1
|
Khandia R, Garg R, Pandey MK, Khan AA, Dhanda SK, Malik A, Gurjar P. Determination of codon pattern and evolutionary forces acting on genes linked to inflammatory bowel disease. Int J Biol Macromol 2024; 278:134480. [PMID: 39116987 DOI: 10.1016/j.ijbiomac.2024.134480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disorder of the gastrointestinal tract. The present study attempted to understand the codon usage preferences in genes associated with IBD progression. Compositional analysis, codon usage bias (CUB), Relative synonymous codon usage (RSCU), RNA structure, and expression analysis were performed to obtain a comprehensive picture of codon usage in IBD genes. Compositional analysis of 62 IBD-associated genes revealed that G and T are the most and least abundant nucleotides, respectively. ApG, CpA, and TpG dinucleotides were overrepresented or randomly used, while ApC, CpG, GpT, and TpA dinucleotides were either underrepresented or randomly used in genes related to IBD. The codons influencing the codon usage the most in IBD genes were CGC and AGG. A comparison of codon usage between IBD, and pancreatitis (non-IBD inflammatory disease) indicated that only codon CTG codon usage was significantly different between IBD and pancreatitis. At the same time, there were codons ATA, ACA, CGT, CAA, GTA, CCT, ATT, GCT, CGG, TTG, and CAG for whom codon usage was significantly different for IBD and housekeeping gene sets. The results suggest similar codon usage in at least two inflammatory disorders, IBD and pancreatitis. The analysis helps understand the codon biology, factors affecting gene expression of IBD-associated genes, and the evolution of these genes. The study helps reveal the molecular patterns associated with IBD.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, MP, India.
| | - Rajkumar Garg
- Department of Biosciences, Barkatullah University, Bhopal 462026, MP, India
| | - Megha Katare Pandey
- Translational Medicine Center, All India Institute of Medical Sciences, Bhopal 462020, MP, India.
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sandeep Kumar Dhanda
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.
| |
Collapse
|
2
|
Wang W, Zhou L, Ge X, Han J, Guo X, Zhang Y, Yang H. Analysis of codon usage patterns of porcine enteric alphacoronavirus and its host adaptability. Virology 2023; 587:109879. [PMID: 37677987 DOI: 10.1016/j.virol.2023.109879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Porcine enteric alphacoronavirus (PEAV) is a newly emerging swine enteropathogen that poses a threat to the swine industry. To understand the PEAV genome evolution, we performed a comprehensive analysis of the codon usage patterns in fifty-nine PEAV strains currently available. Phylogenetic analysis showed that PEAV can be divided into six lineages. Effective number of codons analysis demonstrated that the PEAV genome exhibits a low codon usage bias (CUB). Nucleotide composition analysis indicated that the PEAV genome has the most abundant nucleotide U content, with GC content (39.37% ± 0.08%) much lower than AU content (60.63% ± 0.08%). Neutrality and effective number of codons plot analyses suggested that natural selection rather than mutation pressure dominates the CUB of PEAV. Host adaptation analysis revealed that PEAV fits the codon usage pattern of non-human primates, humans and mice better than that of pigs. Our data enriches information on PEAV evolution, host adaptability, and cross-species transmission.
Collapse
Affiliation(s)
- Wenlong Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
3
|
Das JK, Roy S. Comparative analysis of human coronaviruses focusing on nucleotide variability and synonymous codon usage patterns. Genomics 2021; 113:2177-2188. [PMID: 34019999 PMCID: PMC8131179 DOI: 10.1016/j.ygeno.2021.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 01/04/2023]
Abstract
The prevailing COVID-19 pandemic has drawn the attention of the scientific community to study the evolutionary origin of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). This study is a comprehensive quantitative analysis of the protein-coding sequences of seven human coronaviruses (HCoVs) to decipher the nucleotide sequence variability and codon usage patterns. It is essential to understand the survival ability of the viruses, their adaptation to hosts, and their evolution. The current analysis revealed a high abundance of the relative dinucleotide (odds ratio), GC and CT pairs in the first and last two codon positions, respectively, as well as a low abundance of the CG pair in the last two positions of the codon, which might be related to the evolution of the viruses. A remarkable level of variability of GC content in the third position of the codon among the seven coronaviruses was observed. Codons with high RSCU values are primarily from the aliphatic and hydroxyl amino acid groups, and codons with low RSCU values belong to the aliphatic, cyclic, positively charged, and sulfur-containing amino acid groups. In order to elucidate the evolutionary processes of the seven coronaviruses, a phylogenetic tree (dendrogram) was constructed based on the RSCU scores of the codons. The severe and mild categories CoVs were positioned in different clades. A comparative phylogenetic study with other coronaviruses depicted that SARS-CoV-2 is close to the CoV isolated from pangolins (Manis javanica, Pangolin-CoV) and cats (Felis catus, SARS(r)-CoV). Further analysis of the effective number of codon (ENC) usage bias showed a relatively higher bias for SARS-CoV and MERS-CoV compared to SARS-CoV-2. The ENC plot against GC3 suggested that the mutational bias might have a role in determining the codon usage variation among candidate viruses. A codon adaptability study on a few human host parasites (from different kingdoms), including CoVs, showed a diverse adaptability pattern. SARS-CoV-2 and SARS-CoV exhibit relatively lower but similar codon adaptability compared to MERS-CoV.
Collapse
Affiliation(s)
- Jayanta Kumar Das
- Department of Pediatrics, Johns Hopkins University School of Medicine, MD, USA.
| | - Swarup Roy
- Network Reconstruction & Analysis (NetRA) Lab, Department of Computer Applications, Sikkim University, Gangtok, India.
| |
Collapse
|
4
|
Comprehensive analysis of synonymous codon usage patterns and influencing factors of porcine epidemic diarrhea virus. Arch Virol 2020; 166:157-165. [PMID: 33125585 PMCID: PMC7596632 DOI: 10.1007/s00705-020-04857-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/14/2020] [Indexed: 11/07/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric pathogen belonging to the family Coronaviridae that causes the porcine epidemic diarrhea, a highly contagious disease with high mortality in piglets and symptoms that include dehydration and severe diarrhea. Considering the high frequency of genetic mutations in PEDV and its potential for interspecies transmission, as it can infect and replicate in bat and human cells, a comprehensive analysis of its codon usage bias was performed. The effective number of codons (ENC) and the relative synonymous codon usage (RSCU) were determined, revealing codon usage bias in the PEDV genome. Principal component analysis (PCA), an ENC plot, and a parity rule 2 (PR2) plot showed that mutation pressure and natural selection have influenced the codon usage bias of the PEDV genomes. Correlation analysis with GRAVY and aromaticity values and neutrality plot analysis indicated that natural selection was the main force influencing the codon usage pattern, while mutation pressure played a minor role. This study provides valuable basic data for further fundamental research on evolution of PEDV.
Collapse
|
5
|
Xu X, Fei D, Han H, Liu H, Zhang J, Zhou Y, Xu C, Wang H, Cao H, Zhang H. Comparative characterization analysis of synonymous codon usage bias in classical swine fever virus. Microb Pathog 2017; 107:368-371. [PMID: 28416383 DOI: 10.1016/j.micpath.2017.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
Classical swine fever virus (CSFV) is responsible for the highly contagious viral disease of swine, and causes great economic loss in the swine-raising industry. Considering the significance of CSFV, a systemic analysis was performed to study its codon usage patterns. In this study, using the complete genome sequences of 76 CSFV representing three genotypes, we firstly analyzed the relative nucleotide composition, effective number of codon (ENC) and synonymous codon usage in CSFV genomes. The results showed that CSFV is GC-moderate genome and the third-ended codons are not preferentially used. Every ENC values in CSFV genomes are >50, indicating that the codon usage bias is comparatively slight. Subsequently, we performed the correspondence analysis (COA) to investigate synonymous codon usage variation among all of the CSFV genomes. We found that codon usage bias in these CSFV genomes is greatly influenced by G + C mutation, which suggests that mutational pressure may be the main factor determining the codon usage biases. Moreover, most of the codon usage bias among different CSFV ORFs is directly related to the nucleotide composition. Other factors, such as hydrophobicity and aromaticity, also influence the codon usage variation among CSFV genomes. Our study represents the most comprehensive analysis of codon usage patterns in CSFV genome and provides a basic understanding of the mechanisms for its codon usage bias.
Collapse
Affiliation(s)
- Xin Xu
- College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Institute of Veterinary Science, Qiqihar 161005, China; College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Dongliang Fei
- College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huansheng Han
- College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Honggui Liu
- College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayong Zhang
- College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Hongbin Wang
- College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Hongwei Cao
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China.
| | - Hua Zhang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China.
| |
Collapse
|
6
|
Vidyavijayan K, Hassan S, Precilla LK, Ashokkumar M, Chandrasekeran P, Swaminathan S, Hanna LE. Biased Nucleotide Composition and Differential Codon Usage Pattern in HIV-1 and HIV-2. AIDS Res Hum Retroviruses 2017; 33:298-307. [PMID: 27599904 DOI: 10.1089/aid.2015.0320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 and HIV-2 are closely related retroviruses with differences in pathogenicity and geographic distribution. HIV-2 infection is associated with slower disease progression and transmission, longer latency period, low or undetectable plasmatic viral loads, and reduced likelihood of progression to AIDS, compared to HIV-1. In this investigation, we analyzed HIV-2 genes and genomes and compared them with that of HIV-1 belonging to various subtypes. Comparative analysis of the effective number of codons (ENC) for each of the nine genes of the two viruses revealed that the tat gene of HIV-2 had a higher ENC value compared to HIV-1 tat, reflecting lower levels of expression of HIV-2 tat. Lower levels of tat protein particularly during the early stages of infection could result in a lower viral load, lower viral set point, and delayed progression of disease in HIV-2-infected individuals compared to HIV-1-infected subjects. Furthermore, the GC3 composition of the regulatory genes of HIV-2 was ≥50%, suggesting a firm effort by these viruses to adapt themselves to evolutionary survival. We hypothesize that differential codon usage could be one of the possible factors that could contribute to the diminished pathogenicity of HIV-2 in the host as compared to HIV-1.
Collapse
Affiliation(s)
- K.K. Vidyavijayan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Sameer Hassan
- Division of Biomedical Informatics, Department of Clinic Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Lucia K. Precilla
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Manickam Ashokkumar
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | | | - Soumya Swaminathan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Luke Elizabeth Hanna
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| |
Collapse
|
7
|
Zitouna N, Gharbi M, Ben Rhouma H, Touati A, Haddioui A, Trifi-Farah N, Marghali S. The evolution of rbcL: A methodology to follow the evolution patterns of Medicago and Sulla (Fabaceae) genera. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Zhang H, Cao HW, Li FQ, Pan ZY, Wu ZJ, Wang YH, Cui YD. Analysis of synonymous codon usage in enterovirus 71. Virusdisease 2014; 25:243-8. [PMID: 25674591 DOI: 10.1007/s13337-014-0215-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/29/2014] [Indexed: 11/28/2022] Open
Abstract
Enterovirus 71 (EV71) is the major cause of hand-foot-and-mouth disease in children. In our study, using the complete genome sequences of 42 EV71 representing all three genotypes, we analyzed synonymous codon usage and the relative dinucleotide abundance in EV71 genome. The general correlation between base composition and codon usage bias suggests that mutational pressure rather than natural selection is the main factor that determines the codon usage bias in EV71 genome. Furthermore, we observed that the relative abundance of dinucleotides in EV71 is independent of the overall base composition but is still the result of differential mutational pressure, which also shapes codon usage. In addition, other factors, such as hydrophobicity and aromaticity, also influence the codon usage variation among the genomes of EV71. This study represents the most comprehensive analysis of EV71 codon usage patterns and provides a basic understanding of the mechanisms for codon usage bias.
Collapse
Affiliation(s)
- Hua Zhang
- College of Biological Science and Technology, HeiLongJiang BaYi Agricultural University, DaQing, 163319 China
| | - Hong-Wei Cao
- College of Biological Science and Technology, HeiLongJiang BaYi Agricultural University, DaQing, 163319 China
| | - Feng-Qi Li
- College of Biological Science and Technology, HeiLongJiang BaYi Agricultural University, DaQing, 163319 China
| | - Zi-Ye Pan
- College of Biological Science and Technology, HeiLongJiang BaYi Agricultural University, DaQing, 163319 China
| | - Zhi-Jun Wu
- College of Biological Science and Technology, HeiLongJiang BaYi Agricultural University, DaQing, 163319 China
| | - Yan-Hong Wang
- College of Biological Science and Technology, HeiLongJiang BaYi Agricultural University, DaQing, 163319 China
| | - Yu-Dong Cui
- College of Biological Science and Technology, HeiLongJiang BaYi Agricultural University, DaQing, 163319 China
| |
Collapse
|
9
|
Abstract
The analysis on codon usage bias of OmpA/MotB gene of Riemerella anatipestifer (RA) may provide a basis for understanding the evolution and pathogenesis of RA and for selecting appropriate host expression systems to improve the expression of target genes in vivo and in vitro. In our study, a comparative analysis of the codon usage bias in the newly discovered RA OmpA/MotB gene and the OmpA/MotB gene of 20 reference flavobacteriaceae was performed. The results of the codon adaptation indes (CAI), effective number of codon (ENC), and GC3s values indicated that synonymous codon usage bias in the OmpA/MotB gene of flavobacteriaceae. The results showed that codon usage bias in the RA OmpA/MotB gene was strong bias towards the synonymous codons with A and T at the third codon position. A high level of diversity in codon usage bias existed, and the effective number of codons used in a gene plot revealed that the G+C compositional constraint is the main factor that determines the codon usage bias in OmpA/MotB gene of flavobacteriaceae. Comparison of the codon usage in the OmpA/MotB gene of different organisms revealed that there were 31 codons showing distinct codon usage differences between the RA and E. coli, 41 between the RA and humans, but 29 between the RA and yeast. Therefore the yeast expression system may be more suitable for the expression of RA OmpA/MotB gene. These results may improve our understanding of the evolution, pathogenesis and functional studies of RA, as well as contribute significantly to the area of flavobacteriaceae research.
Collapse
|
10
|
Nair RR, Nandhini MB, Monalisha E, Murugan K, Sethuraman T, Nagarajan S, Rao NSP, Ganesh D. Synonymous codon usage in chloroplast genome of Coffea arabica. Bioinformation 2012; 8:1096-104. [PMID: 23251044 PMCID: PMC3523224 DOI: 10.6026/97320630081096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 10/26/2012] [Indexed: 01/27/2023] Open
Abstract
Synonymous codon usage of 53 protein coding genes in chloroplast genome of Coffea arabica was analyzed for the first time to find out the possible factors contributing codon bias. All preferred synonymous codons were found to use A/T ending codons as chloroplast genomes are rich in AT. No difference in preference for preferred codons was observed in any of the two strands, viz., leading and lagging strands. Complex correlations between total base compositions (A, T, G, C, GC) and silent base contents (A(3), T(3), G(3), C(3), GC(3)) revealed that compositional constraints played crucial role in shaping the codon usage pattern of C. arabica chloroplast genome. ENC Vs GC(3) plot grouped majority of the analyzed genes on or just below the left side of the expected GC(3) curve indicating the influence of base compositional constraints in regulating codon usage. But some of the genes lie distantly below the continuous curve confirmed the influence of some other factors on the codon usage across those genes. Influence of compositional constraints was further confirmed by correspondence analysis as axis 1 and 3 had significant correlations with silent base contents. Correlation of ENC with axis 1, 4 and CAI with 1, 2 prognosticated the minor influence of selection in nature but exact separation of highly and lowly expressed genes could not be seen. From the present study, we concluded that mutational pressure combined with weak selection influenced the pattern of synonymous codon usage across the genes in the chloroplast genomes of C. arabica.
Collapse
Affiliation(s)
- Rahul R Nair
- Plant Genetic Improvement Laboratory, Department of Biotechnology, SPK Centre for Environmental
Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli District, Tamil Nadu. India
| | - Manivasagam B Nandhini
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar 625 021, Madurai, Tamil Nadu, India
| | - Elango Monalisha
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar 625 021, Madurai, Tamil Nadu, India
| | - Kavitha Murugan
- Plant Genetic Improvement Laboratory, Department of Biotechnology, SPK Centre for Environmental
Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli District, Tamil Nadu. India
| | - Thilaga Sethuraman
- Plant Genetic Improvement Laboratory, Department of Biotechnology, SPK Centre for Environmental
Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli District, Tamil Nadu. India
| | - Sangeetha Nagarajan
- Plant Genetic Improvement Laboratory, Department of Biotechnology, SPK Centre for Environmental
Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli District, Tamil Nadu. India
| | - Nayani Surya Prakash Rao
- Division of Plant Breeding, Central Coffee Research Institute, Coffee Research Station Post 577 117, Chikmagalur District, Karnataka, India
| | - Doss Ganesh
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar 625 021, Madurai, Tamil Nadu, India
| |
Collapse
|
11
|
Genome dynamics in three different geographical isolates of white spot syndrome virus (WSSV). Arch Virol 2012; 157:2357-62. [PMID: 22836599 DOI: 10.1007/s00705-012-1395-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
Abstract
White spot syndrome virus (WSSV), the sole member of the monotypic family Nimaviridae, is considered an extremely lethal shrimp pathogen. Despite its impact, some essential biological characteristics related to WSSV genome dynamics, such as the synonymous codon usage pattern and selection pressure in genes, remain to be elucidated. The results show that compositional limitations and mutational pressure determine the codon usage bias and base composition in WSSV. Furthermore, different forces of selective pressure are acting across various regions of the WSSV genome. Finally, this study points out the possible occurrence of two major recombination events.
Collapse
|
12
|
Selected codon usage bias in members of the class Mollicutes. Gene 2010; 473:110-8. [PMID: 21147204 DOI: 10.1016/j.gene.2010.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 11/20/2010] [Accepted: 11/22/2010] [Indexed: 11/24/2022]
Abstract
Mollicutes are parasitic microorganisms mainly characterized by small cell sizes, reduced genomes and great A and T mutational bias. We analyzed the codon usage patterns of the completely sequenced genomes of bacteria that belong to this class. We found that for many organisms not only mutational bias but also selection has a major effect on codon usage. Through a comparative perspective and based on three widely used criteria we were able to classify Mollicutes according to the effect of selection on codon usage. We found conserved optimal codons in many species and study the tRNA gene pool in each genome. Previous results are reinforced by the fact that, when selection is operative, the putative optimal codons found match the respective cognate tRNA. Finally, we trace selection effect backwards to the common ancestor of the class and estimate the phylogenetic inertia associated with this character. We discuss the possible scenarios that explain the observed evolutionary patterns.
Collapse
|
13
|
Liu X, Wu C, Chen AYH. Codon usage bias and recombination events for neuraminidase and hemagglutinin genes in Chinese isolates of influenza A virus subtype H9N2. Arch Virol 2010; 155:685-93. [DOI: 10.1007/s00705-010-0631-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
|
14
|
Synonymous codon usage analysis of thirty two mycobacteriophage genomes. Adv Bioinformatics 2010:316936. [PMID: 20150956 PMCID: PMC2817497 DOI: 10.1155/2009/316936] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 10/27/2009] [Indexed: 11/17/2022] Open
Abstract
Synonymous codon usage of protein coding genes of thirty two completely sequenced mycobacteriophage genomes was studied using multivariate statistical analysis. One of the major factors influencing codon usage is identified to be compositional bias. Codons ending with either C or G are preferred in highly expressed genes among which C ending codons are highly preferred over G ending codons. A strong negative correlation between effective number of codons (Nc) and GC3s content was also observed, showing that the codon usage was effected by gene nucleotide composition. Translational selection is also identified to play a role in shaping the codon usage operative at the level of translational accuracy. High level of heterogeneity is seen among and between the genomes. Length of genes is also identified to influence the codon usage in 11 out of 32 phage genomes. Mycobacteriophage Cooper is identified to be the highly biased genome with better translation efficiency comparing well with the host specific tRNA genes.
Collapse
|
15
|
Zhang Q, Zhao S, Chen H, Liu X, Zhang L, Li F. Analysis of the codon use frequency of AMPK family genes from different species. Mol Biol Rep 2008; 36:513-9. [DOI: 10.1007/s11033-007-9208-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 12/28/2007] [Indexed: 12/01/2022]
|
16
|
Zhong J, Li Y, Zhao S, Liu S, Zhang Z. Mutation pressure shapes codon usage in the GC-Rich genome of foot-and-mouth disease virus. Virus Genes 2007; 35:767-76. [PMID: 17768673 PMCID: PMC7089325 DOI: 10.1007/s11262-007-0159-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 08/09/2007] [Indexed: 11/25/2022]
Abstract
Foot-and-mouth disease (FMD) is economically the most important viral-induced livestock disease worldwide. In this study, we report the results of a survey of codon usage bias of FMD virus (FMDV) representing all seven serotypes (A, O, C, Asia 1, SAT 1, SAT 2, and SAT 3). Correspondence analysis, a commonly used multivariate statistical approach, was carried out to analyze synonymous codon usage bias. The analysis showed that the overall extent of codon usage bias in FMDV is low. Furthermore, the good correlation between the frequency of G + C at the synonymous third position of sense codons (GC3S) content at silent sites of each sequence and codon usage bias suggested that mutation pressure rather than natural (translational) selection is the most important determinant of the codon bias observed. In addition, other factors, such as the lengths of open reading frame (ORF) and the hydrophobicity of genes also influence the codon usage variation among the genomes of FMDV in a minor way. The result of phylogenetic analyses based on the relative synonymous codon usage (RSCU) values indicated a few obvious phylogenetic incongruities, which suggest that more FMDV genome diversity may exist in nature than is currently indicated. Our work might give some clues to the features of FMDV genome and some evolutionary information of this virus.
Collapse
Affiliation(s)
- Jincheng Zhong
- University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 P.R. China
| | - Yanmin Li
- Institute for Animal Health, Pirbright, Woking, Surrey GU24 0NF UK
| | - Sheng Zhao
- Jingmen Technical College, Jingmen, Hubei 448000 P.R. China
| | - Shenggang Liu
- University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 P.R. China
| | - Zhidong Zhang
- Institute for Animal Health, Pirbright, Woking, Surrey GU24 0NF UK
| |
Collapse
|
17
|
Zeeberg B. Shannon information theoretic computation of synonymous codon usage biases in coding regions of human and mouse genomes. Genome Res 2002; 12:944-55. [PMID: 12045147 PMCID: PMC1383734 DOI: 10.1101/gr.213402] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2001] [Accepted: 03/06/2002] [Indexed: 11/24/2022]
Abstract
Exonic GC of human mRNA reference sequences (RefSeqs), as well as A, C, G, and T in codon position 3 are linearly correlated with genomic GC. These observations utilize information from the completed human genome sequence and a large, high-quality set of human and mouse coding sequences, and are in accord with similar determinations published by others. A Shannon Information Theoretic measure of bias in synonymous codon usage was developed. When applied to either human or mouse RefSeqs, this measure is nonlinearly correlated with genomic, exonic, and third codon position A, C, G, and T. Information values between orthologous mouse and human RefSeqs are linearly correlated: mouse = 0.092 + 0.55 human. Mouse genes were consistently placed in genomic regions whose GC content was closer to 50% than was the GC content of the human ortholog. Since the (nonlinear) information versus percent GC curve has a minimum at 50% GC and monotonically increases with increasing distance from 50% GC, this phenomenon directly results in the low slope of 0.55. This appears to be a manifestation of an evolutionary strategy for placement of genes in regions of the genome with a GC content that relates synonymous codon bias and protein folding.
Collapse
Affiliation(s)
- Barry Zeeberg
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|