1
|
Terentyev VV, Shukshina AK. CAH3 from Chlamydomonas reinhardtii: Unique Carbonic Anhydrase of the Thylakoid Lumen. Cells 2024; 13:109. [PMID: 38247801 PMCID: PMC10814762 DOI: 10.3390/cells13020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
CAH3 is the only carbonic anhydrase (CA) present in the thylakoid lumen of the green algae Chlamydomonas reinhardtii. The monomer of the enzyme has a molecular weight of ~29.5 kDa with high CA activity. Through its dehydration activity, CAH3 can be involved either in the carbon-concentrating mechanism supplying CO2 for RuBisCO in the pyrenoid or in supporting the maximal photosynthetic activity of photosystem II (PSII) by accelerating the removal of protons from the active center of the water-oxidizing complex. Both proposed roles are considered in this review, together with a description of the enzymatic parameters of native and recombinant CAH3, the crystal structure of the protein, and the possible use of lumenal CA as a tool for increasing biomass production in higher plants. The identified involvement of lumenal CAH3 in the function of PSII is still unique among green algae and higher plants and can be used to understand the mechanism(s) of the functional interconnection between PSII and the proposed CA(s) of the thylakoid lumen in other organisms.
Collapse
Affiliation(s)
- Vasily V. Terentyev
- Institute of Basic Biological Problems, FRC PSCBR RAS, 142290 Pushchino, Russia
| | | |
Collapse
|
2
|
Kupriyanova EV, Pronina NA, Los DA. Adapting from Low to High: An Update to CO 2-Concentrating Mechanisms of Cyanobacteria and Microalgae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1569. [PMID: 37050194 PMCID: PMC10096703 DOI: 10.3390/plants12071569] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The intracellular accumulation of inorganic carbon (Ci) by microalgae and cyanobacteria under ambient atmospheric CO2 levels was first documented in the 80s of the 20th Century. Hence, a third variety of the CO2-concentrating mechanism (CCM), acting in aquatic photoautotrophs with the C3 photosynthetic pathway, was revealed in addition to the then-known schemes of CCM, functioning in CAM and C4 higher plants. Despite the low affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of microalgae and cyanobacteria for the CO2 substrate and low CO2/O2 specificity, CCM allows them to perform efficient CO2 fixation in the reductive pentose phosphate (RPP) cycle. CCM is based on the coordinated operation of strategically located carbonic anhydrases and CO2/HCO3- uptake systems. This cooperation enables the intracellular accumulation of HCO3-, which is then employed to generate a high concentration of CO2 molecules in the vicinity of Rubisco's active centers compensating up for the shortcomings of enzyme features. CCM functions as an add-on to the RPP cycle while also acting as an important regulatory link in the interaction of dark and light reactions of photosynthesis. This review summarizes recent advances in the study of CCM molecular and cellular organization in microalgae and cyanobacteria, as well as the fundamental principles of its functioning and regulation.
Collapse
|
3
|
Rai AK, DiMario RJ, Kasili RW, Groszmann M, Cousins AB, Donze D, Moroney JV. A Rapid Method for Detecting Normal or Modified Plant and Algal Carbonic Anhydrase Activity Using Saccharomyces cerevisiae. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11141882. [PMID: 35890517 PMCID: PMC9320139 DOI: 10.3390/plants11141882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 05/19/2023]
Abstract
In recent years, researchers have attempted to improve photosynthesis by introducing components from cyanobacterial and algal CO2-concentrating mechanisms (CCMs) into terrestrial C3 plants. For these attempts to succeed, we need to understand the CCM components in more detail, especially carbonic anhydrase (CA) and bicarbonate (HCO3−) transporters. Heterologous complementation systems capable of detecting carbonic anhydrase activity (i.e., catalysis of the pH-dependent interconversion between CO2 and HCO3−) or active HCO3− transport can be of great value in the process of introducing CCM components into terrestrial C3 plants. In this study, we generated a Saccharomyces cerevisiae CA knock-out (ΔNCE103 or ΔCA) that has a high-CO2-dependent phenotype (5% (v/v) CO2 in air). CAs produce HCO3− for anaplerotic pathways in S. cerevisiae; therefore, the unavailability of HCO3− for neutral lipid biosynthesis is a limitation for the growth of ΔCA in ambient levels of CO2 (0.04% (v/v) CO2 in air). ΔCA can be complemented for growth at ambient levels of CO2 by expressing a CA from human red blood cells. ΔCA was also successfully complemented for growth at ambient levels of CO2 through the expression of CAs from Chlamydomonas reinhardtii and Arabidopsis thaliana. The ΔCA strain is also useful for investigating the activity of modified CAs, allowing for quick screening of modified CAs before putting them into the plants. CA activity in the complemented ΔCA strains can be probed using the Wilbur−Anderson assay and by isotope exchange membrane-inlet mass spectrometry (MIMS). Other potential uses for this new ΔCA-based screening system are also discussed.
Collapse
Affiliation(s)
- Ashwani K. Rai
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (A.K.R.); (R.W.K.); (D.D.)
| | - Robert J. DiMario
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (R.J.D.); (A.B.C.)
| | - Remmy W. Kasili
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (A.K.R.); (R.W.K.); (D.D.)
| | - Michael Groszmann
- ARC Centre of Excellence in Translational Photosynthesis, Research School of Biology, Australian National University, Linnaeus Building, 134 Linnaeus Way, Canberra, ACT 2601, Australia;
| | - Asaph B. Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (R.J.D.); (A.B.C.)
| | - David Donze
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (A.K.R.); (R.W.K.); (D.D.)
| | - James V. Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (A.K.R.); (R.W.K.); (D.D.)
- Correspondence:
| |
Collapse
|
4
|
Shukshina AK, Terentyev VV. Involvement of Carbonic Anhydrase CAH3 in the Structural and Functional Stabilization of the Water-Oxidizing Complex of Photosystem II from Chlamydomonas reinhardtii. BIOCHEMISTRY (MOSCOW) 2021; 86:867-877. [PMID: 34284710 DOI: 10.1134/s0006297921070075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The involvement of carbonic anhydrases (CA) and CA activity in the functioning of photosystem II (PSII) has been studied for a long time and has been shown in many works. However, so far only for CAH3 from Chlamydomonas reinhardtii there is evidence for its association with the donor side of PSII, where the CA activity of CAH3 can influence the functioning of the water-oxidizing complex (WOC). Our results suggest that CAH3 is also involved in the organization of the native structure of WOC independently of its CA activity. It was shown that in PSII preparations from wild type (WT) the high O2-evolving activity of WOC was observed up to 100 mM NaCl in the medium and practically did not decrease with increasing incubation time with NaCl. At the same time, the WOC function in PSII preparations from CAH3-deficient mutant cia3 is significantly inhibited already at NaCl concentrations above 35 mM, reaching 50% at 100 mM NaCl and increased incubation time. It is suggested that the absence of CAH3 in PSII from cia3 causes disruption of the native structure of WOC, allowing more pronounced conformational changes of its proteins and, consequently, suppression of the WOC active center function, when the ionic strength of the medium is increased. The results of Western blot analysis indicate a more difficult removal of PsbP protein from PSII of cia3 at higher NaCl concentrations, apparently due to the changes in the intermolecular interactions between proteins of WOC in the absence of CAH3. At the same time, the values of the maximum quantum yield of PSII did not practically differ between preparations from WT and cia3, indicating no effect of CAH3 on the photoinduced electron transfer in the reaction center of PSII. The obtained results indicate the involvement of the CAH3 protein in the native organization of the WOC and, as a consequence, in the stabilization of its functional state in PSII from C. reinhardtii.
Collapse
Affiliation(s)
- Anna K Shukshina
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vasily V Terentyev
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
5
|
Vikramathithan J, Hwangbo K, Lim JM, Lim KM, Kang DY, Park YI, Jeong WJ. Overexpression of Chlamydomonas reinhardtii LCIA (CrLCIA) gene increases growth of Nannochloropsis salina CCMP1776. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Terentyev VV, Shukshina AK, Shitov AV. Carbonic anhydrase CAH3 supports the activity of photosystem II under increased pH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:582-590. [DOI: 10.1016/j.bbabio.2019.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 11/24/2022]
|
7
|
Hwangbo K, Lim JM, Jeong SW, Vikramathithan J, Park YI, Jeong WJ. Elevated Inorganic Carbon Concentrating Mechanism Confers Tolerance to High Light in an Arctic Chlorella sp. ArM0029B. FRONTIERS IN PLANT SCIENCE 2018; 9:590. [PMID: 29868055 PMCID: PMC5949578 DOI: 10.3389/fpls.2018.00590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/16/2018] [Indexed: 05/29/2023]
Abstract
Microalgae and higher plants employ an inorganic carbon (Ci) concentrating mechanism (CCM) to increase CO2 availability to Rubisco. Operation of the CCM should enhance the activity of the Calvin cycle, which could act as an electron sink for electrons generated by photosynthesis, and lower the redox status of photosynthetic electron transport chains. In this study, a hypothesis that microalgal cells with fully operating CCM are less likely to be photodamaged was tested by comparing a Chlorella mutant with its wild type (WT). The mutant acquired by screening gamma-ray-induced mutant libraries of Chlorella sp. ArM0029B exhibited constitutively active CCM (CAC) even in the presence of additional Ci sources under mixotrophic growth conditions. In comparison to the WT alga, the mutant named to constitutively active CCM1 (CAC1) showed more transcript levels for genes coding proteins related to CCM such as Ci transporters and carbonic anhydrases (CA), and greater levels of intracellular Ci content and CA activity regardless of whether growth is limited by light or not. Under photoinhibitory conditions, CAC1 mutant showed faster growth than WT cells with more PSII reaction center core component D1 protein (encoded by psbA), higher photochemical efficiency as estimated by the chlorophyll fluorescence parameter (Fv/Fm), and fewer reactive oxygen species (ROS). Interestingly, high light (HL)-induced increase in ROS contents in WT cells was significantly inhibited by bicarbonate supplementation. It is concluded that constitutive operation of CCM endows Chlorella cells with resistance to HL partly by reducing the endogenous generation of ROS. These results will provide useful information on the interaction between CCM expression, ROS production, and photodamage in Chlorella and related microalgae.
Collapse
Affiliation(s)
- Kwon Hwangbo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Jong-Min Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seok-Won Jeong
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Jayaraman Vikramathithan
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Won-Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| |
Collapse
|
8
|
Aspatwar A, Haapanen S, Parkkila S. An Update on the Metabolic Roles of Carbonic Anhydrases in the Model Alga Chlamydomonas reinhardtii. Metabolites 2018. [PMID: 29534024 PMCID: PMC5876011 DOI: 10.3390/metabo8010022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Carbonic anhydrases (CAs) are metalloenzymes that are omnipresent in nature. CAs catalyze the basic reaction of the reversible hydration of CO2 to HCO3− and H+ in all living organisms. Photosynthetic organisms contain six evolutionarily different classes of CAs, which are namely: α-CAs, β-CAs, γ-CAs, δ-CAs, ζ-CAs, and θ-CAs. Many of the photosynthetic organisms contain multiple isoforms of each CA family. The model alga Chlamydomonas reinhardtii contains 15 CAs belonging to three different CA gene families. Of these 15 CAs, three belong to the α-CA gene family; nine belong to the β-CA gene family; and three belong to the γ-CA gene family. The multiple copies of the CAs in each gene family may be due to gene duplications within the particular CA gene family. The CAs of Chlamydomonas reinhardtii are localized in different subcellular compartments of this unicellular alga. The presence of a large number of CAs and their diverse subcellular localization within a single cell suggests the importance of these enzymes in the metabolic and biochemical roles they perform in this unicellular alga. In the present review, we update the information on the molecular biology of all 15 CAs and their metabolic and biochemical roles in Chlamydomonas reinhardtii. We also present a hypothetical model showing the known functions of CAs and predicting the functions of CAs for which precise metabolic roles are yet to be discovered.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33014 Tampere, Finland.
| | - Susanna Haapanen
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33014 Tampere, Finland.
| | - Seppo Parkkila
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33014 Tampere, Finland.
- Fimlab, Ltd., and Tampere University Hospital, FI-33520 Tampere, Finland.
| |
Collapse
|
9
|
DiMario RJ, Clayton H, Mukherjee A, Ludwig M, Moroney JV. Plant Carbonic Anhydrases: Structures, Locations, Evolution, and Physiological Roles. MOLECULAR PLANT 2017; 10:30-46. [PMID: 27646307 PMCID: PMC5226100 DOI: 10.1016/j.molp.2016.09.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/30/2016] [Accepted: 09/04/2016] [Indexed: 05/19/2023]
Abstract
Carbonic anhydrases (CAs) are zinc metalloenzymes that catalyze the interconversion of CO2 and HCO3- and are ubiquitous in nature. Higher plants contain three evolutionarily distinct CA families, αCAs, βCAs, and γCAs, where each family is represented by multiple isoforms in all species. Alternative splicing of CA transcripts appears common; consequently, the number of functional CA isoforms in a species may exceed the number of genes. CAs are expressed in numerous plant tissues and in different cellular locations. The most prevalent CAs are those in the chloroplast, cytosol, and mitochondria. This diversity in location is paralleled in the many physiological and biochemical roles that CAs play in plants. In this review, the number and types of CAs in C3, C4, and crassulacean acid metabolism (CAM) plants are considered, and the roles of the α and γCAs are briefly discussed. The remainder of the review focuses on plant βCAs and includes the identification of homologs between species using phylogenetic approaches, a consideration of the inter- and intracellular localization of the proteins, along with the evidence for alternative splice forms. Current understanding of βCA tissue-specific expression patterns and what controls them are reviewed, and the physiological roles for which βCAs have been implicated are presented.
Collapse
Affiliation(s)
- Robert J DiMario
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Harmony Clayton
- School of Chemistry and Biochemistry, University of Western Australia, Perth, WA 6009 Australia
| | - Ananya Mukherjee
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Martha Ludwig
- School of Chemistry and Biochemistry, University of Western Australia, Perth, WA 6009 Australia
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
10
|
Correa-Galvis V, Redekop P, Guan K, Griess A, Truong TB, Wakao S, Niyogi KK, Jahns P. Photosystem II Subunit PsbS Is Involved in the Induction of LHCSR Protein-dependent Energy Dissipation in Chlamydomonas reinhardtii. J Biol Chem 2016; 291:17478-87. [PMID: 27358399 DOI: 10.1074/jbc.m116.737312] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 12/19/2022] Open
Abstract
Non-photochemical quenching of excess excitation energy is an important photoprotective mechanism in photosynthetic organisms. In Arabidopsis thaliana, a high quenching capacity is constitutively present and depends on the PsbS protein. In the green alga Chlamydomonas reinhardtii, non-photochemical quenching becomes activated upon high light acclimation and requires the accumulation of light harvesting complex stress-related (LHCSR) proteins. Expression of the PsbS protein in C. reinhardtii has not been reported yet. Here, we show that PsbS is a light-induced protein in C. reinhardtii, whose accumulation under high light is further controlled by CO2 availability. PsbS accumulated after several hours of high light illumination at low CO2 At high CO2, however, PsbS was only transiently expressed under high light and was degraded after 1 h of high light exposure. PsbS accumulation correlated with an enhanced non-photochemical quenching capacity in high light-acclimated cells grown at low CO2 However, PsbS could not compensate for the function of LHCSR in an LHCSR-deficient mutant. Knockdown of PsbS accumulation led to reduction of both non-photochemical quenching capacity and LHCSR3 accumulation. Our data suggest that PsbS is essential for the activation of non-photochemical quenching in C. reinhardtii, possibly by promoting conformational changes required for activation of LHCSR3-dependent quenching in the antenna of photosystem II.
Collapse
Affiliation(s)
- Viviana Correa-Galvis
- From the Plant Biochemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Petra Redekop
- From the Plant Biochemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Katharine Guan
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, and
| | - Annika Griess
- From the Plant Biochemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Thuy B Truong
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, and
| | - Setsuko Wakao
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, and
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, and Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Peter Jahns
- From the Plant Biochemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany,
| |
Collapse
|
11
|
Igamberdiev AU. Control of Rubisco function via homeostatic equilibration of CO2 supply. FRONTIERS IN PLANT SCIENCE 2015; 6:106. [PMID: 25767475 PMCID: PMC4341507 DOI: 10.3389/fpls.2015.00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/09/2015] [Indexed: 05/09/2023]
Abstract
Rubisco is the most abundant protein on Earth that serves as the primary engine of carbon assimilation. It is characterized by a slow rate and low specificity for CO2 leading to photorespiration. We analyze here the challenges of operation of this enzyme as the main carbon fixation engine. The high concentration of Rubisco exceeds that of its substrate CO2 by 2-3 orders of magnitude; however, the total pool of available carbon in chloroplast, i.e., mainly bicarbonate, is comparable to the concentration of Rubisco active sites. This makes the reactant stationary assumption (RSA), which is essential as a condition of satisfying the Michaelis-Menten (MM) kinetics, valid if we assume that the delivery of CO2 from this pool is not limiting. The RSA is supported by active carbonic anhydrases (CA) that quickly equilibrate bicarbonate and CO2 pools and supply CO2 to Rubisco. While the operation of stromal CA is independent of light reactions, the thylakoidal CA associated with PSII and pumping CO2 from the thylakoid lumen is coordinated with the rate of electron transport, water splitting and proton gradient across the thylakoid membrane. At high CO2 concentrations, CA becomes less efficient (the equilibrium becomes unfavorable), so a deviation from the MM kinetics is observed, consistent with Rubisco reaching its Vmax at approximately 50% lower level than expected from the classical MM curve. Previously, this deviation was controversially explained by the limitation of RuBP regeneration. At low ambient CO2 and correspondingly limited capacity of the bicarbonate pool, its depletion at Rubisco sites is relieved in that the enzyme utilizes O2 instead of CO2, i.e., by photorespiration. In this process, CO2 is supplied back to Rubisco, and the chloroplastic redox state and energy level are maintained. It is concluded that the optimal performance of photosynthesis is achieved via the provision of continuous CO2 supply to Rubisco by carbonic anhydrases and photorespiration.
Collapse
Affiliation(s)
- Abir U. Igamberdiev
- *Correspondence: Abir U. Igamberdiev, Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John’s, NL A1B 3X9, Canada
| |
Collapse
|
12
|
Karacan MS, Zharmukhamedov SK, Mamaş S, Kupriyanova EV, Shitov AV, Klimov VV, Özbek N, Özmen Ü, Gündüzalp A, Schmitt FJ, Karacan N, Friedrich T, Los DA, Carpentier R, Allakhverdiev SI. Screening of novel chemical compounds as possible inhibitors of carbonic anhydrase and photosynthetic activity of photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2014; 137:156-67. [PMID: 24418071 DOI: 10.1016/j.jphotobiol.2013.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 12/28/2022]
Abstract
Thirty novel chemical compounds were designed and synthesized expecting that they would be possible inhibitors. From this number eleven were organic bases, twenty-four were their organic derivatives and fourteen were metal complexes. Screening of these chemicals by their action on photosynthetic electron transfer (PET) and carbonic anhydrase (CA) activity (CAA) of photosystem II (PSII), α-CA, as well as β-CA was done. Several groups were revealed among them. Some of them are capable to suppress either one, two, three, or even all of the measured activities. As example, one of the Cu(II)-phenyl sulfonylhydrazone complexes (compound 25) suppresses CAA of α-CA by 88%, CAA of β-CA by 100% inhibition; CAA of PSII by 100% and the PSII photosynthetic activity by 66.2%. The Schiff base compounds (12, 15) and Cu(II)-phenyl sulfonylhydrazone complexes (25, 26) inhibited the CAA and PET of PSII significantly. The obtained data indicate that the PSII donor side is a target of the inhibitory action of these agents. Some physico- or electrochemical properties such as diffusion coefficient, number of transferred electrons, peak potential and heterogeneous standard rate constants of the compounds were determined in nonaqueous media. pKa values were also determined in nonaqueous and aqueous media. Availability in the studied group of novel chemical agents possessing different inhibitory activity allow in future to isolate the "active part" in the structure of the inhibitors responsible for different inhibitory mechanisms, as well as to determine the influence of side substituters on its inhibitory efficiency.
Collapse
Affiliation(s)
- Mehmet Sayım Karacan
- Gazi University, Science Faculty, Department of Chemistry, 06500 Ankara, Turkey.
| | - Sergei K Zharmukhamedov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia
| | - Serhat Mamaş
- Gazi University, Science Faculty, Department of Chemistry, 06500 Ankara, Turkey
| | - Elena V Kupriyanova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Alexandr V Shitov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia
| | - Vyacheslav V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia
| | - Neslihan Özbek
- Ahi Evran University, Dept. of Primary Educ. Fac. Of Educ., 40100 Kırsehir, Turkey
| | - Ümmühan Özmen
- Gazi University, Science Faculty, Department of Chemistry, 06500 Ankara, Turkey
| | - Ayla Gündüzalp
- Gazi University, Science Faculty, Department of Chemistry, 06500 Ankara, Turkey
| | - Franz-Josef Schmitt
- Technical University of Berlin, Institute of Chemistry Sekr. PC 14, Max-Volmer-Laboratory of Biophysical Chemistry, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Nurcan Karacan
- Gazi University, Science Faculty, Department of Chemistry, 06500 Ankara, Turkey
| | - Thomas Friedrich
- Technical University of Berlin, Institute of Chemistry Sekr. PC 14, Max-Volmer-Laboratory of Biophysical Chemistry, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Robert Carpentier
- Department de Chimie, Biochimie et Physique, Université du Quebec à Trois Rivières, 3351 Boulevard des Forges, C.P. 500, Québec G9A 5H7, Canada
| | - Suleyman I Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia; Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia.
| |
Collapse
|
13
|
Bykova NV, Møller IM, Gardeström P, Igamberdiev AU. The function of glycine decarboxylase complex is optimized to maintain high photorespiratory flux via buffering of its reaction products. Mitochondrion 2014; 19 Pt B:357-64. [PMID: 24444663 DOI: 10.1016/j.mito.2014.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 12/29/2022]
Abstract
Oxidation of glycine in photorespiratory pathway is the major flux through mitochondria of C3 plants in the light. It sustains increased intramitochondrial concentrations of NADH and NADPH, which are required to engage the internal rotenone-insensitive NAD(P)H dehydrogenases and the alternative oxidase. We discuss here possible mechanisms of high photorespiratory flux maintenance in mitochondria and suggest that it is fulfilled under conditions where the concentrations of glycine decarboxylase reaction products NADH and CO2 achieve an equilibrium provided by malate dehydrogenase and carbonic anhydrase, respectively. This results in the removal of these products from the glycine decarboxylase multienzyme active sites and in the maintenance of their concentrations at levels sufficiently low to prevent substrate inhibition of the reaction.
Collapse
Affiliation(s)
- Natalia V Bykova
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, MB, R3T 2M9, Canada
| | - Ian M Møller
- Department of Molecular Biology and Genetics, Aarhus University, DK-4200 Slagelse, Denmark
| | - Per Gardeström
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, S-901 87 Umeå, Sweden
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
14
|
|
15
|
Kupriyanova EV, Sinetova MA, Cho SM, Park YI, Los DA, Pronina NA. CO2-concentrating mechanism in cyanobacterial photosynthesis: organization, physiological role, and evolutionary origin. PHOTOSYNTHESIS RESEARCH 2013; 117:133-146. [PMID: 23733616 DOI: 10.1007/s11120-013-9860-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/25/2013] [Indexed: 06/02/2023]
Abstract
The cellular and molecular organization of the CO2-concentrating mechanism (CCM) of cyanobacteria is reviewed. The primary processes of uptake, translocation, and accumulation of inorganic carbon (Ci) near the active site of carbon assimilation by the enzyme ribulose-1,5-bisphosphate carboxylase in the C3 cycle in cyanobacteria are described as one of the specialized forms of CO2 concentration which occurs in some photoautotrophic cells. The existence of this form of CO2 concentration expands our understanding of photosynthetic Ci assimilation. The means of supplying Ci to the C3 cycle in cyanobacteria is not by simple diffusion into the cell, but it is the result of coordinated functions of high-affinity systems for the uptake of CO2 and bicarbonate, as well as intracellular CO2/HCO3 (-) interconversions by carbonic anhydrases. These biochemical events are under genetic control, and they serve to maintain cellular homeostasis and adaptation to CO2 limitation. Here we describe the organization of the CCM in cyanobacteria with a special focus on the CCM of relict halo- and alkaliphilic cyanobacteria of soda lakes. We also assess the role of the CCM at the levels of the organism, the biosphere, and evolution.
Collapse
Affiliation(s)
- Elena V Kupriyanova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street, 35, Moscow, 127276, Russia
| | | | | | | | | | | |
Collapse
|
16
|
Igamberdiev AU, Roussel MR. Feedforward non-Michaelis–Menten mechanism for CO2 uptake by Rubisco: Contribution of carbonic anhydrases and photorespiration to optimization of photosynthetic carbon assimilation. Biosystems 2012; 107:158-66. [DOI: 10.1016/j.biosystems.2011.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/22/2011] [Accepted: 11/22/2011] [Indexed: 12/17/2022]
|
17
|
|
18
|
Moroney JV, Ma Y, Frey WD, Fusilier KA, Pham TT, Simms TA, DiMario RJ, Yang J, Mukherjee B. The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. PHOTOSYNTHESIS RESEARCH 2011; 109:133-49. [PMID: 21365258 DOI: 10.1007/s11120-011-9635-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 02/12/2011] [Indexed: 05/19/2023]
Abstract
Aquatic photosynthetic organisms, such as the green alga Chlamydomonas reinhardtii, respond to low CO(2) conditions by inducing a CO(2) concentrating mechanism (CCM). Carbonic anhydrases (CAs) are important components of the CCM. CAs are zinc-containing metalloenzymes that catalyze the reversible interconversion of CO(2) and HCO(3)(-). In C. reinhardtii, there are at least 12 genes that encode CA isoforms, including three alpha, six beta, and three gamma or gamma-like CAs. The expression of the three alpha and six beta genes has been measured from cells grown on elevated CO(2) (having no active CCM) versus cells growing on low levels of CO(2) (with an active CCM) using northern blots, differential hybridization to DNA chips and quantitative RT-PCR. Recent RNA-seq profiles add to our knowledge of the expression of all of the CA genes. In addition, protein content for some of the CA isoforms was estimated using antibodies corresponding to the specific CA isoforms: CAH1/2, CAH3, CAH4/5, CAH6, and CAH7. The intracellular location of each of the CA isoforms was elucidated using immunolocalization and cell fractionation techniques. Combining these results with previous studies using CA mutant strains, we will discuss possible physiological roles of the CA isoforms concentrating on how these CAs might contribute to the acquisition and retention of CO(2) in C. reinhardtii.
Collapse
Affiliation(s)
- James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kupriyanova EV, Sinetova MA, Markelova AG, Allakhverdiev SI, Los DA, Pronina NA. Extracellular β-class carbonic anhydrase of the alkaliphilic cyanobacterium Microcoleus chthonoplastes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 103:78-86. [DOI: 10.1016/j.jphotobiol.2011.01.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/21/2011] [Accepted: 01/24/2011] [Indexed: 11/16/2022]
|
20
|
Raven JA. Inorganic carbon acquisition by eukaryotic algae: four current questions. PHOTOSYNTHESIS RESEARCH 2010; 106:123-34. [PMID: 20524069 DOI: 10.1007/s11120-010-9563-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 05/17/2010] [Indexed: 05/18/2023]
Abstract
The phylogenetically and morphologically diverse eukaryotic algae are typically oxygenic photolithotrophs. They have a diversity of incompletely understood mechanisms of inorganic carbon acquisition: this article reviews four areas where investigations continue. The first topic is diffusive CO(2) entry. Most eukaryotic algae, like all cyanobacteria, have inorganic carbon concentrating mechanisms (CCMs). The ancestral condition was presumably the absence of a CCM, i.e. diffusive CO(2) entry, as found in a small minority of eukaryotic algae today; however, it is likely that, as is found in several cases, this condition is due to a loss of a CCM. There are a number of algae which are in various respects intermediate between diffusive CO(2) entry and occurrence of a CCM: further study is needed on this aspect. A second topic is the nature of cyanelles and their role in inorganic carbon assimilation. The cyanelles (plastids) of the euglyphid amoeba Paulinella have been acquired relatively recently by endosymbiosis with genetic integration of an α-cyanobacterium with a Form 1A Rubisco. The α-carboxysomes in the cyanelles are presumably involved in a CCM, but further investigation is needed.Also called cyanelles are the plastids of glaucocystophycean algae, but is it now clear that these were derived from the β-cyanobacterial ancestor of all plastids other than that of Paulinella. The resemblances of the central body of the cyanelles of glaucocystophycean algae to carboxysomes may not reflect derivation from cyanobacterial β-carboxysomes; although it is clear that these algae have CCMs but these are now well characterized. The other two topics concern CCMs in other eukaryotic algae; these CCMs arose polyphyletically and independently of the cyanobacterial CCMs. It is generally believed that eukaryotic algal, like cyanobacterial, CCMs are based on active transport of an inorganic carbon species and/or protons, and they have C(3) biochemistry. This is the case for the organism considered as the third topic, i.e. Chlamydomonas reinhardtii, the eukaryotic alga with the best understood CCM. This CCM involves HCO(3)(-) conversion to CO(2) in the thylakoid lumen so the external inorganic carbon must cross four membranes in series with a final CO(2) effux from the thylakoid. More remains to be investigated about this CCM. The final topic is that of the occurrence of C(4)-like metabolism in the CCMs of marine diatoms. Different conclusions have been reached depending on the organism investigated and the techniques used, and several aspects require further study.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, College of Life Sciences, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
21
|
Yuan HM, Li KL, Ni RJ, Guo WD, Shen Z, Yang CP, Wang BC, Liu GF, Guo CH, Jiang J. A systemic proteomic analysis of Populus chloroplast by using shotgun method. Mol Biol Rep 2010; 38:3045-54. [DOI: 10.1007/s11033-010-9971-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
|
22
|
Ulas G, Olack G, Brudvig GW. Evidence against bicarbonate bound in the O2-evolving complex of photosystem II. Biochemistry 2008; 47:3073-5. [PMID: 18275153 DOI: 10.1021/bi8000424] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oxidation of water to molecular oxygen by photosystem II (PSII) is inhibited in bicarbonate-depleted media. One contribution to the inhibition is the binding of bicarbonate to the non-heme iron, which is required for efficient electron transfer on the electron-acceptor side of PSII. There are also proposals that bicarbonate is required for formation of O 2 by the manganese-containing O 2-evolving complex (OEC). Previous work indicates that a bicarbonate ion does not bind reversibly close to the OEC, but it remains possible that bicarbonate is bound sufficiently tightly to the OEC that it cannot readily exchange with bicarbonate in solution. In this study, we have used NH 2OH to destroy the OEC, which would release any tightly bound bicarbonate ions from the active site, and mass spectrometry to detect any released bicarbonate as CO 2. The amount of CO 2 per PSII released by the NH 2OH treatment is observed to be comparable to the background level, although N 2O, a product of the reaction of NH 2OH with the OEC, is detected in good yield. These results strongly argue against tightly bound bicarbonate ions in the OEC.
Collapse
Affiliation(s)
- Gözde Ulas
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA
| | | | | |
Collapse
|
23
|
Kupriyanova E, Villarejo A, Markelova A, Gerasimenko L, Zavarzin G, Samuelsson G, Los DA, Pronina N. Extracellular carbonic anhydrases of the stromatolite-forming cyanobacterium Microcoleus chthonoplastes. MICROBIOLOGY-SGM 2007; 153:1149-1156. [PMID: 17379724 DOI: 10.1099/mic.0.2006/003905-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Active extracellular carbonic anhydrases (CAs) were found in the alkaliphilic stromatolite-forming cyanobacterium Microcoleus chthonoplastes. Enzyme activity was detected in intact cells and in the cell envelope fraction. Western blot analysis of polypeptides from the cell envelope suggested the presence of at least two polypeptides cross-reacting with antibodies against both alpha and beta classes of CA. Immunocytochemical analysis revealed putative alpha-CA localized in the glycocalyx. This alpha-CA has a molecular mass of about 34 kDa and a pI of 3.5. External CAs showed two peaks of activity at around pH 10 and 7.5. The possible involvement of extracellular CAs of M. chthonoplastes in photosynthetic assimilation of inorganic carbon and its relationship to CaCO(3) deposition during mineralization of cyanobacterial cells are discussed.
Collapse
Affiliation(s)
- Elena Kupriyanova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276 Russia
| | - Arsenio Villarejo
- Department of Biology, Universidad Autonoma de Madrid, 28049 Madrid
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, S-901 87 Umeå, Sweden
| | - Alexandra Markelova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276 Russia
| | - Lyudmila Gerasimenko
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow, 117312 Russia
| | - Georgy Zavarzin
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow, 117312 Russia
| | - Göran Samuelsson
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, S-901 87 Umeå, Sweden
| | - Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276 Russia
| | - Natalia Pronina
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276 Russia
| |
Collapse
|
24
|
Moroney JV, Ynalvez RA. Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. EUKARYOTIC CELL 2007; 6:1251-9. [PMID: 17557885 PMCID: PMC1951128 DOI: 10.1128/ec.00064-07] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
25
|
McConnell IL, Badger MR, Wydrzynski T, Hillier W. A quantitative assessment of the carbonic anhydrase activity in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:639-47. [PMID: 17467655 DOI: 10.1016/j.bbabio.2007.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 11/15/2022]
Abstract
Using a carbonic anhydrase assay based on membrane inlet mass spectrometry (MIMS), we have extended our earlier investigations of Photosystem II (PSII)-associated carbonic anhydrase activity in spinach PSII preparations (W. Hillier, I. McConnell, M. R. Badger, A. Boussac, V.V. Klimov G. C. Dismukes, T. Wydrzynski Biochemistry 2006, 45:2094). The relationship between the carbonic anhydrase activity and O(2) evolution has been evaluated in terms of the effects of metal ion addition, preparation type, light, and response to specific inhibitors. The results indicate that the PSII-associated carbonic anhydrase activity is variable and appears not to be associated specifically with the oxygen evolving activity nor the 33 kDa extrinsic manganese stabilising protein.
Collapse
Affiliation(s)
- I L McConnell
- Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
26
|
Supuran CT, Scozzafava A. Carbonic anhydrases as targets for medicinal chemistry. Bioorg Med Chem 2007; 15:4336-50. [PMID: 17475500 DOI: 10.1016/j.bmc.2007.04.020] [Citation(s) in RCA: 444] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 04/10/2007] [Accepted: 04/13/2007] [Indexed: 01/27/2023]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are zinc enzymes acting as efficient catalysts for the reversible hydration of carbon dioxide to bicarbonate. 16 different alpha-CA isoforms were isolated in mammals, where they play crucial physiological roles. Some of them are cytosolic (CA I, CA II, CA III, CA VII, CA XIII), others are membrane-bound (CA IV, CA IX, CA XII, CA XIV and CA XV), CA VA and CA VB are mitochondrial, and CA VI is secreted in saliva and milk. Three acatalytic forms are also known, the CA related proteins (CARP), CARP VIII, CARP X and CARP XI. Representatives of the beta-delta-CA family are highly abundant in plants, diatoms, eubacteria and archaea. The catalytic mechanism of the alpha-CAs is understood in detail: the active site consists of a Zn(II) ion co-ordinated by three histidine residues and a water molecule/hydroxide ion. The latter is the active species, acting as a potent nucleophile. For beta- and gamma-CAs, the zinc hydroxide mechanism is valid too, although at least some beta-class enzymes do not have water directly coordinated to the metal ion. CAs are inhibited primarily by two classes of compounds: the metal complexing anions and the sulfonamides/sulfamates/sulfamides possessing the general formula RXSO(2)NH(2) (R=aryl; hetaryl; perhaloalkyl; X=nothing, O or NH). Several important physiological and physio-pathological functions are played by CAs present in organisms all over the phylogenetic tree, related to respiration and transport of CO(2)/bicarbonate between metabolizing tissues and the lungs, pH and CO(2) homeostasis, electrolyte secretion in a variety of tissues/organs, biosynthetic reactions, such as the gluconeogenesis and ureagenesis among others (in animals), CO(2) fixation (in plants and algae), etc. The presence of these ubiquitous enzymes in so many tissues and in so different isoforms represents an attractive goal for the design of inhibitors with biomedical applications. Indeed, CA inhibitors are clinically used as antiglaucoma drugs, some other compounds being developed as antitumour agents/diagnostic tools for tumours, antiobesity agents, anticonvulsants and antimicrobials/antifungals (inhibitors targeting alpha- or beta-CAs from pathogenic organisms such as Helicobacter pylori, Mycobacterium tuberculosis, Plasmodium falciparum, Candida albicans, etc.).
Collapse
Affiliation(s)
- Claudiu T Supuran
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy.
| | | |
Collapse
|
27
|
Dudoladova MV, Kupriyanova EV, Markelova AG, Sinetova MP, Allakhverdiev SI, Pronina NA. The thylakoid carbonic anhydrase associated with photosystem II is the component of inorganic carbon accumulating system in cells of halo- and alkaliphilic cyanobacterium Rhabdoderma lineare. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1767:616-23. [PMID: 17292848 DOI: 10.1016/j.bbabio.2006.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 11/25/2006] [Accepted: 12/13/2006] [Indexed: 11/17/2022]
Abstract
The organization of carbonic anhydrase (CA) system in halo- and alkaliphilic cyanobacterium Rhabdoderma lineare was studied by Western blot analysis and immunocytochemical electron microscopy. The presence of putative extracellular alpha-CA of 60 kDa in the glycocalyx, forming a tight sheath around the cell, and of two intracellular beta-CA is reported. We show for the first time that the beta-CA of 60 kDa is expressed constitutively and associated with polypeptides of photosystem II (beta-CA-PS II). Another soluble beta-CA of 25 kDa was induced in low-bicarbonate medium. Induction of synthesis of the latter beta-CA was accompanied by an increase in the intracellular pool of inorganic carbon, which suggests an important role of this enzyme in the functioning of a CO(2)-concentrating mechanism.
Collapse
Affiliation(s)
- Marina V Dudoladova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | | | | | | | | | | |
Collapse
|
28
|
Mitra M, Mason CB, Xiao Y, Ynalvez RA, Lato SM, Moroney JV. The carbonic anhydrase gene families ofChlamydomonas reinhardtii. ACTA ACUST UNITED AC 2005. [DOI: 10.1139/b05-065] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbonic anhydrases (CAs) are zinc-containing metalloenzymes that catalyze the reversible interconversion of CO2and HCO3. Aquatic photosynthetic organisms have evolved different forms of CO2-concentrating mechanisms to aid Rubisco in capturing CO2from the surrounding environment. One aspect of all CO2-concentrating mechanisms is the critical roles played by various specially localized extracellular and intracellular CAs. There are three evolutionarily unrelated CA families designated α-, β-, and γ-CA. In the green alga, Chlamydomonas reinhardtii Dangeard, eight CAs have now been identified, including three α-CAs and five β-CAs. In addition, C. reinhardtii has another CA-like gene, Glp1 that is similar to known γ-CAs. To characterize these different CA isoforms, some of the CA genes have been overexpressed to determine whether the proteins have CA activity and to generate antibodies for in vivo immunolocalization. The CA proteins Cah3, Cah6, and Cah8, and the γ-CA-like protein, Glp1, have been overexpressed. Cah3, Cah6, and Cah8 have CA activity, but Glp1 does not. At least two of these proteins, Cah3 and Cah6, are localized to the chloroplast. Using immunolocalization and sequence analyses, we have determined that Cah6 is located to the chloroplast stroma and confirmed that Cah3 is localized to the chloroplast thylakoid lumen. Activity assays show that Cah3 is 100 times more sensitive to sulfonamides than Cah6. We present a model on how these two chloroplast CAs might participate in the CO2-concentrating mechanism of C. reinhardtii. Key words: carbonic anhydrase, CO2-concentrating mechanism, Chlamydomonas, immunolocalization.
Collapse
|
29
|
Harada H, Matsuda Y. Identification and characterization of a new carbonic anhydrase in the marine diatom Phaeodactylum tricornutum. ACTA ACUST UNITED AC 2005. [DOI: 10.1139/b05-078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A cDNA encoding a new isoenzyme of β-type carbonic anhydrase (CA; EC 4.2.1.1) in the marine diatom Phaeodactylum tricornutum Bohlin has been cloned. The cDNA contained an open reading frame of 819 bp, which encodes a polypeptide of 273 amino acids. This gene, which is designated as ptca2, was found to be highly homologous (83% at the nucleotide level) to the previously isolated intracellular β-CA gene from Phaeodactylum tricornutum (ptca1). Comparison of the deduced amino acid sequence of ptca2 with β-CAs from other sources demonstrated that PtCA2 possesses the completely conserved zinc coordination residues of β-CA. The N-terminus 19 amino acid sequence of PtCA2 was predicted to be an endoplasmic reticulum-targeting signal, suggesting localization of the protein in an organelle or in the periplasmic space. Quantitative analysis of mRNA accumulation of ptca2 using real-time polymerase chain reaction revealed a significant level of mRNA accumulation even under 5% CO2 and a 3.5-fold increase in accumulation upon acclimation of the diatom to air. This indicates that ptca2 belongs to a constitutive class of enzyme that responds only weakly to the ambient CO2 concentration. The sequences of both ptca1 and ptca2 were shown to be grouped into a phylogeny that is composed of mixture of sequences from the eucarya and procarya domains, including sequences from the red alga Porphyridium purpureum, the green alga Coccomyxa, the red mold Neurospora crassa, and the yeast Saccharomyces cerevisiae.Key words: carbonic anhydrase, marine diatom, inorganic carbon concentrating mechanism (CCM), Phaeodactylum tricornutum.
Collapse
|
30
|
|
31
|
Spetea C, Hundal T, Lundin B, Heddad M, Adamska I, Andersson B. Multiple evidence for nucleotide metabolism in the chloroplast thylakoid lumen. Proc Natl Acad Sci U S A 2004; 101:1409-14. [PMID: 14736920 PMCID: PMC337066 DOI: 10.1073/pnas.0308164100] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The apparatus of photosynthetic energy conversion in chloroplasts is quite well characterized with respect to structure and function. Light-driven electron transport in the thylakoid membrane is coupled to synthesis of ATP, used to drive energy-dependent metabolic processes in the stroma and the outer surface of the thylakoid membrane. The role of the inner (luminal) compartment of the thylakoids has, however, remained largely unknown although recent proteomic analyses have revealed the presence of up to 80 different proteins. Further, there are no reports concerning the presence of nucleotides in the thylakoid lumen. Here, we bring three lines of experimental evidence for nucleotide-dependent processes in this chloroplast compartment. (i) The thylakoid lumen contains a protein of 17.2 kDa, catalyzing the transfer of the gamma-phosphate group from ATP to GDP, proposed to correspond to the nucleoside diphosphate kinase III. (ii) The 33-kDa subunit of photosystem II, bound to the luminal side of the thylakoid membrane and associated with the water-splitting process, can bind GTP. (iii) The thylakoid membrane contains a nucleotide transport system that is suggested to be associated with a 36.5-kDa nucleotide-binding protein. Our results imply, against current dogmas, that the thylakoid lumen contains nucleotides, thereby providing unexpected aspects on this chloroplast compartment from a metabolic and regulatory perspective and expanding its functional significance beyond a pure bioenergetic function.
Collapse
Affiliation(s)
- Cornelia Spetea
- Division of Cell Biology and Department of Physics and Measurement Technology, Linköping University, SE-581 85 Linköping, Sweden.
| | | | | | | | | | | |
Collapse
|
32
|
Hanson DT, Franklin LA, Samuelsson G, Badger MR. The Chlamydomonas reinhardtii cia3 mutant lacking a thylakoid lumen-localized carbonic anhydrase is limited by CO2 supply to rubisco and not photosystem II function in vivo. PLANT PHYSIOLOGY 2003; 132:2267-75. [PMID: 12913181 PMCID: PMC181310 DOI: 10.1104/pp.103.023481] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 04/17/2003] [Accepted: 05/15/2003] [Indexed: 05/20/2023]
Abstract
The Chlamydomonas reinhardtii cia3 mutant has a phenotype indicating that it requires high-CO(2) levels for effective photosynthesis and growth. It was initially proposed that this mutant was defective in a carbonic anhydrase (CA) that was a key component of the photosynthetic CO(2)-concentrating mechanism (CCM). However, more recent identification of the genetic lesion as a defect in a lumenal CA associated with photosystem II (PSII) has raised questions about the role of this CA in either the CCM or PSII function. To resolve the role of this lumenal CA, we re-examined the physiology of the cia3 mutant. We confirmed and extended previous gas exchange analyses by using membrane-inlet mass spectrometry to monitor(16)O(2),(18)O(2), and CO(2) fluxes in vivo. The results demonstrate that PSII electron transport is not limited in the cia3 mutant at low inorganic carbon (Ci). We also measured metabolite pools sizes and showed that the RuBP pool does not fall to abnormally low levels at low Ci as might be expected by a photosynthetic electron transport or ATP generation limitation. Overall, the results demonstrate that under low Ci conditions, the mutant lacks the ability to supply Rubisco with adequate CO(2) for effective CO(2) fixation and is not limited directly by any aspect of PSII function. We conclude that the thylakoid CA is primarily required for the proper functioning of the CCM at low Ci by providing an ample supply of CO(2) for Rubisco.
Collapse
Affiliation(s)
- David Thomas Hanson
- University of New Mexico, Department of Biology, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
33
|
Villarejo A, Shutova T, Moskvin O, Forssén M, Klimov VV, Samuelsson G. A photosystem II-associated carbonic anhydrase regulates the efficiency of photosynthetic oxygen evolution. EMBO J 2002; 21:1930-8. [PMID: 11953312 PMCID: PMC125371 DOI: 10.1093/emboj/21.8.1930] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show for the first time that Cah3, a carbonic anhydrase associated with the photosystem II (PSII) donor side in Chlamydomonas reinhardtii, regulates the water oxidation reaction. The mutant cia3, lacking Cah3 activity, has an impaired water splitting capacity, as shown for intact cells, thylakoids and PSII particles. To compensate this impairment, the mutant overproduces PSII reaction centres (1.6 times more than wild type). We present compelling evidence that the mutant has an average of two manganese atoms per PSII reaction centre. When bicarbonate is added to mutant thylakoids or PSII particles, the O2 evolution rates exceed those of the wild type by up to 50%. The donor side of PSII in the mutant also exhibits a much higher sensitivity to overexcitation than that of the wild type. We therefore conclude that Cah3 activity is necessary to stabilize the manganese cluster and maintain the water-oxidizing complex in a functionally active state. The possibility that two manganese atoms are enough for water oxidation if bicarbonate ions are available is discussed.
Collapse
Affiliation(s)
| | | | | | | | - Vyacheslav V. Klimov
- Umeå Plant Science Center, Department of Plant Physiology, University of Umeå, S-901 87 Umeå, Sweden and
Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia Corresponding author e-mail: and T.Shutova contributed equally to this work
| | - Göran Samuelsson
- Umeå Plant Science Center, Department of Plant Physiology, University of Umeå, S-901 87 Umeå, Sweden and
Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia Corresponding author e-mail: and T.Shutova contributed equally to this work
| |
Collapse
|
34
|
Satoh D, Hiraoka Y, Colman B, Matsuda Y. Physiological and molecular biological characterization of intracellular carbonic anhydrase from the marine diatom Phaeodactylum tricornutum. PLANT PHYSIOLOGY 2001; 126:1459-70. [PMID: 11500545 PMCID: PMC117146 DOI: 10.1104/pp.126.4.1459] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2001] [Revised: 04/26/2001] [Accepted: 05/18/2001] [Indexed: 05/20/2023]
Abstract
A single intracellular carbonic anhydrase (CA) was detected in air-grown and, at reduced levels, in high CO(2)-grown cells of the marine diatom Phaeodactylum tricornutum (UTEX 642). No external CA activity was detected irrespective of growth CO(2) conditions. Ethoxyzolamide (0.4 mM), a CA-specific inhibitor, severely inhibited high-affinity photosynthesis at low concentrations of dissolved inorganic carbon, whereas 2 mM acetazolamide had little effect on the affinity for dissolved inorganic carbon, suggesting that internal CA is crucial for the operation of a carbon concentrating mechanism in P. tricornutum. Internal CA was purified 36.7-fold of that of cell homogenates by ammonium sulfate precipitation, and two-step column chromatography on diethylaminoethyl-sephacel and p-aminomethylbenzene sulfone amide agarose. The purified CA was shown, by SDS-PAGE, to comprise an electrophoretically single polypeptide of 28 kD under both reduced and nonreduced conditions. The entire sequence of the cDNA of this CA was obtained by the rapid amplification of cDNA ends method and indicated that the cDNA encodes 282 amino acids. Comparison of this putative precursor sequence with the N-terminal amino acid sequence of the purified CA indicated that it included a possible signal sequence of up to 46 amino acids at the N terminus. The mature CA was found to consist of 236 amino acids and the sequence was homologous to beta-type CAs. Even though the zinc-ligand amino acid residues were shown to be completely conserved, the amino acid residues that may constitute a CO(2)-binding site appeared to be unique among the beta-CAs so far reported.
Collapse
Affiliation(s)
- D Satoh
- Department of Chemistry, Kwansei-Gakuin University, 1-1-155 Uegahara, Nishinomiya 662-8501, Japan
| | | | | | | |
Collapse
|
35
|
Harris EH. CHLAMYDOMONAS AS A MODEL ORGANISM. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:363-406. [PMID: 11337403 DOI: 10.1146/annurev.arplant.52.1.363] [Citation(s) in RCA: 431] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The unicellular green alga Chlamydomonas offers a simple life cycle, easy isolation of mutants, and a growing array of tools and techniques for molecular genetic studies. Among the principal areas of current investigation using this model system are flagellar structure and function, genetics of basal bodies (centrioles), chloroplast biogenesis, photosynthesis, light perception, cell-cell recognition, and cell cycle control. A genome project has begun with compilation of expressed sequence tag data and gene expression studies and will lead to a complete genome sequence. Resources available to the research community include wild-type and mutant strains, plasmid constructs for transformation studies, and a comprehensive on-line database.
Collapse
Affiliation(s)
- Elizabeth H Harris
- Developmental, Cell and Molecular Biology Group, Biology Department, Duke University, Durham, North Carolina 27708-1000; e-mail:
| |
Collapse
|
36
|
Dai X, Yu Y, Zhang R, Yu X, He P, Xu C. Relationship among Photosystem II carbonic anhydrase, extrinsic polypeptides and manganese cluster. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/bf03183276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Klimov VV, Baranov SV. Bicarbonate requirement for the water-oxidizing complex of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:187-96. [PMID: 11115633 DOI: 10.1016/s0005-2728(00)00222-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well established that bicarbonate stimulates electron transfer between the primary and secondary electron acceptors, Q(A) and Q(B), in formate-inhibited photosystem II; the non-heme Fe between Q(A) and Q(B) plays an essential role in the bicarbonate binding. Strong evidence of a bicarbonate requirement for the water-oxidizing complex (WOC), both O2 evolving and assembling from apo-WOC and Mn2+, of photosystem II (PSII) preparations has been presented in a number of publications during the last 5 years. The following explanations for the involvement of bicarbonate in the events on the donor side of PSII are considered: (1) bicarbonate serves as an electron donor (alternative to water or as a way of involvement of water molecules in the oxidative reactions) to the Mn-containing O2 center; (2) bicarbonate facilitates reassembly of the WOC from apo-WOC and Mn2+ due to formation of the complexes MnHCO3+ and Mn(HCO3)2 leading to an easier oxidation of Mn2+ with PSII; (3) bicarbonate is an integral component of the WOC essential for its function and stability; it may be considered a direct ligand to the Mn cluster; (4) the WOC is stabilized by bicarbonate through its binding to other components of PSII.
Collapse
Affiliation(s)
- V V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, 142290, Moscow Region, Russia.
| | | |
Collapse
|
38
|
Moskvin OV, Ivanov BN, Ignatova LK, Kollmeier MA. Light-induced stimulation of carbonic anhydrase activity in pea thylakoids. FEBS Lett 2000; 470:375-7. [PMID: 10745100 DOI: 10.1016/s0014-5793(00)01328-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stimulation of the bicarbonate dehydration reaction in thylakoid suspension under conditions of saturating light at pH 7.6-8.0 was discovered. This effect was inhibited by nigericin or the lipophilic carbonic anhydrase (CA) inhibitor ethoxyzolamide (EZ), but not by the hydrophilic CA inhibitor, acetazolamide. It was shown that the action of EZ is not caused by an uncoupling effect. It was concluded that thylakoid CA is the enzyme utilizing the light-generated proton gradient across the thylakoid membrane thus facilitating the production of CO(2) from HCO(3)(-) and that this enzyme is covered from the stroma side of thylakoids by a lipid barrier.
Collapse
Affiliation(s)
- O V Moskvin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
| | | | | | | |
Collapse
|