1
|
Rąpała Ł, Starzyński RR, Trzeciak PZ, Dąbrowski S, Gajewska M, Jurka P, Smolarczyk R, Duszewska AM. Influence of elevated temperature on bovine oviduct epithelial cells (BOECs). PLoS One 2018; 13:e0198843. [PMID: 29906278 PMCID: PMC6003681 DOI: 10.1371/journal.pone.0198843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/25/2018] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to evaluate the influence of elevated temperature on bovine oviduct epithelial cells (BOECs), based on the expression and localization of both heat shock protein 70 (HSP70), responsible for the cellular defence mechanism, and oviduct specific glycoprotein 1 (OVGP1) which is the most important embryotrophic protein. BOECs were cultured alone and co-cultured with cattle embryos at control (38.5°C) and elevated temperature (41°C) for 168 h. The elevated temperature had no effect on the viability of BOECs but exerted a negative effect on embryo development. The elevated temperature increased the expression of HSP70 and decreased the expression of OVGP1 at both mRNA and protein levels in BOECs cultured alone and those co-cultured with embryos. However, the presence of embryos limited the decrease in OVGP1 expression in BOECs at elevated temperature but did not alter the expression of HSP70. These results demonstrate for the first time the influence of elevated temperature on BOECs, consequently providing insights into the interactions between the embryo and the oviduct at elevated temperature.
Collapse
Affiliation(s)
- Łukasz Rąpała
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Rafał R. Starzyński
- Polish Academy of Sciences, Institute of Genetics and Animal Breeding, Jastrzębiec, Poland
| | - Piotr Z. Trzeciak
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sebastian Dąbrowski
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Jurka
- Department of Small Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna M. Duszewska
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
2
|
Calcium ion regulation by BAPTA-AM and ruthenium red improved the fertilisation capacity and developmental ability of vitrified bovine oocytes. Sci Rep 2017; 7:10652. [PMID: 28878377 PMCID: PMC5587528 DOI: 10.1038/s41598-017-10907-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/16/2017] [Indexed: 01/25/2023] Open
Abstract
Vitrification reduces the fertilisation capacity and developmental ability of mammalian oocytes; this effect is closely associated with an abnormal increase of cytoplasmic free calcium ions ([Ca2+]i). However, little information about the mechanism by which vitrification increases [Ca2+]i levels or a procedure to regulate [Ca2+]i levels in these oocytes is available. Vitrified bovine oocytes were used to analyse the effect of vitrification on [Ca2+]i, endoplasmic reticulum Ca2+ (ER Ca2+), and mitochondrial Ca2+ (mCa2+) levels. Our results showed that vitrification, especially with dimethyl sulfoxide (DMSO), can induce ER Ca2+ release into the cytoplasm, consequently increasing the [Ca2+]i and mCa2+ levels. Supplementing the cells with 10 μM 1,2-bis (o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM or BAPTA) significantly decreased the [Ca2+]i level and maintained the normal distribution of cortical granules in the vitrified bovine oocytes, increasing their fertilisation ability and cleavage rate after in vitro fertilisation (IVF). Treating vitrified bovine oocytes with 1 μM ruthenium red (RR) significantly inhibited the Ca2+ flux from the cytoplasm into mitochondria; maintained normal mCa2+ levels, mitochondrial membrane potential, and ATP content; and inhibited apoptosis. Treating vitrified oocytes with a combination of BAPTA and RR significantly improved embryo development and quality after IVF.
Collapse
|
3
|
Examination of pathways involved in leukemia inhibitory factor (LIF)-induced cell growth arrest using label-free proteomics approach. J Proteomics 2017; 168:37-52. [DOI: 10.1016/j.jprot.2017.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022]
|
4
|
Cheng EH, Liu JY, Lee TH, Huang CC, Chen CI, Huang LS, Lee MS. Requirement of Leukemia Inhibitory Factor or Epidermal Growth Factor for Pre-Implantation Embryogenesis via JAK/STAT3 Signaling Pathways. PLoS One 2016; 11:e0153086. [PMID: 27096934 PMCID: PMC4838257 DOI: 10.1371/journal.pone.0153086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 03/23/2016] [Indexed: 01/16/2023] Open
Abstract
Leukemia inhibitory factor (LIF) plays a key role in the survivability of mouse embryos during pre-implantation. In this study, we verified the role of LIF by detecting gene expression in morula stage embryos through DNA microarray. Our results showed that LIF knockdown affected expression of 369 genes. After LIF supplementation, the epidermal growth factor (EGF) is most affected by LIF expression. To observe the correlation between LIF and EGF, the LIF knockdown embryos were supplemented with various growth factors, including LIF, EGF, GM-CSF, TGF, and IGF II. Only LIF and EGF caused the rate of blastocyst development to recover significantly from 52% of control to 83% and 93%, respectively. All of the variables, including the diameter of blastocysts, the number of blastomeres, and cells in ICM and TE, were almost restored. Moreover, EGF knockdown also impaired blastocyst development, which was reversed by LIF or EGF supplementation. The treatment with various signaling suppressors revealed that both EGF and LIF promoted embryonic development through the JAK/STAT3 signaling pathway. These data suggest that the EGF and LIF can be compensatory to each other during early embryonic development, and at least one of them is necessary for sustaining the normal development of pre-implantation embryos.
Collapse
Affiliation(s)
- En-Hui Cheng
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung, Taiwan
| | - Jer-Yuh Liu
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Hsein Lee
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Chia Huang
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung, Taiwan
| | - Chung-I Chen
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung, Taiwan
| | - Lii-Sheng Huang
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung, Taiwan
- Department of Nursing, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Maw-Sheng Lee
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
5
|
Zhao XM, Fu XW, Hou YP, Yan CL, Suo L, Wang YP, Zhu HB, Dinnyés A, Zhu SE. Effect of vitrification on mitochondrial distribution and membrane potential in mouse two pronuclear (2-PN) embryos. Mol Reprod Dev 2010; 76:1056-63. [PMID: 19551710 DOI: 10.1002/mrd.21064] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present study was designed to investigate the effect of vitrification on mitochondrial distribution, membrane potential (Deltapsi) and microtubule distribution in mouse 2-PN embryos, as well as to document the relationship between mitochondrial distribution and developmental ability of those embryos. Mitochondrial distribution was examined by fluorescence microscopy technology. Results indicated that: (1) The rate of mitochondrial ring formation around pronuclei in vitrified 2-PN embryos was significantly lower than in fresh ones (67.3 +/- 3.0% vs. 84.9 +/- 3.1%) (P < 0.05). (2) Blastocyst development rate of vitrified 2-PN embryos without mitochondrial rings (61.7 +/- 4.5%) was significantly lower than that of vitrified embryos with mitochondrial rings (82.1 +/- 2.8%). (3) Following staining by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbo-cyanine iodide (JC-1), most red-colored mitochondria (high Deltapsi) were distributed peripherally around pronuclei and along cell membranes of fresh 2-PN embryos. Conversely, red-colored mitochondria were greatly diminished in vitrified embryos, with green mitochondria (low Deltapsi) evenly distributed throughout the cytoplasm. The proportion of fresh 2-PN embryos with obvious aggregation of high Deltapsi mitochondria (84.2 +/- 2.2%) was significantly higher than that of vitrified embryos (26.7 +/- 3.0%) (P < 0.05). (4) The proportion of fresh embryos with microtubules distributed around pronuclei (83.5 +/- 3.4%) was similar to that of vitrified embryos (74.7 +/- 2.5%). In conclusion, vitrification affected mitochondrial distribution and decreased the mitochondrial membrane potential in mouse 2-PN embryos, events which may affect subsequent developmental viability of such embryos.
Collapse
Affiliation(s)
- Xue-Ming Zhao
- Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, and State Key Laboratories for Agrobiotechnology, China Agricultural University, Beijing 100193, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tse PK, Lee YL, Chow WN, Luk JMC, Lee KF, Yeung WSB. Preimplantation embryos cooperate with oviductal cells to produce embryotrophic inactivated complement-3b. Endocrinology 2008; 149:1268-76. [PMID: 18039777 DOI: 10.1210/en.2007-1277] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human oviductal epithelial (OE) cells produce complement protein 3 (C3) and its derivatives, C3b and inactivated complement-3b (iC3b). Among them, iC3b is the most potent embryotrophic molecule. We studied the production of iC3b in the oviductal cell/embryo culture system. In the immune system, C3 convertase converts C3 into C3b, and the conversion of C3b to iC3b requires factor I (fI) and its cofactors, such as factor H or membrane cofactor protein. Human oviductal epithelium and OE cells expressed mRNA and protein of the components of C3 convertase, including C2, C4, factor B, and factor D. The OE cell-conditioned medium contained active C3 convertase activity that was suppressed by C3 convertase inhibitor, H17 in a dose and time-dependent manner. Although the oviductal epithelium and OE cells produced fI, the production of its cofactor, factor H required for the conversion of C3b to iC3b, was weak. Thus, OE cell-conditioned medium was inefficient in producing iC3b from exogenous C3b. On the contrary, mouse embryos facilitated such conversion to iC3b, which was taken up by the embryos, resulting in the formation of more blastocysts of larger size. The facilitatory activity was mediated by complement receptor 1-related gene/protein Y (Crry) with known membrane cofactor protein activity on the trophectoderm of the embryos as anti-Crry antibody inhibited the conversion and embryotrophic activity of C3b in the presence of fI. In conclusion, human oviduct possesses C3 convertase activity converting C3 to C3b, and Crry of the preimplantation embryos may be involved in the production of embryotrophic iC3b on the surface of the embryos.
Collapse
Affiliation(s)
- Pui-Keung Tse
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
7
|
Wånggren K, Lalitkumar PG, Hambiliki F, Ståbi B, Gemzell-Danielsson K, Stavreus-Evers A. Leukaemia inhibitory factor receptor and gp130 in the human Fallopian tube and endometrium before and after mifepristone treatment and in the human preimplantation embryo. Mol Hum Reprod 2007; 13:391-7. [PMID: 17430984 DOI: 10.1093/molehr/gam013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leukaemia inhibitory factor (LIF) is a cytokine, which is associated with reproductive processes such as embryo development and implantation. The objectives of this study were to detect the presence of LIF receptor (LIFR) and glycoprotein 130 (gp 130) in the human Fallopian tube, endometrium and preimplantation embryo and to study the effect of mifepristone on the expression of LIFR and gp130 in the Fallopian tube. Twenty-two healthy fertile women received a single dose of 200 mg mifepristone or placebo immediately after ovulation (LH + 2). Biopsies were obtained from the Fallopian tubes during laparoscopic sterilization once between days LH + 4 and LH + 6 and from endometrium once between days LH + 6 and LH + 8. Preimplantation embryos were received from couples undergoing in vitro fertilization treatment. Immunohistochemistry was used to detect the presence of LIFR and gp130 in the Fallopian tube, endometrium and preimplantation embryo. Real-time PCR was used to study LIFR and gp130 expression in the Fallopian tube and endometrium. LIFR and gp130 were localized in the Fallopian tube, preimplantation embryo and endometrium. LIFR was more abundant in the Fallopian tube than in the endometrium. In the blastocyst, the staining of gp130 was mainly localized in the inner cell mass, whereas LIFR was expressed in all cells. The presence of LIFR and gp130 in the Fallopian tube and preimplantation embryo indicates a role for LIF in communication between the embryo and the Fallopian tube. Mifepristone did not affect the expression of LIFR and gp130 in the Fallopian tube, nor in the endometrium suggesting that progesterone might not be directly involved in the regulation of LIFR or gp130.
Collapse
Affiliation(s)
- K Wånggren
- Department of Woman and Child Health, Division of Obstetrics and Gynaecology, Karolinska Institutet, Karolinska University Hospital, S-171 76 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
8
|
Coutinho ARS, Mendes CM, Caetano HVA, Nascimento AB, Oliveira VP, Hernadez-Blazquez FJ, Sinhorini IL, Visintin JA, Assumpção MEO. Morphological changes in mouse embryos cryopreserved by different techniques. Microsc Res Tech 2007; 70:296-301. [PMID: 17177277 DOI: 10.1002/jemt.20404] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cryopreservation of mammalian embryos is an important tool for the application of reproductive biotechnologies. Subjective evaluation to determine embryo viability is often used. The determination of the best cryopreservation protocol depends on morphological and molecular analysis of cellular injuries. The main objective of this study was to compare two methods of cryopreservation by assessing morphological alterations of frozen embryos using light, fluorescence, and transmission electron microscope. Fresh (control), slow frozen, and vitrified mouse embryos were composed. To evaluate the viability of the embryos, the cell membrane integrity was assessed using Hoechst33342 and propidium iodide (H/PI) staining. Morphological analyses using hematoxylin and eosin (HE) staining were performed to test different techniques (in situ, paraffin, and historesin) by both light and fluorescence microscopy. Transmission electron microscope was used to detect ultrastructural alterations in Spurr- and Araldite-embedded samples. H/PI staining detected more membrane permeability in the vitrification (69.8%) than in the slow freezing (48.4%) or control (13.8%) groups (P < 0.001). Historesin-embedded samples showed to be more suitable for morphological analyses because cellular structures were better identified. Nuclear evaluation in historesin sections showed the induction of pycnosis in slow freezing and vitrification groups. Cytoplasm evaluation revealed a condensation and an increase in eosinophilic intensity (indicating apoptosis) in the slow freezing group, and weakly eosinophilic structures and degenerated cells (indicating oncosis) in the vitrification group (P < 0.05). Ultrastructural analyses confirmed HE morphological findings. It was concluded that both cryopreservation techniques resulted in oncosis and apoptosis injuries. However, vitrification caused more severe cellular alterations and reduced embryonic viability compared to slow freezing.
Collapse
Affiliation(s)
- A R S Coutinho
- Department of Animal Reproduction, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Salmen JJ, Skufca F, Matt A, Gushansky G, Mason A, Gardiner CS. Role of glutathione in reproductive tract secretions on mouse preimplantation embryo development. Biol Reprod 2005; 73:308-14. [PMID: 15829622 DOI: 10.1095/biolreprod.104.038307] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We investigated the hypothesis that glutathione (GSH) in reproductive tract secretions (RTS) protects the preimplantation embryo from endogenous reactive oxygen species and is important for normal development during the embryo's sensitive period when it is incapable of synthesizing GSH de novo. Mice were administered buthionine sulfoximine (BSO) to inhibit GSH synthesis and decrease GSH concentration in RTS. Embryos were then allowed to develop either in vivo or in vitro in the presence of RTS and the GSH concentration of the embryos was quantified by HPLC and embryonic development was recorded. GSH concentration in RTS did not differ over the phases of the estrous cycle, but there were significant decreases in GSH concentration on Day 2 of gestation and due to BSO treatment. Embryos allowed to develop in vivo and in vitro in RTS with decreased GSH concentration did not exhibit decreased development or GSH concentration. Oocytes exposed to BSO during maturation in vivo experienced a significant decrease in GSH concentration and an increase in percent of degenerate embryos when compared with control. These data suggest that most of the GSH in RTS does not play a critical role in normal preimplantation embryo development but that GSH stored in the oocyte during maturation has an important role in subsequent embryo development. Our studies do not exclude the possibility that GSH in RTS plays an important role in protection of the preimplantation embryo during exposure to some toxicants.
Collapse
Affiliation(s)
- James J Salmen
- University of Northern Colorado, Department of Biological Sciences, Greeley, Colorado 80639, USA
| | | | | | | | | | | |
Collapse
|
10
|
Xu JS, Lee YL, Lee KF, Kwok KL, Lee WM, Luk JM, Yeung WSB. Embryotrophic factor-3 from human oviductal cells enhances proliferation, suppresses apoptosis and stimulates the expression of the β1 subunit of sodium–potassium ATPase in mouse embryos. Hum Reprod 2004; 19:2919-26. [PMID: 15459171 DOI: 10.1093/humrep/deh497] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Embrytrophic factor-3 (ETF-3) from human oviductal cells enhanced the development of mouse preimplantation embryos. This report studied the embryotrophic mechanisms of the molecule. METHODS AND RESULTS Mouse embryos were incubated with ETF-3 for 24 h at different stages of development. ETF-3 treatment between 96 and 120 h post-HCG increased the cell count of blastocysts, whilst treatment between 72 and 96 h post-HCG enhanced the expansion and hatching of the blastocysts. ETF-3 increased the cell number of the embryos by suppressing apoptosis and increasing proliferation as determined by TUNEL and bromodeoxyuridine uptake assays, respectively. Real-time quantitative PCR showed that the in vivo developed and ETF-3-treated blastocysts had a significantly higher mRNA copy number of Na/K-ATPase-beta1, but not of hepsin, than that of blastocysts cultured in medium alone. The former gene was associated with cavitation of blastocysts while the latter was related to hatching of blastocyst. The beneficial effect of ETF-3 on blastocyst hatching was also seen when ETF-3-supplemented commercially available sequential culture medium for human embryo culture was used to culture mouse embryos. CONCLUSIONS ETF-3 improves embryo development by enhancing proliferation, suppressing apoptosis and stimulating expression of genes related to blastocyst cavitation. Supplementating human embryo culture medium with ETF-3 may improve the success rate in clinical assisted reproduction.
Collapse
Affiliation(s)
- J S Xu
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Xu JS, Chan STH, Lee WWM, Lee KF, Yeung WSB. Differential growth, cell proliferation, and apoptosis of mouse embryo in various culture media and in coculture. Mol Reprod Dev 2004; 68:72-80. [PMID: 15039950 DOI: 10.1002/mrd.20048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sequential culture and coculture are two methods of improving the development of preimplantation embryos in vitro. Direct comparison of the efficiency of these methods is limited. Proliferation and apoptosis determine the total number of blastomere in preimplantation embryo, which is a sensitive parameter for evaluation of the development of embryo in vitro. In this study, we compared the proliferation and apoptosis of mouse embryo in different culture media, including CZB, KSOM, MTF, G1.2/G2.2 sequential culture media, and in human oviductal cell coculture. Sequential culture using G1.2/G2.2 was superior to KSOM, MTF, and CZB/CZB + G with respect to the formation of 3-4 cell embryos, morula, and blastocyst. G1.2/G2.2 cultured blastocyst had significantly more proliferating blastomeres and higher total cell number per blastocyst than those cultured in KSOM or CZB/CZB + G. Compared to embryos cultured in G1.2/G2.2, embryos cocultured in G1.2/G2.2 hatched more frequently. Cocultured blastocysts also had significantly higher percentage of proliferating cell and lower percentage of apoptotic cell per blastocyst than those cultured in G1.2/G2.2. It was concluded that G1.2/G2.2 facilitated the proliferation of blastomere whilst human oviductal cell coculture suppressed apoptosis in addition to stimulating proliferation of blastomere.
Collapse
Affiliation(s)
- Jia-Sen Xu
- Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|