1
|
Chatziparasidis G, Kantar A. Calprotectin: An Ignored Biomarker of Neutrophilia in Pediatric Respiratory Diseases. CHILDREN-BASEL 2021; 8:children8060428. [PMID: 34063831 PMCID: PMC8223968 DOI: 10.3390/children8060428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022]
Abstract
Calprotectin (CP) is a non-covalent heterodimer formed by the subunits S100A8 (A8) and S100A9 (A9). When neutrophils become activated, undergo disruption, or die, this abundant cytosolic neutrophil protein is released. By fervently chelating trace metal ions that are essential for bacterial development, CP plays an important role in human innate immunity. It also serves as an alarmin by controlling the inflammatory response after it is released. Extracellular concentrations of CP increase in response to infection and inflammation, and are used as a biomarker of neutrophil activation in a variety of inflammatory diseases. Although it has been almost 40 years since CP was discovered, its use in daily pediatric practice is still limited. Current evidence suggests that CP could be used as a biomarker in a variety of pediatric respiratory diseases, and could become a valuable key factor in promoting diagnostic and therapeutic capacity. The aim of this study is to re-introduce CP to the medical community and to emphasize its potential role with the hope of integrating it as a useful adjunct, in the practice of pediatric respiratory medicine.
Collapse
Affiliation(s)
| | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamaschi, University and Research Hospitals, 24046 Bergamo, Italy
- Correspondence:
| |
Collapse
|
2
|
Shah RD, Xue C, Zhang H, Tuteja S, Li M, Reilly MP, Ferguson JF. Expression of Calgranulin Genes S100A8, S100A9 and S100A12 Is Modulated by n-3 PUFA during Inflammation in Adipose Tissue and Mononuclear Cells. PLoS One 2017; 12:e0169614. [PMID: 28125622 PMCID: PMC5268473 DOI: 10.1371/journal.pone.0169614] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/08/2016] [Indexed: 11/18/2022] Open
Abstract
Calgranulin genes (S100A8, S100A9 and S100A12) play key immune response roles in inflammatory disorders, including cardiovascular disease. Long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) may have systemic and adipose tissue-specific anti-inflammatory and cardio-protective action. Interactions between calgranulins and the unsaturated fatty acid arachidonic acid (AA) have been reported, yet little is known about the relationship between calgranulins and the LC n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We explored tissue-specific action of calgranulins in the setting of evoked endotoxemia and n-3 PUFA supplementation. Expression of calgranulins in adipose tissue in vivo was assessed by RNA sequencing (RNASeq) before and after n-3 PUFA supplementation and evoked endotoxemia in the fenofibrate and omega-3 fatty acid modulation of endotoxemia (FFAME) Study. Subjects received n-3 PUFA (n = 8; 3600mg/day EPA/DHA) or matched placebo (n = 6) for 6–8 weeks, before completing an endotoxin challenge (LPS 0.6 ng/kg). Calgranulin genes were up-regulated post-LPS, with greater increase in n-3 PUFA (S100A8 15-fold, p = 0.003; S100A9 7-fold, p = 0.003; S100A12 28-fold, p = 0.01) compared to placebo (S100A8 2-fold, p = 0.01; S100A9 1.4-fold, p = 0.4; S100A12 5-fold, p = 0.06). In an independent evoked endotoxemia study, calgranulin gene expression correlated with the systemic inflammatory response. Through in vivo and in vitro interrogation we highlight differential responses in adipocytes and mononuclear cells during inflammation, with n-3 PUFA leading to increased calgranulin expression in adipose, but decreased expression in circulating cells. In conclusion, we present a novel relationship between n-3 PUFA anti-inflammatory action in vivo and cell-specific modulation of calgranulin expression during innate immune activation.
Collapse
Affiliation(s)
- Rachana D. Shah
- Division of Pediatric Endocrinology, Children’s Hospital of Philadelphia, Pennsylvania, United States of America
| | - Chenyi Xue
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Hanrui Zhang
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Sony Tuteja
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mingyao Li
- Department of Biostatistics & Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Muredach P. Reilly
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Jane F. Ferguson
- Division of Cardiovascular Medicine, and Vanderbilt Translational and Clinical Cardiovascular Research Center (VTRACC), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
3
|
Asghari H, Chegini KG, Amini A, Gheibi N. Effect of poly and mono-unsaturated fatty acids on stability and structure of recombinant S100A8/A9. Int J Biol Macromol 2015; 84:35-42. [PMID: 26642838 DOI: 10.1016/j.ijbiomac.2015.11.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022]
Abstract
Recombinant pET 15b vectors containing the coding sequences S100A8 and S100A9 are expressed in Escherichia coli BL21 (DE3) and purified using Ni-NTA affinity chromatography. The structural changes of S100A8/A9 complex are analyzed upon interaction with poly/mono-unsaturated fatty acids (UFAs). The thermodynamic values, Gibbs free energy and the protein melting point, are obtained through thermal denaturation of protein both with and without UFAs by thermal scanning of protein emission using the fluorescence spectroscopy technique. The far-ultraviolet circular dichroism spectra show that all studied unsaturated fatty acids, including arachidonic, linoleic, alpha-linolenic and oleic acids, induce changes in the secondary structure of S100A8/A9 by reducing the α-helix and β-sheet structures. The tertiary structure of S100A8/A9 has fluctuations in the fluorescence emission spectra after the incubation of protein with UFAs. The blue-shift of emission maximum wavelength and the increase in fluorescence intensity of anilino naphthalene-8-sulfonic acid confirm that the partial unfolding is caused by the conformational changes in the tertiary structure in the presence of UFAs. The structural changes in S100A8/A9 and its lower stability in the presence of UFAs may be necessary for S100A8/A9 to play a biological role in the inflammatory milieu.
Collapse
Affiliation(s)
- Hamideh Asghari
- Department of Biotechnology, School of Para Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Koorosh Goodarzvand Chegini
- Department of Clinical Biochemistry and Genetics, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Abbas Amini
- School of Computing, Engineering and Mathematics, Western Sydney University, Bld Y, Locked Bag 1797, NSW 2751, Australia.
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, P.O. Box 34199-15315, Qazvin, Iran.
| |
Collapse
|
4
|
Iotzova-Weiss G, Dziunycz PJ, Freiberger SN, Läuchli S, Hafner J, Vogl T, French LE, Hofbauer GFL. S100A8/A9 stimulates keratinocyte proliferation in the development of squamous cell carcinoma of the skin via the receptor for advanced glycation-end products. PLoS One 2015; 10:e0120971. [PMID: 25811984 PMCID: PMC4374726 DOI: 10.1371/journal.pone.0120971] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022] Open
Abstract
Squamous cell carcinoma (SCC) is the most common neoplasm in organ transplant recipients (OTR) on long-term immunosuppression and occurs 60- to 100-fold more frequently than in the general population. Here, we present the receptor for advanced glycation end products (RAGE) and S100A8/A9 as important factors driving normal and tumor keratinocyte proliferation. RAGE and S100A8/A9 were transcriptionally upregulated in SCC compared to normal epidermis, as well as in OTR compared to immunocompetent patients (IC) with SCC. The proliferation of normal and SCC keratinocytes was induced by exposure to exogenous S100A8/A9 which in turn was abolished by blocking of RAGE. The migratory activities of normal and SCC keratinocytes were also increased upon exposure to S100A8/A9. We demonstrated that exogenous S100A8/A9 induces phosphorylation of p38 and SAPK/JNK followed by activation of ERK1/2. We hypothesize that RAGE and S100A8/A9 contribute to the development of human SCC by modulating keratinocyte growth and migration. These processes do not seem to be impaired by profound drug-mediated immunosuppression in OTR.
Collapse
Affiliation(s)
| | - Piotr J. Dziunycz
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Severin Läuchli
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Jürg Hafner
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Vogl
- Institute of Immunology, University Clinic Münster, Münster, Germany
| | - Lars E. French
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Abstract
The S100 proteins are exclusively expressed in vertebrates and are the largest subgroup within the superfamily of EF-hand Ca2(+)-binding proteins Generally, S100 proteins are organized as tight homodimers (some as heterodimers). Each subunit is composed of a C-terminal, 'canonical' EF-hand, common to all EF-hand proteins, and a N-terminal, 'pseudo' EF-hand, characteristic of S100 proteins. Upon Ca2(+)-binding, the C-terminal EF-hand undergoes a large conformational change resulting in the exposure of a hydrophobic surface responsible for target binding A unique feature of this protein family is that some members are secreted from cells upon stimulation, exerting cytokine- and chemokine-like extracellular activities via the Receptor for Advanced Glycation Endproducts, RAGE. Recently, larger assemblies of some S100 proteins (hexamers, tetramers, octamers) have been also observed and are suggested to be the active extracellular species required for receptor binding and activation through receptor multimerization Most S100 genes are located in a gene cluster on human chromosome 1q21, a region frequently rearranged in human cancer The functional diversification of S100 proteins is achieved by their specific cell- and tissue-expression patterns, structural variations, different metal ion binding properties (Ca2+, Zn2+ and Cu2+) as well as their ability to form homo-, hetero- and oligomeric assemblies Here, we review the most recent developments focussing on the biological functions of the S100 proteins and we discuss the presently available S100-specific mouse models and their possible use as human disease models In addition, the S100-RAGE interaction and the activation of various cellular pathways will be discussed. Finally, the close association of S100 proteins with cardiomyopathy, cancer, inflammation and brain diseases is summarized as well as their use in diagnosis and their potential as drug targets to improve therapies in the future.
Collapse
Affiliation(s)
- C W Heizmann
- Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University of Zurich, Switzerland.
| | | | | |
Collapse
|
6
|
Sunahori K, Yamamura M, Yamana J, Takasugi K, Kawashima M, Yamamoto H, Chazin WJ, Nakatani Y, Yui S, Makino H. The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid arthritis. Arthritis Res Ther 2006; 8:R69. [PMID: 16613612 PMCID: PMC1526633 DOI: 10.1186/ar1939] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 03/12/2006] [Accepted: 03/15/2006] [Indexed: 12/18/2022] Open
Abstract
S100A8 and S100A9, two Ca2+-binding proteins of the S100 family, are secreted as a heterodimeric complex (S100A8/A9) from neutrophils and monocytes/macrophages. Serum and synovial fluid levels of S100A8, S100A9, and S100A8/A9 were all higher in patients with rheumatoid arthritis (RA) than in patients with osteoarthritis (OA), with the S100A8/A9 heterodimer being prevalent. By two-color immunofluorescence labeling, S100A8/A9 antigens were found to be expressed mainly by infiltrating CD68+ macrophages in RA synovial tissue (ST). Isolated ST cells from patients with RA spontaneously released larger amounts of S100A8/A9 protein than did the cells from patients with OA. S100A8/A9 complexes, as well as S100A9 homodimers, stimulated the production of proinflammatory cytokines, such as tumor necrosis factor alpha, by purified monocytes and in vitro-differentiated macrophages. S100A8/A9-mediated cytokine production was suppressed significantly by p38 mitogen-activated protein kinase (MAPK) inhibitors and almost completely by nuclear factor kappa B (NF-κB) inhibitors. NF-κB activation was induced in S100A8/A9-stimulated monocytes, but this activity was not inhibited by p38 MAPK inhibitors. These results indicate that the S100A8/A9 heterodimer, secreted extracellularly from activated tissue macrophages, may amplify proinflammatory cytokine responses through activation of NF-κB and p38 MAPK pathways in RA.
Collapse
Affiliation(s)
- Katsue Sunahori
- Department of Medicine and Clinical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Masahiro Yamamura
- Department of Medicine and Clinical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Jiro Yamana
- Department of Medicine and Clinical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Kouji Takasugi
- Department of Medicine and Clinical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Masanori Kawashima
- Department of Medicine and Clinical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | - Walter J Chazin
- Department of Biochemistry and Physics, Center for Structural Biology, Vanderbilt University, 465 21st Avenue, Nashville, TN 87232-8725, USA
| | - Yuichi Nakatani
- Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko, Tsukui-gun, Kanagawa 199-0195, Japan
| | - Satoru Yui
- Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko, Tsukui-gun, Kanagawa 199-0195, Japan
| | - Hirofumi Makino
- Department of Medicine and Clinical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
7
|
Berthier S, Paclet MH, Lerouge S, Roux F, Vergnaud S, Coleman AW, Morel F. Changing the conformation state of cytochrome b558 initiates NADPH oxidase activation: MRP8/MRP14 regulation. J Biol Chem 2003; 278:25499-508. [PMID: 12719414 DOI: 10.1074/jbc.m209755200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phagocyte NADPH oxidase generates O2. for defense mechanisms and cellular signaling. Myeloid-related proteins MRP8 and MRP14 of the S100 family are EF-hand calcium-binding proteins. MRP8 and MRP14 were co-isolated from neutrophils on an anti-p47phox matrix with oxidase cytosolic factors and identified by mass spectrometry. MRP8 and MRP14 are absent from Epstein-Barr virus-immortalized B lymphocytes, and, coincidentally, these cells display weak oxidase activity compared with neutrophils. MRP8/MRP14 that was purified from neutrophils enhanced oxidase turnover of B cells in vitro, suggesting that MRP8/MRP14 is involved in the activation process. This was confirmed ex vivo by co-transfection of Epstein-Barr virus-transformed B lymphocytes with genes encoding MRP8 and MRP14. In a semi-recombinant cell-free assay, recombinant MRP8/MRP14 increased the affinity of p67phox for cytochrome b558 synergistically with p47phox. Moreover, MRP8/MRP14 initiated oxidase activation on its own, through a calcium-dependent specific interaction with cytochrome b558 as shown by atomic force microscopy and a structure-function relationship investigation. The data suggest that the change of conformation in cytochrome b558, which initiates the electron transfer, can be mediated by effectors other than oxidase cytosolic factors p67phox and p47phox. Moreover, MRP8/MRP14 dimer behaves as a positive mediator of phagocyte NADPH oxidase regulation.
Collapse
MESH Headings
- Arachidonic Acid/metabolism
- Blotting, Western
- Calgranulin A/isolation & purification
- Calgranulin A/metabolism
- Calgranulin B/isolation & purification
- Calgranulin B/metabolism
- Cell-Free System
- Chromatography, High Pressure Liquid
- Cytochrome b Group/chemistry
- Cytosol/metabolism
- DNA, Complementary/metabolism
- Dimerization
- Dose-Response Relationship, Drug
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Enzyme Activation
- Gene Expression Regulation, Enzymologic
- Humans
- Lymphocytes/metabolism
- Mass Spectrometry
- Microscopy, Atomic Force
- NADPH Oxidases/chemistry
- NADPH Oxidases/metabolism
- Neutrophils/metabolism
- Oxygen/metabolism
- Phagocytes/enzymology
- Phosphoproteins/metabolism
- Protein Binding
- Protein Conformation
- Recombinant Proteins/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Time Factors
- Transfection
- Trypsin/pharmacology
Collapse
Affiliation(s)
- Sylvie Berthier
- Groupe de Recherche et d'Etude du Processus Inflammatoire, Laboratoire d'Enzymologie, Centre Hospitalier Universitaire de Grenoble, BP 217, 38043 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Eue I, König S, Pior J, Sorg C. S100A8, S100A9 and the S100A8/A9 heterodimer complex specifically bind to human endothelial cells: identification and characterization of ligands for the myeloid-related proteins S100A9 and S100A8/A9 on human dermal microvascular endothelial cell line-1 cells. Int Immunol 2002; 14:287-97. [PMID: 11867565 DOI: 10.1093/intimm/14.3.287] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The natural ligands of the S100 EF hand proteins S100A8 and A9 [myeloid-related proteins 8 and 14] have long been searched for in order to further the understanding of the role of the S100A8/A9-expressing monocyte subpopulation in progressing inflammatory processes. We demonstrate that S100A8, S100A9 and the S100A8/A9 heterodimeric complex bind to human dermal microvascular endothelial cell line (HMEC)-1 with an increasing binding capacity progressing from S100A8 < or = S100A9 < or = S100A8/A9. Similar results were obtained in the apolipoprotein E knockout mouse model, where preferably recombinant S100A9 but no S100A8 bound to the endothelium of the aorta ascendens. The binding of the S100A8/A9 heterodimer complex to activated HMEC-1 is specific as demonstrated by a dose-responding and satiable binding curve and the competition of FITC-labeled versus unlabeled protein. The protein character of the binding site was proven by treatment with trypsin. S100A8/A9 binding to HMEC-1 is inducible by lipopolysaccharide and tumor necrosis factor-alpha, and in the presence of calcium. A 163-kDa protein was isolated from a cell lysate of activated HMEC-1 cells using an affinity-chromatography protocol. The endothelial cell-associated ligand proteins isolated by the use of the S100A9 monomer and the S100A8/A9 dimer were subjected to mass spectrometry for protein identification. Clearly, alpha(2)-macroglobulin was identified as a binding partner for the S100A9 monomer, whereas no protein could be identified from the database for the ligand of the S100A8/A9 dimer.
Collapse
Affiliation(s)
- Ines Eue
- PAN Clinic, Zeppelinstrasse 1, 50667 Köln, Germany.
| | | | | | | |
Collapse
|