1
|
Nencetti S, Cuffaro D, Ciccone L, Nocentini A, Di Stefano M, Poli G, Macchia M, Tuccinardi T, Nuti E, Supuran CT, Rossello A, Orlandini E. A series of benzensulfonamide derivatives as new potent carbonic anhydrase IX and XII inhibitors. Future Med Chem 2025; 17:271-285. [PMID: 39878534 PMCID: PMC11792798 DOI: 10.1080/17568919.2025.2453420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
AIM Human carbonic anhydrases (hCAs) are involved in many physiological processes including respiration, pH control, ion transport, bone resorption, and gastric fluid secretion. Recently, CA IX and CA XII have been studied for their role in cancer diseases, motivating the design of inhibitors of these isoforms. MATERIAL AND METHOD Here, we used the tail approach to design a new series of monoaryl (1a-i) and bicyclic (1j-n) benzensulfonamide derivatives CA IX and CA XII inhibitors. All synthesized compounds were investigated toward a panel of hCAs, and most of them exhibited potent CA inhibitory activity for CA II, CA IX and CA XII with Ki values. In silico studies were performed to investigate the binding mode between inhibitors and CA. RESULTS AND CONCLUSION The best compound was 1i that showed a low nanomolar range of Ki value as CA inhibitor (Ki = 9.4, 5.6 and 6.3 nM hCA II, IX and XII, respectively).
Collapse
Affiliation(s)
| | | | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Alessio Nocentini
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Sesto Fiorentino, Italy
| | | | - Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Claudiu T. Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Sesto Fiorentino, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Research Center “E. Piaggio” Università di, Pisa, Italy
| | - Elisabetta Orlandini
- Research Center “E. Piaggio” Università di, Pisa, Italy
- Department of Earth Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Ciccone L, Nencetti S, Camodeca C, Ortore G, Cuffaro D, Socci S, Orlandini E. Synthesis and Evaluation of Monoaryl Derivatives as Transthyretin Fibril Formation Inhibitors. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Ciccone L, Petrarolo G, Barsuglia F, Fruchart-Gaillard C, Cassar Lajeunesse E, Adewumi AT, Soliman MES, La Motta C, Orlandini E, Nencetti S. Nature-Inspired O-Benzyl Oxime-Based Derivatives as New Dual-Acting Agents Targeting Aldose Reductase and Oxidative Stress. Biomolecules 2022; 12:448. [PMID: 35327641 PMCID: PMC8946157 DOI: 10.3390/biom12030448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Aldose reductase (ALR2) is the enzyme in charge of developing cellular toxicity caused by diabetic hyperglycemia, which in turn leads to the generation of reactive oxygen species triggering oxidative stress. Therefore, inhibiting ALR2 while pursuing a concomitant anti-oxidant activity through dual-acting agents is now recognized as the gold standard treatment for preventing or at least delaying the progression of diabetic complications. Herein we describe a novel series of (E)-benzaldehyde O-benzyl oximes 6a-e, 7a-e, 8a-e, and 9-11 as ALR2 inhibitors endowed with anti-oxidant properties. Inspired by the natural products, the synthesized derivatives are characterized by a different polyhydroxy substitution pattern on their benzaldehyde fragment, which proved crucial for both the enzyme inhibitory activity and the anti-oxidant capacity. Derivatives (E)-2,3,4-trihydroxybenzaldehyde O-(3-methoxybenzyl) oxime (7b) and (E)-2,3,4-trihydroxybenzaldehyde O-(4-methoxybenzyl) oxime (8b) turned out to be the most effective dual-acting products, proving to combine the best ALR2 inhibitory properties with significant anti-oxidant efficacy.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (L.C.); (G.P.); (F.B.)
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de Recherche pour l’Agricolture, l’Alimentation et l’Environment (INRAE), SIMoS, 91191 Gif-sur-Yvette, France; (C.F.-G.); (E.C.L.)
- Centre for Instrumentation Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy;
| | - Giovanni Petrarolo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (L.C.); (G.P.); (F.B.)
| | - Francesca Barsuglia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (L.C.); (G.P.); (F.B.)
| | - Carole Fruchart-Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de Recherche pour l’Agricolture, l’Alimentation et l’Environment (INRAE), SIMoS, 91191 Gif-sur-Yvette, France; (C.F.-G.); (E.C.L.)
| | - Evelyne Cassar Lajeunesse
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de Recherche pour l’Agricolture, l’Alimentation et l’Environment (INRAE), SIMoS, 91191 Gif-sur-Yvette, France; (C.F.-G.); (E.C.L.)
| | - Adeniyi T. Adewumi
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Science, Westville Campus, University of KwaZulu-Natal, Durban 4001, South Africa; (A.T.A.); (M.E.S.S.)
| | - Mahmoud E. S. Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Science, Westville Campus, University of KwaZulu-Natal, Durban 4001, South Africa; (A.T.A.); (M.E.S.S.)
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (L.C.); (G.P.); (F.B.)
- Centre for Instrumentation Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy;
| | - Elisabetta Orlandini
- Centre for Instrumentation Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy;
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (L.C.); (G.P.); (F.B.)
- Centre for Instrumentation Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy;
| |
Collapse
|
4
|
Bargagna B, Ciccone L, Nencetti S, Santos MA, Chaves S, Camodeca C, Orlandini E. Multifunctional Small Molecules as Potential Anti-Alzheimer's Disease Agents. Molecules 2021; 26:6015. [PMID: 34641559 PMCID: PMC8512147 DOI: 10.3390/molecules26196015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 01/17/2023] Open
Abstract
Alzheimer's disease (AD) is a severe multifactorial neurodegenerative disorder characterized by a progressive loss of neurons in the brain. Despite research efforts, the pathogenesis and mechanism of AD progression are not yet completely understood. There are only a few symptomatic drugs approved for the treatment of AD. The multifactorial character of AD suggests that it is important to develop molecules able to target the numerous pathological mechanisms associated with the disease. Thus, in the context of the worldwide recognized interest of multifunctional ligand therapy, we report herein the synthesis, characterization, physicochemical and biological evaluation of a set of five (1a-e) new ferulic acid-based hybrid compounds, namely feroyl-benzyloxyamidic derivatives enclosing different substituent groups, as potential anti-Alzheimer's disease agents. These hybrids can keep both the radical scavenging activity and metal chelation capacity of the naturally occurring ferulic acid scaffold, presenting also good/mild capacity for inhibition of self-Aβ aggregation and fairly good inhibition of Cu-induced Aβ aggregation. The predicted pharmacokinetic properties point towards good absorption, comparable to known oral drugs.
Collapse
Affiliation(s)
- Beatrice Bargagna
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53-55, 56100 Pisa, Italy;
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (L.C.); (S.N.); (C.C.)
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (L.C.); (S.N.); (C.C.)
| | - M. Amélia Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Sílvia Chaves
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Caterina Camodeca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (L.C.); (S.N.); (C.C.)
| | - Elisabetta Orlandini
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53-55, 56100 Pisa, Italy;
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|