1
|
Zhang Y, Zheng W, Ren P, Hu H, Tong X, Zhang S, Li X, Wang H, Jiang J, Jin J, Yang W, Cao L, He Y, Ma Y, Zhang Y, Gu Y, Hu L, Luo K, Gong F, Lu G, Lin G, Fan H, Zhang S. Biallelic mutations in MOS cause female infertility characterized by human early embryonic arrest and fragmentation. EMBO Mol Med 2021; 13:e14887. [PMID: 34779126 PMCID: PMC8649871 DOI: 10.15252/emmm.202114887] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 01/26/2023] Open
Abstract
Early embryonic arrest and fragmentation (EEAF) is a common phenomenon leading to female infertility, but the genetic determinants remain largely unknown. The Moloney sarcoma oncogene (MOS) encodes a serine/threonine kinase that activates the ERK signaling cascade during oocyte maturation in vertebrates. Here, we identified four rare variants of MOS in three infertile female individuals with EEAF that followed a recessive inheritance pattern. These MOS variants encoded proteins that resulted in decreased phosphorylated ERK1/2 level in cells and oocytes, and displayed attenuated rescuing effects on cortical F-actin assembly. Using oocyte-specific Erk1/2 knockout mice, we verified that MOS-ERK signal pathway inactivation in oocytes caused EEAF as human. The RNA sequencing data revealed that maternal mRNA clearance was disrupted in human mature oocytes either with MOS homozygous variant or with U0126 treatment, especially genes relative to mitochondrial function. Mitochondrial dysfunction was observed in oocytes with ERK1/2 deficiency or inactivation. In conclusion, this study not only uncovers biallelic MOS variants causes EEAF but also demonstrates that MOS-ERK signaling pathway drives human oocyte cytoplasmic maturation to prevent EEAF.
Collapse
Affiliation(s)
- Yin‐Li Zhang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Peipei Ren
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Huiling Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Xiaomei Tong
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Shuo‐Ping Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Xiang Li
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Haichao Wang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | | | - Jiamin Jin
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Weijie Yang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Lanrui Cao
- Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Yuanlin He
- Department of EpidemiologyCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Yerong Ma
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Yingyi Zhang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Yifan Gu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Liang Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Keli Luo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Guang‐Xiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Heng‐Yu Fan
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
- Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Songying Zhang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
2
|
Chakravarthi VP, Ghosh S, Housami SM, Wang H, Roby KF, Wolfe MW, Kinsey WH, Rumi MAK. ERβ regulated ovarian kisspeptin plays an important role in oocyte maturation. Mol Cell Endocrinol 2021; 527:111208. [PMID: 33592287 PMCID: PMC8906370 DOI: 10.1016/j.mce.2021.111208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 01/09/2023]
Abstract
Kisspeptin (KISS1) signaling in the hypothalamic-pituitary (H-P) axis plays an essential role in regulating gonadotropin secretion. KISS1 and KISS1 receptor (KISS1R) are also expressed in the ovary; however, the role of intraovarian KISS1 signaling remains unclear. Granulosa cell (GC)-specific expression of KISS1, and oocyte-specific expression of KISS1R indicate that GC-derived KISS1 may act on oocytes. Expression of KISS1 in GCs is induced by gonadotropins but it is absent in estrogen receptor β knockout (Erβnull) rat ovaries. We also observed that gonadotropin stimulation failed to induce maturation of Erβnull oocytes. Interestingly, KISS1 treatment of cumulus oocyte complexes (COCs) isolated from antral follicles promotes in vitro maturation of oocytes. Treatment of oocytes with KISS1 induced intracellular Ca2+ release, and increased activation of MAP kinase ERK1/2. KISS1 treatment also induced the expression of oocyte genes that are crucial for differentiation of GCs, and maturation of oocytes. Our findings suggest that ovarian KISS1-signaling plays an important role in gonadotropin induced follicle development and oocyte maturation.
Collapse
Affiliation(s)
| | - Subhra Ghosh
- Department of Pathology and Laboratory Medicine, USA
| | | | | | - Katherine F Roby
- Department of Anatomy and Cell Biology, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael W Wolfe
- Department of Molecular and Integrative Physiology, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA
| | - William H Kinsey
- Department of Anatomy and Cell Biology, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA
| | - M A Karim Rumi
- Department of Pathology and Laboratory Medicine, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
3
|
Effect of Kisspeptin on the Developmental Competence and Early Transcript Expression in Porcine Oocytes Parthenogenetically Activated with Different Methods. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3693602. [PMID: 29682539 PMCID: PMC5841116 DOI: 10.1155/2018/3693602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/02/2022]
Abstract
Recent studies showed the modulatory effect of kisspeptin (KP) on calcium waves through the cell membrane and inside the cell. Spermatozoon can induce similar ooplasmic calcium oscillations at fertilization to trigger meiosis II. Here, we evaluated the effect of KP supplementation with 6-dimethylaminopurine (6-DMAP) for 4 h on embryonic development after oocyte activation with single electric pulse, 5 µM ionomycin, or 8% ethanol. Compared to control nonsupplemented groups, KP significantly improved embryo developmental competence electric- and ethanol-activated oocytes in terms of cleavage (75.3% and 58.6% versus 64% and 48%, respectively, p < 0.05) and blastocyst development (31.3% and 10% versus 19.3% and 4%, respectively, p < 0.05). MOS expression was increased in electrically activated oocytes in presence of KP while it significantly reduced CCNB1 expression. In ionomycin treated group, both MOS and CCNB1 showed significant increase with no difference between KP and control groups. In ethanol-treated group, KP significantly reduced CCNB1 but no effect was observed on MOS expression. The early alterations in MOS and CCNB1 mRNA transcripts caused by KP may explain the significant differences in the developmental competence between the experimental groups. Kisspeptin supplementation may be adopted in protocols for porcine oocyte activation through electric current and ethanol to improve embryonic developmental competence.
Collapse
|
4
|
Hu KL, Zhao H, Chang HM, Yu Y, Qiao J. Kisspeptin/Kisspeptin Receptor System in the Ovary. Front Endocrinol (Lausanne) 2017; 8:365. [PMID: 29354093 PMCID: PMC5758547 DOI: 10.3389/fendo.2017.00365] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022] Open
Abstract
Kisspeptins are a family of neuropeptides that are critical for initiating puberty and regulating ovulation in sexually mature females via the central control of the hypothalamic-pituitary-gonadal axis. Recent studies have shown that kisspeptin and its receptor kisspeptin receptor (KISS1R) are expressed in the mammalian ovary. Convincing evidence indicates that kisspeptins can activate a wide variety of signals via its binding to KISS1R. Experimental data gathered recently suggest a putative role of kisspeptin signaling in the direct control of ovarian function, including follicular development, oocyte maturation, steroidogenesis, and ovulation. Dysregulation or naturally occurring mutations of the kisspeptin/KISS1R system may negatively affect the ovarian function, leading to reproductive pathology or female infertility. A comprehensive understanding of the expression, actions, and underlying molecular mechanisms of this system in the human ovary is essential for novel approaches to therapeutic and diagnostic interventions in reproductive diseases and infertility.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongcui Zhao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Hongcui Zhao, ; Yang Yu,
| | - Hsun-Ming Chang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Hongcui Zhao, ; Yang Yu,
| | - Jie Qiao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
5
|
Lin ZL, Kim NH. Role of ataxia-telangiectasia mutated (ATM) in porcine oocyte in vitro maturation. Cell Biol Int 2015; 39:710-20. [PMID: 25598069 DOI: 10.1002/cbin.10439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 01/10/2015] [Indexed: 11/07/2022]
Abstract
Ataxia-telangiectasia mutated (ATM) is critical for the DNA damage response, cell cycle checkpoints, and apoptosis. Significant effort has focused on elucidating the relationship between ATM and other nuclear signal transducers; however, little is known about the connection between ATM and oocyte meiotic maturation. We investigated the function of ATM in porcine oocytes. ATM was expressed at all stages of oocyte maturation and localized predominantly in the nucleus. Furthermore, the ATM-specific inhibitor KU-55933 blocked porcine oocyte maturation, reducing the percentages of oocytes that underwent germinal vesicle breakdown (GVBD) and first polar body extrusion. KU-55933 also decreased the expression of DNA damage-related genes (breast cancer 1, budding uninhibited by benzimidazoles 1, and P53) and reduced the mRNA and protein levels of AKT and other cell cycle-regulated genes that are predominantly expressed during G2/M phase, including bone morphogenetic protein 15, growth differentiation factor 9, cell division cycle protein 2, cyclinB1, and AKT. KU-55933 treatment decreased the developmental potential of blastocysts following parthenogenetic activation and increased the level of apoptosis. Together, these data suggested that ATM influenced the meiotic and cytoplasmic maturation of porcine oocytes, potentially by decreasing their sensitivity to DNA strand breaks, stimulating the AKT pathway, and/or altering the expression of other maternal genes.
Collapse
Affiliation(s)
- Zi-Li Lin
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
6
|
Saadeldin IM, Koo OJ, Kang JT, Kwon DK, Park SJ, Kim SJ, Moon JH, Oh HJ, Jang G, Lee BC. Paradoxical effects of kisspeptin: it enhances oocyte in vitro maturation but has an adverse impact on hatched blastocysts during in vitro culture. Reprod Fertil Dev 2012; 24:656-68. [PMID: 22697116 DOI: 10.1071/rd11118] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/30/2011] [Indexed: 12/20/2022] Open
Abstract
Kisspeptin (Kp) is best known as a multifunctional peptide with roles in reproduction, the cardiovascular system and cancer. In the present study the expression of kisspeptin hierarchy elements (KISS1, GNRH1 and LHB) and their receptors (KISS1R, GNRHR and LHCGR, respectively) in porcine ovary and in cumulus-oocyte complexes (COCs) were investigated, as were its effects on the in vitro maturation (IVM) of oocytes and their subsequent ability to sustain preimplantation embryo competence after parthenogenetic electrical activation. Kp system elements were expressed and affected IVM of oocytes when maturation medium was supplemented with 10(-6)M Kp. Oocyte maturation, maternal gene expression (MOS, GDF9 and BMP15), blastocyst formation rate, blastocyst hatching and blastocyst total cell count were all significantly increased when oocytes were matured in medium containing Kp compared with the control group (without Kp). A Kp antagonist (p234) at 4×10(-6)M interfered with this hierarchy but did not influence the threshold effect of gonadotrophins on oocyte maturation. FSH was critical and permissive to Kp action on COCs by increasing the relative expression of KISS1R. In contrast, Kp significantly increased apoptosis, the expression of pro-apoptotic gene, BAK1, and suppressed trophoblast outgrowths from hatched blastocysts cultured on feeder cells. The present study provides the first functional evidence of the Kp hierarchy in porcine COCs and its role in enhancing oocyte maturation and subsequent developmental competence in an autocrine-paracrine manner. However, Kp supplementation may have a harmful impact on cultured hatched blastocysts reflecting systemic or local regulation during the critical early period of embryonic development.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang DX, Cui XS, Kim NH. Involvement of polyadenylation status on maternal gene expression during in vitro maturation of porcine oocytes. Mol Reprod Dev 2009; 76:881-9. [PMID: 19479986 DOI: 10.1002/mrd.21056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During mammalian oocyte maturation, protein synthesis is mainly controlled through cytoplasmic polyadenylation of stored maternal mRNAs. In this study, the role of polyadenylation modification of maternal transcripts in pig oocytes was investigated by adding cordycepin (3'-dA), a potent polyadenylation inhibitor, to the culture medium of porcine oocytes maturing in vitro. 3'-dA significantly prevented cumulus expansion regardless of the concentration used, and inhibited pig oocyte maturation in a dose-dependent manner. Further, 3'-dA 1 microg/ml-treated MII oocytes experienced significantly lower rates of cleavage (29%) and blastocyst formation (15.35%) compared to control MII oocytes (58.6% and 35.3%, respectively). Western blotting revealed that the activity of mitogen-activated protein kinase (MAPK) and p34(cdc2) was significantly decreased in oocytes and cumulus cells treated with 3'-dA at a concentration of 1 microg/ml or greater. To further explore the underlying molecular mechanisms, expression patterns and polyadenylation states of four important genes, C-mos, cyclin B, GDF9 and BMP15, were studied as representative maternal transcripts by real-time PCR and the PAT assay. 3'-dA at concentrations above 1 microg/ml significantly prevented polyadenylation and caused aberrant expression of C-mos and GDF9 during oocyte maturation. These results suggest that polyadenylation inhibitor blocked pig oocyte maturation in vitro by one or more of the following actions: (1) inactivation of MAPK and MPF in oocytes, especially at the late stages (MI and MII); (2) prevention of cumulus cell expansion through inactivation of cellular MAPK; and (3) inhibition of the maternal mRNA polyadenylation process, which in reverse, disrupted the maternal mRNA patterns in pig oocytes' maturation in vitro.
Collapse
Affiliation(s)
- Ding-Xiao Zhang
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763 Korea, Cheongju, 361-763 South Korea
| | | | | |
Collapse
|
8
|
Abstract
Genetic determinations of oocyte and ovarian follicle growth are still not well understood. Genes specifically expressed on oocytes seem to play an important role in these processes. Oocyte-specific genes are also involved in ovulation and early embryogenesis processes. Studies on the identification and characterization of new oocyte-specific genes can help in our understanding of cardinal fertility and infertility mechanisms. They can also be candidate genes for reproductive disorders such as polycystic ovary syndrome, premature ovarian failure and infertility. Infertility is an important worldwide problem affecting around 15% of couples. Approximately 20% of infertility is referred as idiopathic infertility. Studies on these genes could improve the diagnostic and therapeutic procedures of human infertility.
Collapse
Affiliation(s)
- B Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
9
|
Prasad CK, Mahadevan M, MacNicol MC, MacNicol AM. Mos 3' UTR regulatory differences underlie species-specific temporal patterns of Mos mRNA cytoplasmic polyadenylation and translational recruitment during oocyte maturation. Mol Reprod Dev 2008; 75:1258-68. [PMID: 18246541 DOI: 10.1002/mrd.20877] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Mos proto-oncogene is a critical regulator of vertebrate oocyte maturation. The maturation-dependent translation of Mos protein correlates with the cytoplasmic polyadenylation of the maternal Mos mRNA. However, the precise temporal requirements for Mos protein function differ between oocytes of model mammalian species and oocytes of the frog Xenopus laevis. Despite the advances in model organisms, it is not known if the translation of the human Mos mRNA is also regulated by cytoplasmic polyadenylation or what regulatory elements may be involved. We report that the human Mos 3' untranslated region (3' UTR) contains a functional cytoplasmic polyadenylation element (CPE) and demonstrate that the endogenous Mos mRNA undergoes maturation-dependent cytoplasmic polyadenylation in human oocytes. The human Mos 3' UTR interacts with the human CPE-binding protein and exerts translational control on a reporter mRNA in the heterologous Xenopus oocyte system. Unlike the Xenopus Mos mRNA, which is translationally activated by an early acting Musashi/polyadenylation response element (PRE)-directed control mechanism, the translational activation of the human Mos 3' UTR is dependent on a late acting CPE-dependent process. Taken together, our findings suggest a fundamental difference in the 3' UTR regulatory mechanisms controlling the temporal induction of maternal Mos mRNA polyadenylation and translational activation during Xenopus and mammalian oocyte maturation.
Collapse
Affiliation(s)
- C Krishna Prasad
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | |
Collapse
|
10
|
Ohashi S, Naito K, Sugiura K, Iwamori N, Goto S, Naruoka H, Tojo H. Analyses of mitogen-activated protein kinase function in the maturation of porcine oocytes. Biol Reprod 2003; 68:604-9. [PMID: 12533425 DOI: 10.1095/biolreprod.102.008334] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The function of mitogen-activated protein kinase (MAPK) during porcine oocyte maturation was examined by injecting oocytes with either mRNA or antisense RNA of porcine c-mos protein, an upstream kinase of MAPK. The RNAs were injected into the cytoplasm of porcine immature oocytes immediately after collection from ovaries, then the oocytes were cultured for maturation up to 48 h. The phosphorylation and activation of MAPK were observed at 6 h after injection of the c-mos mRNA injected-oocytes, whereas in control oocytes, MAPK activation was detected at 24 h of culture. The germinal vesicle breakdown (GVBD) rate at 24 h of culture was significantly higher in c-mos mRNA-injected oocytes than in control oocytes. In contrast, although injection of c-mos antisense RNA completely inhibited phosphorylation and activation of MAPK throughout the maturation period, the GVBD rate and its time course were the same in noninjected oocytes. The degree of maturation-promoting factor (MPF) activation was, however, very low in oocytes in the absence of MAPK activation. Most of those oocytes had both abnormal morphology and decondensed chromosomes at 48 h of culture. These results suggest that MAPK activation is not required for GVBD induction in porcine oocytes and that the major roles of MAPK during porcine oocyte maturation are to promote GVBD by increasing MPF activity and to arrest oocytes at the second metaphase.
Collapse
Affiliation(s)
- Satoshi Ohashi
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|