Bevers S, Hodges RS. De Novo Designed Amphipathic α-Helical Antimicrobial Peptides Incorporating Dab and Dap Residues on the Polar Face To Treat the Gram-Negative Pathogen, Acinetobacter baumannii. J Med Chem 2019; 62:3354-3366. [PMID: 30848594 DOI: 10.1021/acs.jmedchem.8b01785] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have designed de novo and synthesized ten 26-residue D-conformation amphipathic α-helical cationic antimicrobial peptides (AMPs), seven with "specificity determinants", which provide specificity for prokaryotic cells over eukaryotic cells. The ten AMPs contain five or six positively charged residues (d-Arg, d-Lys, d-Orn, l-Dab, or l-Dap) on the polar face to understand their role in hemolytic activity against human red blood cells and antimicrobial activity against seven Acinetobacter baumannii strains, resistant to polymyxin B and colistin, and 20 A. baumannii worldwide isolates from 2016 and 2017 with antibiotic resistance to 18 different antibiotics. AMPs with specificity determinants and with l-Dab and l-Dap residues on the polar face have essentially no hemolytic activity at 1000 μg/mL (380 μM), showing for the first time the importance of these unusual amino acid residues in solving long-standing hemolysis issues of AMPs. Specificity determinants maintained excellent antimicrobial activity in the presence of human sera.
Collapse
Affiliation(s)
- Colin T Mant
- Department of Biochemistry and Molecular Genetics, School of Medicine , University of Colorado , Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Ziqing Jiang
- Department of Biochemistry and Molecular Genetics, School of Medicine , University of Colorado , Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Lajos Gera
- Department of Biochemistry and Molecular Genetics, School of Medicine , University of Colorado , Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Tim Davis
- Department of Biochemistry and Molecular Genetics, School of Medicine , University of Colorado , Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | | | - Shaun Bevers
- Department of Biochemistry and Molecular Genetics, School of Medicine , University of Colorado , Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Robert S Hodges
- Department of Biochemistry and Molecular Genetics, School of Medicine , University of Colorado , Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| |
Collapse
|
18
|
Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:175-214. [DOI: 10.1007/978-981-13-3588-4_11] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Lozeau LD, Youssefian S, Rahbar N, Camesano TA, Rolle MW. Concentration-Dependent, Membrane-Selective Activity of Human LL37 Peptides Modified with Collagen Binding Domain Sequences. Biomacromolecules 2018; 19:4513-4523. [DOI: 10.1021/acs.biomac.8b00802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Gomes KAGG, Dos Santos DM, Santos VM, Piló-Veloso D, Mundim HM, Rodrigues LV, Lião LM, Verly RM, de Lima ME, Resende JM. NMR structures in different membrane environments of three ocellatin peptides isolated from Leptodactylus labyrinthicus. Peptides 2018; 103:72-83. [PMID: 29596881 DOI: 10.1016/j.peptides.2018.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
The peptides ocellatin-LB1, -LB2 and -F1 have previously been isolated from anurans of the Leptodactylus genus and the sequences are identical from residue 1-22, which correspond to ocellatin-LB1 sequence (GVVDILKGAAKDIAGHLASKVM-NH2), whereas ocellatin-LB2 carries an extra N and ocellatin-F1 extra NKL residues at their C-termini. These peptides showed different spectra of activities and biophysical investigations indicated a direct correlation between membrane-disruptive properties and antimicrobial activities, i.e. ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. To better characterize their membrane interactions, we report here the detailed three-dimensional NMR structures of these peptides in TFE-d2:H2O (60:40) and in the presence of zwitterionic DPC-d38 and anionic SDS-d25 micellar solutions. Although the three peptides showed significant helical contents in the three mimetic environments, structural differences were noticed. When the structures of the three peptides in the presence of DPC-d38 micelles are compared to each other, a more pronounced curvature is observed for ocellatin-F1 and the bent helix, with the concave face composed mostly of hydrophobic residues, is consistent with the micellar curvature and the amphipathic nature of the molecule. Interestingly, an almost linear helical segment was observed for ocellatin-F1 in the presence of SDS-d25 micelles and the conformational differences in the two micellar environments are possibly related to the presence of the extra Lys residue near the peptide C-terminus, which increases the affinity of ocellatin-F1 to anionic membranes in comparison with ocellatin-LB1 and -LB2, as proved by isothermal titration calorimetry. To our knowledge, this work reports for the first time the three-dimensional structures of ocellatin peptides.
Collapse
Affiliation(s)
- Karla A G G Gomes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil; Instituto de Engenharia, Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39440-000 Janaúba, MG, Brazil
| | - Daniel M Dos Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Virgílio M Santos
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Dorila Piló-Veloso
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Higor M Mundim
- Instituto de Química, Universidade Federal de Goiás, Av. Esperança, s/n, Campus Samambaia, 74690-900 Goiânia, GO, Brazil
| | - Leticia V Rodrigues
- Instituto de Química, Universidade Federal de Goiás, Av. Esperança, s/n, Campus Samambaia, 74690-900 Goiânia, GO, Brazil
| | - Luciano M Lião
- Instituto de Química, Universidade Federal de Goiás, Av. Esperança, s/n, Campus Samambaia, 74690-900 Goiânia, GO, Brazil
| | - Rodrigo M Verly
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Jarbas M Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
21
|
Mukherjee S, Kar RK, Nanga RPR, Mroue KH, Ramamoorthy A, Bhunia A. Accelerated molecular dynamics simulation analysis of MSI-594 in a lipid bilayer. Phys Chem Chem Phys 2018; 19:19289-19299. [PMID: 28702543 DOI: 10.1039/c7cp01941f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multidrug resistance against the existing antibiotics is one of the most challenging threats across the globe. Antimicrobial peptides (AMPs), in this regard, are considered to be one of the effective alternatives that can overcome bacterial resistance. MSI-594, a 24-residue linear alpha-helical cationic AMP, has been shown to function via the carpet mechanism to disrupt bacterial membrane systems. To better understand the role of lipid composition in the function of MSI-594, in the present study, eight different model membrane systems have been studied using accelerated molecular dynamics (aMD) simulations. The simulated results are helpful in discriminating the particular effects of cationic MSI-594 against zwitterionic POPC, anionic POPG and POPS, and neutral POPE lipid moieties. Additionally, the effects of various heterogeneous POPC/POPG (7 : 3), POPC/POPS (7 : 3), and POPG/POPE (1 : 3 and 3 : 1) bilayer systems on the dynamic interaction of MSI-594 have also been investigated. The effect on the lipid bilayer due to the interaction with the peptide is characterized by lipid acyl-chain order, membrane thickness, and acyl-chain dynamics. Our simulation results show that the lipid composition affects the membrane interaction of MSI-594, suggesting that membrane selectivity is crucial to its mechanism of action. The results reported in this study are helpful to obtain accurate atomistic-level information governing MSI-594 and its membrane disruptive antimicrobial mechanism of action, and to design next generation potent antimicrobial peptides.
Collapse
Affiliation(s)
- Shruti Mukherjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.
| | - Rajiv K Kar
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.
| | - Ravi Prakash Reddy Nanga
- Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA. and Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kamal H Mroue
- Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.
| |
Collapse
|
22
|
Olivieri C, Bugli F, Menchinelli G, Veglia G, Buonocore F, Scapigliati G, Stocchi V, Ceccacci F, Papi M, Sanguinetti M, Porcelli F. Design and characterization of chionodracine-derived antimicrobial peptides with enhanced activity against drug-resistant human pathogens. RSC Adv 2018; 8:41331-41346. [PMID: 35559296 PMCID: PMC9091591 DOI: 10.1039/c8ra08065h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022] Open
Abstract
Design of new chionodracine-derived peptides with potent activity against drug-resistant human pathogens.
Collapse
Affiliation(s)
- Cristina Olivieri
- Department for Innovation in Biological, Agrofood and Forest Systems
- University of Tuscia
- 01100 Viterbo
- Italy
- Department of Biochemistry, Molecular Biology and Biophysics
| | - Francesca Bugli
- Microbiology Institute
- Catholic University of Sacred Heart
- Rome
- Italy
| | | | - Gianluigi Veglia
- Department of Chemistry
- University of Minnesota
- Minneapolis
- 55455 USA
- Department of Biochemistry, Molecular Biology and Biophysics
| | - Francesco Buonocore
- Department for Innovation in Biological, Agrofood and Forest Systems
- University of Tuscia
- 01100 Viterbo
- Italy
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agrofood and Forest Systems
- University of Tuscia
- 01100 Viterbo
- Italy
| | - Valentina Stocchi
- Department for Innovation in Biological, Agrofood and Forest Systems
- University of Tuscia
- 01100 Viterbo
- Italy
| | - Francesca Ceccacci
- CNR – Institute of Chemical Methodologies
- Sezione Meccanismi di Reazione UOS of Rome
- Rome
- Italy
| | | | | | - Fernando Porcelli
- Department for Innovation in Biological, Agrofood and Forest Systems
- University of Tuscia
- 01100 Viterbo
- Italy
| |
Collapse
|
23
|
Lee EY, Lee MW, Fulan BM, Ferguson AL, Wong GCL. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 2017; 7:20160153. [PMID: 29147555 DOI: 10.1098/rsfs.2016.0153] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a diverse class of well-studied membrane-permeating peptides with important functions in innate host defense. In this short review, we provide a historical overview of AMPs, summarize previous applications of machine learning to AMPs, and discuss the results of our studies in the context of the latest AMP literature. Much work has been recently done in leveraging computational tools to design new AMP candidates with high therapeutic efficacies for drug-resistant infections. We show that machine learning on AMPs can be used to identify essential physico-chemical determinants of AMP functionality, and identify and design peptide sequences to generate membrane curvature. In a broader scope, we discuss the implications of our findings for the discovery of membrane-active peptides in general, and uncovering membrane activity in new and existing peptide taxonomies.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Benjamin M Fulan
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew L Ferguson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Molecular mechanism of synergy between the antimicrobial peptides PGLa and magainin 2. Sci Rep 2017; 7:13153. [PMID: 29030606 PMCID: PMC5640672 DOI: 10.1038/s41598-017-12599-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/08/2017] [Indexed: 12/19/2022] Open
Abstract
PGLa and magainin 2 (MAG2) are amphiphilic α-helical membranolytic peptides from frog skin with known synergistic antimicrobial activity. By systematically mutating residues in the two peptides it was possible to identify the ones crucial for the synergy, as monitored by biological assays, fluorescence vesicle leakage, and solid-state 15N-NMR. Electrostatic interactions between anionic groups in MAG2 and cationic residues in PGLa enhance synergy but are not necessary for the synergistic effect. Instead, two Gly residues (7 and 11) in a so-called GxxxG motif in PGLa are necessary for synergy. Replacing either of them with Ala or another hydrophobic residue completely abolishes synergy according to all three methods used. The designer-made peptide MSI-103, which has a similar sequence as PGLa, shows no synergy with MAG2, but by introducing two Gly mutations it was possible to make it synergistic. A molecular model is proposed for the functionally active PGLa-MAG2 complex, consisting of a membrane-spanning antiparallel PGLa dimer that is stabilized by intimate Gly-Gly contacts, and where each PGLa monomer is in contact with one MAG2 molecule at its C-terminus.
Collapse
|
25
|
Owolabi BO, Musale V, Ojo OO, Moffett RC, McGahon MK, Curtis TM, Conlon JM, Flatt PR, Abdel-Wahab YH. Actions of PGLa-AM1 and its [A14K] and [A20K] analogues and their therapeutic potential as anti-diabetic agents. Biochimie 2017; 138:1-12. [DOI: 10.1016/j.biochi.2017.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/04/2017] [Indexed: 12/19/2022]
|
26
|
Fillion M, Goudreault M, Voyer N, Bechinger B, Auger M. Amphiphilicity Is a Key Determinant in the Membrane Interactions of Synthetic 14-mer Cationic Peptide Analogues. Biochemistry 2016; 55:6919-6930. [DOI: 10.1021/acs.biochem.6b00961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | | | - Burkhard Bechinger
- Université de Strasbourg, CNRS, UMR7177, Institut de
Chimie, 4, Rue Blaise
Pascal, 67070 Strasbourg, France
| | | |
Collapse
|
27
|
Chu X, Aydin F, Dutt M. Modeling Interactions between Multicomponent Vesicles and Antimicrobial Peptide-Inspired Nanoparticles. ACS NANO 2016; 10:7351-7361. [PMID: 27434532 DOI: 10.1021/acsnano.5b08133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We examine the interaction between peptide-inspired nanoparticles, or nanopins, and multicomponent vesicles using the dissipative particle dynamics simulation technique. We study the role of nanopin architecture and cholesterol concentration on the binding of the nanopins to the lipid bilayer, their insertion, and postembedding self-organization. We find the insertion to be triggered by enthalpically unfavorable interactions between the hydrophilic solvent and the lipophilic components of the nanopins. The nanopins are observed to form aggregates in solution, insert into the bilayer, and disassemble into the individual nanopins following the insertion process. We examine factors that influence the orientation of the nanopins in the host vesicle. We report the length of the hydrophilic segment of the nanopins to regulate their orientation within the clusters before the embedding process and in the bilayer, after the postinsertion disassembly of the aggregates. The orientation angle distribution for a given nanopin architecture is found to be driven by energy minimization. In addition, higher concentration of cholesterol is observed to constrain the orientation of the nanopins. We also report thermal fluctuations to induce transverse diffusion of nanopins with specific architectures. The incidence of transverse diffusion is observed to decrease with the concentration of cholesterol. Our results can provide guidelines for designing peptide-inspired nanoparticles or macromolecules that can interface with living cells to serve as sensors for applications in medicine, sustainability, and energy.
Collapse
Affiliation(s)
- Xiaolei Chu
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Fikret Aydin
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Meenakshi Dutt
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| |
Collapse
|
28
|
Cruz J, Ortiz C, Guzmán F, Cárdenas C, Fernandez-Lafuente R, Torres R. Design and activity of novel lactoferrampin analogues against O157:H7 enterohemorrhagic Escherichia coli. Biopolymers 2016; 101:319-28. [PMID: 23877962 DOI: 10.1002/bip.22360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/05/2013] [Indexed: 12/16/2022]
Abstract
Lactoferrampin 265-284 (LFampin 265-284) is a peptide consisting of residues 265-284 of N1-domain of bovine Lactoferrin (LF). This peptide has several cationic groups in the C-terminal lobe, exhibiting an antibacterial activity against a wide range of microorganisms. However, LFampin 265-284 exhibits low antimicrobial activity against the O157:H7 enterohaemorrhagic Escherichia coli (EHEC O157:H7) when compared with Lactoferrin chimera and Lactoferricin. Here, we have designed three analogues of LFampin 265-284 based on the distribution of cationic groups, hydrophobicity, size, and sequence. Analogues were synthesized by solid phase chemistry using Fmoc methodology obtaining peptides with 95% purity. All peptides maintain the ability to adopt helical conformations (checked by circular dichroism spectra and molecular simulations). Some of these analogues exhibited a significant increase in antimicrobial activity by counting colony forming units against EHEC O157:H7 compared to native LFampin 265-284, with MIC of 10 and 40 µM for 264G-D265K and 264G-D265K/S272R, respectively. The incorporation of a GKLI sequence in the N-terminal lobe increased dramatically its antibacterial activity, an effect which has been attributed to the addition of cationic groups in the N-terminal side that may stabilize the helical conformation of the new designed peptides.
Collapse
Affiliation(s)
- Jenniffer Cruz
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Edificio Camilo Torres 202, Bucaramanga, Colombia
| | | | | | | | | | | |
Collapse
|
29
|
Zamora-Carreras H, Strandberg E, Mühlhäuser P, Bürck J, Wadhwani P, Jiménez MÁ, Bruix M, Ulrich AS. Alanine scan and (2)H NMR analysis of the membrane-active peptide BP100 point to a distinct carpet mechanism of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1328-38. [PMID: 26975251 DOI: 10.1016/j.bbamem.2016.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/23/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
The short membrane-active peptide BP100 [KKLFKKILKYL-NH2] is known as an effective antimicrobial and cell penetrating agent. For a functional alanine scan each of the 11 amino acids was replaced with deuterated Ala-d3, one at a time. MIC assays showed that a substitution of Lys did not affect the antimicrobial activity, but it decreased when a hydrophobic residue was replaced. In most cases, a reduction in hydrophobicity led to a decrease in hemolysis, and some peptide analogues had an improved therapeutic index. Circular dichroism showed that BP100 folds as an amphiphilic α-helix in a bilayer. Its alignment was determined from (2)H NMR in oriented membranes of different composition. The azimuthal rotation angle was the same under all conditions, but the average helix tilt angle and the dynamical behavior of the peptide varied in a systematic manner. In POPC/POPG bilayers, with a negative spontaneous curvature, the peptide was found to lie flat on the bilayer surface, and with little wobble. In DMPC/DMPG, with a positive spontaneous curvature, BP100 at higher concentrations became tilted obliquely into the membrane, with the uncharged C-terminus inserted more deeply into the lipid bilayer, experiencing significant fluctuations in tilt angle. In DMPC/DMPG/lyso-MPC, with a pronounced positive spontaneous curvature, the helix tilted even further and became even more mobile. The 11-mer BP100 is obviously too short to form transmembrane pores. We conclude that BP100 operates via a carpet mechanism, whereby the C-terminus gets inserted into the hydrophobic core of the bilayer, which leads to membrane perturbation and induces transient permeability.
Collapse
Affiliation(s)
| | - Erik Strandberg
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Philipp Mühlhäuser
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Parvesh Wadhwani
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - M Ángeles Jiménez
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Marta Bruix
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Anne S Ulrich
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry and CFN, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
30
|
Jeevithan E, Jingyi Z, Bao B, Shujun W, JeyaShakila R, Wu WH. Biocompatibility assessment of type-II collagen and its polypeptide for tissue engineering: effect of collagen's molecular weight and glycoprotein content on tumor necrosis factor (Fas/Apo-1) receptor activation in human acute T-lymphocyte leukemia cell line. RSC Adv 2016. [DOI: 10.1039/c5ra24979a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fas cell surface death receptor activation by low molecular weight (57, 40 and 25 kDa) collagens was investigated based on MW and glycoprotein content.
Collapse
Affiliation(s)
- E. Jeevithan
- Department of Marine Pharmacology
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai 201306
- China
| | - Z. Jingyi
- Department of Marine Pharmacology
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai 201306
- China
| | - B. Bao
- Department of Marine Pharmacology
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai 201306
- China
| | - W. Shujun
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology
- Huaihai Institute of Technology
- Lianyungang
- China
| | - R. JeyaShakila
- Department of Fish Quality Assurance and Management
- Fish Quality Monitoring and Certification Centre
- Fisheries College and Research Institute
- Tamil Nadu Fisheries University
- Tuticorin 628 008
| | - W. H. Wu
- Department of Marine Pharmacology
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai 201306
- China
| |
Collapse
|
31
|
Dong BJ, Zhan ZG, Zheng RQ, Chen W, Min JJ. cDNA cloning and functional characterisation of four antimicrobial peptides from Paa spinosa. ACTA ACUST UNITED AC 2015; 70:251-6. [PMID: 26461841 DOI: 10.1515/znc-2015-4220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 09/14/2015] [Indexed: 11/15/2022]
Abstract
Antimicrobial peptides (AMPs) are small peptides found in many organisms defending themselves against pathogens. AMPs form the first line of host defence against pathogenic infections and are key components of the innate immune system of amphibians. In the current study, cDNAs of precursors of four novel antimicrobial peptides in the skin of Paa spinosa were cloned and sequenced using the 3'-RACE technique. Mature peptides, named spinosan A-D, encoded by the cDNAs were chemically synthesized and their chemical properties were predicted. The antimicrobial, antioxidative, cyotoxic and haemolytic activities of these four AMPs were determined. While the synthesised spinosans A-C exhibited no activity towards any of the bacterial strains tested, spinosan-D exhibited weak but broad-spectrum antimicrobial activities against Gram-positive and Gram-negative bacteria. All peptides were weakly haemolytic towards rabbit erythrocytes, had a strong antioxidative activity, and a low cytotoxic activity against HeLa cells. These findings provide helpful insights that may be useful in the future design of anti-infective peptide agents.
Collapse
|
32
|
Peptides and Peptidomimetics for Antimicrobial Drug Design. Pharmaceuticals (Basel) 2015; 8:366-415. [PMID: 26184232 PMCID: PMC4588174 DOI: 10.3390/ph8030366] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/27/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics.
Collapse
|
33
|
Structure-activity relationship study of novel peptoids that mimic the structure of antimicrobial peptides. Antimicrob Agents Chemother 2015; 59:4112-20. [PMID: 25941221 DOI: 10.1128/aac.00237-15] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/15/2015] [Indexed: 11/20/2022] Open
Abstract
The constant emergence of new bacterial strains that resist the effectiveness of marketed antimicrobials has led to an urgent demand for and intensive research on new classes of compounds to combat bacterial infections. Antimicrobial peptoids comprise one group of potential candidates for antimicrobial drug development. The present study highlights a library of 22 cationic amphipathic peptoids designed to target bacteria. All the peptoids share an overall net charge of +4 and are 8 to 9 residues long; however, the hydrophobicity and charge distribution along the abiotic backbone varied, thus allowing an examination of the structure-activity relationship within the library. In addition, the toxicity profiles of all peptoids were assessed in human red blood cells (hRBCs) and HeLa cells, revealing the low toxicity exerted by the majority of the peptoids. The structural optimization also identified two peptoid candidates, 3 and 4, with high selectivity ratios of 4 to 32 and 8 to 64, respectively, and a concentration-dependent bactericidal mode of action against Gram-negative Escherichia coli.
Collapse
|
34
|
Strandberg E, Zerweck J, Horn D, Pritz G, Berditsch M, Bürck J, Wadhwani P, Ulrich AS. Influence of hydrophobic residues on the activity of the antimicrobial peptide magainin 2 and its synergy with PGLa. J Pept Sci 2015; 21:436-45. [PMID: 25898805 DOI: 10.1002/psc.2780] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magainin 2 (MAG2) and PGLa are two related antimicrobial peptides found in the skin of the African frog Xenopus laevis with a pronounced synergistic activity, which act by permeabilizing bacterial membranes. To probe the influence of hydrophobic peptide-lipid and peptide-peptide interactions on the antimicrobial activity and on synergy, the sequence of MAG2 was modified by replacing single amino acids either with a small alanine or with the stiff and bulky hydrophobic 3-(trifluoromethyl)-L-bicyclopent-[1.1.1]-1-ylglycine side chain. The minimum inhibitory concentration of 14 MAG2 analogs was strongly influenced by these single substitutions: the antimicrobial activity was consistently improved when the hydrophobicity was increased on the hydrophobic face of the amphiphilic helix, while the activity decreased when the hydrophobicity was reduced. The synergy with PGLa, on the other hand, was rather insensitive to mutations of hydrophobic residues. It thus seems that the antimicrobial effect of MAG2 on its own depends strongly on the hydrophobicity of the peptide, while the synergy with PGLa does not depend on the overall hydrophobicity of MAG2.
Collapse
Affiliation(s)
- Erik Strandberg
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sharma H, Mathew B, Nagaraj R. Engineering of a linear inactive analog of human β-defensin 4 to generate peptides with potent antimicrobial activity. J Pept Sci 2015; 21:501-11. [PMID: 25810238 DOI: 10.1002/psc.2770] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 02/01/2023]
Abstract
Human β-defensins (HBDs) are cationic antimicrobial peptides constrained by three disulfide bridges. They have diverse range of functions in the innate immune response. It is of interest to investigate whether linear analogs of defensins can be generated, which possess antimicrobial activity. In this study, we have designed linear peptides with potent antimicrobial activity from an inactive peptide spanning the N-terminus of HBD4. Our results show that l-arginine to d-arginine substitution imparts considerable antimicrobial activity against both bacteria and Candida albicans. Increase in hydrophobicity by fatty acylation of the peptides with myristic acid further enhances their potency. In the presence of high concentrations of salt, antimicrobial activity of the myristoylated peptide with l-arginine is attenuated relatively to a lesser extent as compared with the linear active peptide with d-arginine. Substitution of cysteine with the hydrophobic helix-promoting amino acid α-aminoisobutyric acid favors candidacidal activity but not antibacterial activity. The mechanism of killing by d-arginine substituted unacylated analog involves transient interaction with the bacterial membrane followed by translocation into the cytoplasm without membrane permeabilization. Accumulation of peptides in the cytoplasm can affect various cellular processes that lead to cell death. However, the peptide causes membrane permeabilization in case of C. albicans. Myristoylation results in greater interaction of the peptide chain with the microbial cell surface and causes membrane permeabilization. Results described in the study demonstrate that it is possible to generate highly active linear analogs of defensins by selective introduction of d-amino acids and fatty acids, which could be attractive candidates for development as therapeutic agents.
Collapse
Affiliation(s)
- Himanshu Sharma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Basil Mathew
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Ramakrishnan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| |
Collapse
|
36
|
Uggerhøj LE, Poulsen TJ, Munk JK, Fredborg M, Sondergaard TE, Frimodt-Moller N, Hansen PR, Wimmer R. Rational Design of Alpha-Helical Antimicrobial Peptides: Do's and Don'ts. Chembiochem 2014; 16:242-53. [DOI: 10.1002/cbic.201402581] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 11/06/2022]
|
37
|
Yang X, Hu K, Hu G, Shi D, Jiang Y, Hui L, Zhu R, Xie Y, Yang L. Long Hydrophilic-and-Cationic Polymers: A Different Pathway toward Preferential Activity against Bacterial over Mammalian Membranes. Biomacromolecules 2014; 15:3267-77. [DOI: 10.1021/bm5006596] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xin Yang
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| | - Kan Hu
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| | - Guantai Hu
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| | - Danyao Shi
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| | - Yunjiang Jiang
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| | - Liwei Hui
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| | - Rui Zhu
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| | - Yuntao Xie
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| | - Lihua Yang
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| |
Collapse
|
38
|
Szczepanski C, Tenstad O, Baumann A, Martinez A, Myklebust R, Bjerkvig R, Prestegarden L. Identification of a novel lytic peptide for the treatment of solid tumours. Genes Cancer 2014; 5:186-200. [PMID: 25061502 PMCID: PMC4104761 DOI: 10.18632/genesandcancer.18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/26/2014] [Indexed: 12/12/2022] Open
Abstract
Originally known as host defence peptides for their substantial bacteriotoxic effects, many cationic antimicrobial peptides also exhibit a potent cytotoxic activity against cancer cells. Their mode of action is characterized mostly by electrostatic interactions with the plasma membrane, leading to membrane disruption and rapid necrotic cell death. In this work, we have designed a novel cationic peptide of 27 amino acids (Cypep-1), which shows efficacy against a number of cancer cell types, both in vitro and in vivo, while normal human fibroblasts were significantly less affected. Surface plasmon resonance experiments as well as liposome leakage assays monitored by fluorescence spectroscopy revealed a substantial binding affinity of Cypep-1 to negatively charged liposomes and induced significant leakage of liposome content after exposure to the peptide. The observed membranolytic effect of Cypep-1 was confirmed by scanning electron microscopy (SEM) as well as by time-lapse confocal microscopy. Pharmacokinetic profiling of Cypep-1 in rats showed a short plasma half-life after i.v. injection, followed mainly by retention in the liver, spleen and kidneys. Extremely low concentrations within the organs of the central nervous system indicated that Cypep-1 did not pass the blood-brain-barrier. Local treatment of 4T1 murine mammary carcinoma allografts by means of a single local bolus injection of Cypep-1 led to a significant reduction of tumour growth in the following weeks and prolonged survival. Detailed histological analysis of the treated tumours revealed large areas of necrosis. In sum, our findings show that the novel cationic peptide Cypep-1 displays a strong cytolytic activity against cancer cells both in vitro and in vivo and thus holds a substantial therapeutic potential.
Collapse
Affiliation(s)
| | - Olav Tenstad
- Cardiovascular Research Group, Dept. of Biomedicine, University of Bergen, Norway
| | - Anne Baumann
- Biorecognition Group, Dept. of Biomedicine, University of Bergen, Norway
| | - Aurora Martinez
- Biorecognition Group, Dept. of Biomedicine, University of Bergen, Norway
| | - Reidar Myklebust
- NorLux Neuro-Oncology, Dept. of Biomedicine, University of Bergen, Norway
| | - Rolf Bjerkvig
- NorLux Neuro-Oncology, Dept. of Biomedicine, University of Bergen, Norway.,Centre de Recherche Public de la Santé, Luxembourg, Luxemburg
| | - Lars Prestegarden
- NorLux Neuro-Oncology, Dept. of Biomedicine, University of Bergen, Norway.,Dept. of Dermatology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
39
|
Saravanan R, Li X, Lim K, Mohanram H, Peng L, Mishra B, Basu A, Lee JM, Bhattacharjya S, Leong SSJ. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility. Biotechnol Bioeng 2013; 111:37-49. [PMID: 23860860 DOI: 10.1002/bit.25003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/30/2013] [Accepted: 07/08/2013] [Indexed: 12/27/2022]
Abstract
Antimicrobial peptides (AMPs) kill microbes by non-specific membrane permeabilization, making them ideal templates for designing novel peptide-based antibiotics that can combat multi-drug resistant pathogens. For maximum efficacy in vivo and in vitro, AMPs must be biocompatible, salt-tolerant and possess broad-spectrum antimicrobial activity. These attributes can be obtained by rational design of peptides guided by good understanding of peptide structure-function. Toward this end, this study investigates the influence of charge and hydrophobicity on the activity of tryptophan and arginine rich decamer peptides engineered from a salt resistant human β-defensin-28 variant. Mechanistic investigations of the decamers with detergents mimicking the composition of bacterial and mammalian membrane, reveal a correlation between improved antibacterial activity and the increase in tryptophan and positive residue content, while keeping hemolysis low. The potent antimicrobial activity and high cell membrane selective behavior of the two most active decamers, D5 and D6, are attributed to an optimum peptide charge to hydrophobic ratio bestowed by systematic arginine and tryptophan substitution. D5 and D6 show surface localization behavior with binding constants of 1.86 × 10(8) and 2.6 × 10(8) M(-1) , respectively, as determined by isothermal calorimetry measurements. NMR derived structures of D5 and D6 in SDS detergent micelles revealed proximity of Trp and Arg residues in an extended structural scaffold. Such potential cation-π interactions may be critical in cell permeabilization of the AMPs. The fundamental characterization of the engineered decamers provided in this study improves the understanding of structure-activity relationship of short arginine tryptophan rich AMPs, which will pave the way for future de novo design of potent AMPs for therapeutic and biomedical applications.
Collapse
Affiliation(s)
- Rathi Saravanan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Thaker HD, Cankaya A, Scott RW, Tew GN. Role of Amphiphilicity in the Design of Synthetic Mimics of Antimicrobial Peptides with Gram-negative Activity. ACS Med Chem Lett 2013; 4:481-485. [PMID: 23814644 DOI: 10.1021/ml300307b] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Two new series of aryl SMAMPs (synthetic mimics of antimicrobial peptides) with facially amphiphilic (FA) and disrupted amphiphilic (DA) topologies were designed and synthesized to directly assess the role of amphiphilicity on their antimicrobial activity against gram-positive and gram-negative bacteria in closely related structures. The FA SMAMPs displayed broad spectrum antimicrobial activity against both gram-positive S. aureus and gram-negative E. coli, whereas the DA SMAMPs, which contained a polar amide bond in between the hydrophobic moieties, only exhibited activity towards S. aureus with increasing hydrophobicity. The integy moment (IW) was used to quantify the amphiphilicity of the SMAMPs and confirmed that it is critical for the design of SMAMPs with gram-negative activity.
Collapse
Affiliation(s)
- Hitesh D. Thaker
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Alper Cankaya
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Richard W. Scott
- PolyMedix Inc.,
170 North Radnor-Chester Road, Suite 300, Radnor, Pennsylvania
19087, United States
| | - Gregory N. Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
41
|
Panurgines, novel antimicrobial peptides from the venom of communal bee Panurgus calcaratus (Hymenoptera: Andrenidae). Amino Acids 2013; 45:143-57. [DOI: 10.1007/s00726-013-1482-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/23/2013] [Indexed: 10/27/2022]
|
42
|
Yang X, Xia J, Yu Z, Hu Y, Li F, Meng H, Yang S, Liu J, Wang H. Characterization of diverse antimicrobial peptides in skin secretions of Chungan torrent frog Amolops chunganensis. Peptides 2012; 38:41-53. [PMID: 22951323 DOI: 10.1016/j.peptides.2012.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/10/2012] [Accepted: 08/10/2012] [Indexed: 12/27/2022]
Abstract
We have cloned, synthesized, and characterized 11 novel antimicrobial peptides from a skin derived cDNA library of the Chungan torrent frog, Amolops chunganensis. Seven of the 11 antimicrobial peptides were present in authentic A. chunganensis skin secretions. Sequence analysis indicated that the 11 peptides belonged to the temporin, esculentin-2, palustrin-2, brevinin-1, and brevinin-2 families. The peptides displayed potent antimicrobial activities against several strains of microorganisms. One peptide, brevinin-1CG5, demonstrated antimicrobial activity against all tested Gram-positive and Gram-negative bacteria and fungi, and showed high antimicrobial potency (MIC=0.6 μM) against Gram-positive bacterium Rhodococcus rhodochrous. Some peptides also demonstrated weak hemolytic activity against human erythrocytes in vitro. Phylogenetic analysis based on the amino acid sequences of brevinin-1, brevinin-2, and esculentin-2 peptides from family Ranidae confirmed that the current taxonomic status of A. chunganensis is correct.
Collapse
Affiliation(s)
- Xiaohong Yang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shang D, Sun Y, Wang C, Ma L, Li J, Wang X. Rational design of anti-microbial peptides with enhanced activity and low cytotoxicity based on the structure of the arginine/histidine-rich peptide, chensinin-1. J Appl Microbiol 2012; 113:677-85. [PMID: 22686707 DOI: 10.1111/j.1365-2672.2012.05355.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/12/2012] [Accepted: 05/18/2012] [Indexed: 11/29/2022]
Abstract
AIMS To understand the structure-activity relationship of chensinin-1, a anti-microbial peptide (AMP) with an unusual structure, and to develop novel AMPs as therapeutic agents. METHODS AND RESULTS A series of chensinin-1 analogues were designed and synthesized by one to three replacement of glycines with leucines at the hydrophilic face of chensinin-1 or rearrangement of some of the residues in its sequence. Circular dichroism spectroscopy showed that the analogues adopted α-helical-type conformations in 50% trifluoroethanol/water but adopted β-strand-type conformations in 30 mmol l(-1) sodium dodecyl sulphate. The anti-microbial activities of the peptides against Gram-positive bacteria increased 5- to 30-fold, and these increases paralleled the increases in the peptides' hydrophobicities. Their haemolytic activities also increased. Amphipathicities had little influence on the bactericidal activity of chensinin-1. All peptides caused leakage of calcein entrapped in negatively charged liposomes although with different efficiencies. The peptides did not induce leakage of calcein from uncharged liposomes. CONCLUSIONS Peptide adopted an aperiodic structure can improve the anti-microbial potency by increasing peptide hydrophobicity. Its target is bacteria plasma membrane. SIGNIFICANCE AND IMPACT OF THE STUDY Chensinin-1 can act as a new lead molecule for the study of AMPs with atypical structures.
Collapse
Affiliation(s)
- D Shang
- Faculty of Life Science, Liaoning Normal University, Dalian, China.
| | | | | | | | | | | |
Collapse
|
44
|
Wang H, Yu Z, Hu Y, Yu H, Ran R, Xia J, Wang D, Yang S, Yang X, Liu J. Molecular cloning and characterization of antimicrobial peptides from skin of the broad-folded frog, Hylarana latouchii. Biochimie 2012; 94:1317-26. [DOI: 10.1016/j.biochi.2012.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/26/2012] [Indexed: 11/30/2022]
|
45
|
Wang H, Yu Z, Hu Y, Li F, Liu L, Zheng H, Meng H, Yang S, Yang X, Liu J. Novel antimicrobial peptides isolated from the skin secretions of Hainan odorous frog, Odorrana hainanensis. Peptides 2012; 35:285-90. [PMID: 22450466 DOI: 10.1016/j.peptides.2012.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/08/2012] [Accepted: 03/08/2012] [Indexed: 12/27/2022]
Abstract
Long time geographical isolation of Hainan Island from the China continent has resulted in appearance of many novel frog species. As one of them, Hainan odorous frog, Odorrana hainanensis possesses some special antimicrobial peptides distinct from those found in other Odorrana. In this study, three antimicrobial peptides have been purified and characterized from the skin secretion of O. hainanensis. With the similarity to the temporin family, two peptides are characterized by amidated C-terminals, so they are named as temporin-HN1 (AILTTLANWARKFL-NH(2)) and temporin-HN2 (NILNTIINLAKKIL-NH(2)). The third antimicrobial peptide belongs to the brevinin-1 family which is widely distributed in Eurasian ranids, and thus, it is named as brevinin-1HN1 (FLPLIASLAANFVPKIFCKITKKC). Furthermore, after sequencing 68 clones, eight cDNAs encoding antimicrobial peptide precursors were cloned from the skin-derived cDNA library of O. hainanensis. These eight cDNAs can encode seven mature antimicrobial peptides including the above three, as well as brevinin-1V, brevinin-2HS2, odorranain-A6, and odorranain-B1. Twelve different species of microorganisms were chosen, including Gram-positive, Gram-negative and fungi, to test the antimicrobial activities of temporin-HN1, temporin-HN2, brevinin-1HN1, brevinin-1V, and brevinin-2HS2. The result shows that, in addition to their activities against Gram-positive bacteria, temporin-HN1 and temporin-HN2 also possess activities against some Gram-negative bacteria and fungi. However, the two antimicrobial peptides, brevinin-1HN1 and brevinin-1V of the brevinin-1 family have stronger antimicrobial activities than temporin-HN1 and temporin-HN2 of the temporin family. Brevinin-1HN1 possesses activity against Staphylococcus aureus (ATCC25923), Rhodococcus rhodochrous X15, and Slime mould 090223 at the concentration of 1.2 μM.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Teixeira V, Feio MJ, Bastos M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 2012; 51:149-77. [DOI: 10.1016/j.plipres.2011.12.005] [Citation(s) in RCA: 461] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Wang H, Ran R, Yu H, Yu Z, Hu Y, Zheng H, Wang D, Yang F, Liu R, Liu J. Identification and characterization of antimicrobial peptides from skin of Amolops ricketti (Anura: Ranidae). Peptides 2012; 33:27-34. [PMID: 22100518 DOI: 10.1016/j.peptides.2011.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 10/28/2011] [Accepted: 10/28/2011] [Indexed: 01/23/2023]
Abstract
As one of large amphibian group, there are a total of 45 species of Amolops in the world. However, the antimicrobial peptides (AMPs) existing in this genus has not been extensively studied. In this study, cDNAs encoding five novel AMP precursors were cloned by screening the skin-derived cDNA library of Amolops ricketti, a frog species that exists in southern and western parts of China. Protein sequence analysis led to the identification of five deduced peptides, three belonging to the brevinin-1 family and two belonging to the brevinin-2 family of amphibian AMPs. Thus, they were named as brevinin-1RTa (FLPLLAGVVANFLPQIICKIARKC), brevinin-1RTb (FLGSLLGLVGKVVPTLFCKISKKC), brevinin-1RTc (FLGSLLGLVGKIVPTLICKISKKC), brevinin-2RTa (GLMSTLKDFGKTAAKEIAQSLLSTASCKLAKTC), and brevinin-2RTb (GILDTLKEFGKTAAKGIAQSLLSTASCKLAKTC), respectively. The purification of brevinin-1RTa, brevinin-1RTb, and brevinin-2RTb was carried out by RP-HPLC, and confirmed by the LC-MS/MS-based proteomics approach. All of the peptides displayed different antimicrobial potency against a variety of microorganisms. In addition, brevinin-2RTa and brevinin-2RTb were found to have relatively low hemolytic activity (>400μg/ml) against mammalian red blood cells in vitro, which could potentially be as candidates for developing novel anti-infection agents.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050016, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
King JD, Mechkarska M, Coquet L, Leprince J, Jouenne T, Vaudry H, Takada K, Conlon JM. Host-defense peptides from skin secretions of the tetraploid frogs Xenopus petersii and Xenopus pygmaeus, and the octoploid frog Xenopus lenduensis (Pipidae). Peptides 2012; 33:35-43. [PMID: 22123629 DOI: 10.1016/j.peptides.2011.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
Abstract
Peptidomic analysis of norepinephrine-stimulated skin secretions led to the identification of host-defense peptides belonging to the magainin, peptide glycine-leucine-amide (PGLa), and caerulein precursor fragment (CPF) families from the tetraploid frogs, Xenopus petersii (Peters' clawed frog) and Xenopus pygmaeus (Bouchia clawed frog), and the octoploid frog Xenopus lenduensis (Lendu Plateau clawed frog). Xenopsin-precursor fragment (XPF) peptides were not detected. The primary structures of the antimicrobial peptides from X. petersii demonstrate a close, but not conspecific relationship, with Xenopus laevis whereas the X. pygmaeus peptides show appreciable variation from previously characterized orthologs from other Xenopus species. Polyploidization events within the Xenopodinae (Silurana+Xenopus) are associated with extensive gene silencing (nonfunctionization) but unexpectedly the full complement of four PGLa paralogs were isolated from X. lenduendis secretions. Consistent with previous data, the CPF peptides showed the highest growth-inhibitory activity against bacteria with CPF-PG1 (GFGSLLGKALKIGTNLL.NH(2)) from X. pygmaeus combining high antimicrobial potency against Staphylococcus aureus (MIC=6 μM) with relatively low hemolytic activity (LC(50)=145 μM).
Collapse
Affiliation(s)
- Jay D King
- Rare Species Conservatory Foundation, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lorin A, Noël M, Provencher MÈ, Turcotte V, Masson C, Cardinal S, Lagüe P, Voyer N, Auger M. Revisiting peptide amphiphilicity for membrane pore formation. Biochemistry 2011; 50:9409-20. [PMID: 21942823 DOI: 10.1021/bi201335t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It has previously been shown that an amphipathic de novo designed peptide made of 10 leucines and four phenylalanines substituted with crown ethers induces vesicle leakage without selectivity. To gain selectivity against negatively charged dimyristoylphosphatidylglycerol (DMPG) bilayers, one or two leucines of the peptide were substituted with positively charged residues at each position. All peptides induce significant calcein leakage of DMPG vesicles. However, some peptides do not induce significant leakage of zwitterionic dimyristoylphosphatidylcholine vesicles and are thus active against only bacterial model membranes. The intravesicular leakage is induced by pore formation instead of membrane micellization. Nonselective peptides are mostly helical, while selective peptides mainly adopt an intermolecular β-sheet structure. This study therefore demonstrates that the position of the lysine residues significantly influences the secondary structure and bilayer selectivity of an amphipathic 14-mer peptide, with β-sheet peptides being more selective than helical peptides.
Collapse
Affiliation(s)
- Aurélien Lorin
- Département de chimie, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Centre de recherche sur les matériaux avancés, Université Laval, Québec, Québec, Canada G1V 0A6
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mechkarska M, Ahmed E, Coquet L, Leprince J, Jouenne T, Vaudry H, King JD, Conlon JM. Peptidomic analysis of skin secretions demonstrates that the allopatric populations of Xenopus muelleri (Pipidae) are not conspecific. Peptides 2011; 32:1502-8. [PMID: 21664395 DOI: 10.1016/j.peptides.2011.05.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 01/20/2023]
Abstract
Mueller's clawed frog Xenopus muelleri (Peters 1844) occupies two non-contiguous ranges in east and west Africa. The phylogenetic relationship between the two populations is unclear and it has been proposed that the western population represents a separate species. Peptidomic analysis of norepinephrine-stimulated skin secretions from X. muelleri from the eastern range resulted in the identification of five antimicrobial peptides structurally related to the magainins (magainin-M1 and -M2), xenopsin-precursor fragments (XPF-M1) and caerulein-precursor fragments (CPF-M1 and -M2) previously found in skin secretions of other Xenopus species. A cyclic peptide (WCPPMIPLCSRF.NH₂) containing the RFamide motif was also isolated that shows limited structural similarity to the tigerinins, previously identified only in frogs of the Dicroglossidae family. The components identified in skin secretions from X. muelleri from the western range comprised one magainin (magainin-MW1), one XPF peptide (XPF-MW1), two peptides glycine-leucine amide (PGLa-MW1 and -MW2), and three CPF peptides (CPF-MW1, -MW2 and -MW3). Comparison of the primary structures of these peptides suggest that western population of X. muelleri is more closely related to X. borealis than to X. muelleri consistent with its proposed designation as a separate species. The CPF peptides showed potent, broad-spectrum activity against reference strains of bacteria (MIC 3-25 μM), but were hemolytic against human erythrocytes.
Collapse
Affiliation(s)
- Milena Mechkarska
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates
| | | | | | | | | | | | | | | |
Collapse
|